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A key phase in the DeepQA architecture is Hypothesis Generation, in
which candidate system responses are generated for downstream
scoring and ranking. In the IBM Watsoni system, these hypotheses
are potential answers to Jeopardy!i questions and are generated by
two components: search and candidate generation. The search
component retrieves content relevant to a given question from
Watson’s knowledge resources. The candidate generation component
identifies potential answers to the question from the retrieved
content. In this paper, we present strategies developed to use
characteristics of Watson’s different knowledge sources and to
formulate effective search queries against those sources. We further
discuss a suite of candidate generation strategies that use various
kinds of metadata, such as document titles or anchor texts in
hyperlinked documents. We demonstrate that a combination of these
strategies brings the correct answer into the candidate answer
pool for 87.17% of all the questions in a blind test set, facilitating
high end-to-end question-answering performance.

Introduction
A key component in the IBM Watson* system is Hypothesis
Generation, which is the process of producing possible
answers to a given question. These candidate answers are
scored by the Evidence Gathering and Hypothesis Scoring
components [1–4] and are ranked by the Final Merging and
Ranking component [5] to produce the final ranked list of
answers. Since the outcome of Hypothesis Generation
represents all possible candidates that the system will
consider, it is crucial that a wide net be cast at this stage. It is
also important, however, that the system includes the correct
answer among its candidates without overwhelming the
downstream answer scorers with noise. Too many wrong
candidates reduce system efficiency and can potentially
hamper the system’s ability to identify the correct answer
from the overly large pool of candidates.
In the IBM Watson system, the Hypothesis Generation

phase consists of two components: search and candidate
generation. In its search component, Watson adopts a
multipronged approach to retrieve relevant content from its
diverse knowledge resources. The search results may be

documents or passages from unstructured sources or
arguments that satisfy partially instantiated predicates
from structured sources. Watson’s search strategies extend
the passage search approach adopted by most existing
question-answering (QA) systems in two ways. First, Watson
employs specific search strategies to exploit the relationship
between titles and content in title-oriented documents
(e.g., encyclopedia articles) to improve search recall. Second,
Watson uses structured resources through queries
based on syntactic and semantic relations extracted from
the question.
The candidate generation component identifies potential

answers to a question from the retrieved unstructured content.
Most existing QA systems adopt a type-based approach to
candidate generation with respect to a predefined type
ontology. However, because of the broad range of lexical
answer types (LATs) [6] observed in the Jeopardy!**
domain, Watson relies on a type-independent approach to its
primary candidate generation strategiesVthose of producing
candidate answers from unstructured content. It uses the
knowledge inherent in human-generated text and associated
metadata, as well as syntactic and lexical cues in the
search results, to identify salient concepts from text and
hypothesize them as candidate answers.
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Note that the strategies described in this paper focus on
questions whose answers can plausibly be found in Watson’s
standard knowledge sources. These questions constitute
the vast majority of Jeopardy! questions and typically focus
on entities and facts that are true about them in the world.
Questions that require specialized techniques for producing
candidate answers are described in [7]. Examples of these
special question types are those in the BRHYME TIME[
category, whose answers are typically made up of phrases
of words that rhyme with each other. Excluding these special
question types, our combined search and candidate
generation strategies placed the correct answer in the
candidate answer list for 87.17% of the questions in a
3,344-question unseen test set, facilitating high end-to-end
QA performance.

Question analysis overview
In this section, we briefly discuss Watson’s question
analysis output leveraged by the search and candidate
generation components. The output encapsulates syntactic
and semantic analysis of the question, as described in
[4, 6, 8], including dependency parse, semantic relations,
LAT, and focus.
For parsing, we employ ESG (English Slot Grammar),

a comprehensive deep Slot Grammar parser [8]. Each node
in its dependency parse tree contains 1) a headword and its
associated morpho-lexical, syntactic, and semantic features
and 2) a list of Bchildren[ that are generally modifiers of the
node, along with the slot that each modifier fills. The focus
detection component identifies the question focus, which
is the part of the question that refers to the answer and is
often the head of the noun phrase with demonstrative
determiners Bthis[ or Bthese[. The relation recognizer
annotates certain types of unary and binary relations in the
question; of particular interest here are semantic relations
recognized over the focus whose predicates can be mapped to
codified relationships in Watson’s structured knowledge
resources, such as actorIn and authorOf. Finally, the LAT
detection module identifies the LAT of the correct answer to
the question. The LAT is typically a term in the focus but
may also include other nouns that are co-referential with
the focus in the question and/or category.
Consider the following Jeopardy! question:

(1) MOVIE-BING[: Robert Redford and Paul Newman
starred in this depression-era grifter flick. (Answer:
BThe Sting[)

The focus identification component recognizes the focus to
be Bflick[, the head of the noun phrase Bthis depression-era
grifter flick[. Since the focus Bflick[ does not have any
co-referential terms in the question, the only LAT is the
focus. Finally, the relation detection component recognizes
two relation instances: actorInðRobert Redford; flick :

focusÞ and actorInðPaul Newman; flick : focusÞ.
These recognized relations are used in the Answer Lookup
component described below.

Search and candidate generation overview
The DeepQA architecture is designed to be a large-scale
hypothesis generation, evidence-gathering, and scoring
architecture [9]. Figure 1 illustrates this architecture,
focusing on how Watson’s search and candidate generation
components fit into the overall QA pipeline. The Hypothesis
Generation phase takes as input results from question
analysis, summarized in the previous section. The first four
primary search components in the diagram show Watson’s
Document and Passage search strategies, which target
unstructured knowledge resources such as encyclopedia
documents and newswire articles [10]. On the other hand, the
last two search components, namely, Answer Lookup and
PRISMATIC search, use different types of structured
resources. One or more candidate generation techniques are
applied to each search result to produce plausible candidate
answers. In our effort, we explored how to exploit the
relationship between the title and content of title-oriented
documents (such as encyclopedia articles; see below for more
detail) and how to use metadata present in linked data (such
as web documents) to help with effective candidate
generation.

Searching unstructured resources
Watson’s text corpora contain both title-oriented documents,
such as encyclopedia documents, and non-title-oriented
sources, such as newswire articles [10]. For title-oriented
sources, the document title is typically an entity or a concept,
and the content of the document provides salient information
about that entity or concept. This relationship between
document title and content inspired us to devise special
search strategies to take advantage of the relationship for
more effective search. We analyzed Jeopardy! question/
answer pairs and the title-oriented documents that provide
answers to the questions. We observed three possible
relationships between the question/answer pair and those
relevant documents.
In the first case, the correct answer is the title of the

document that answers the question. For example,
consider the Jeopardy! question BThis country singer
was imprisoned for robbery and in 1972 was
pardoned by Ronald Reagan.[ The Wikipedia** article for
Merle Haggard, the correct answer, mentions him as a
country singer, his imprisonment for robbery, and his pardon
by Reagan and is therefore an excellent match for the
question. Jeopardy! questions, which often contain multiple
facts about their answers, are frequently well-matched by
these encyclopedia documents that cover most of the facts
in the question. To exploit the strong association between
the title and content for title-oriented documents, Watson
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adopts a document-oriented search strategy to find
documents that, as a whole, best match the question.
In the second case, the title of a document that answers the

question is in the question itself. For instance, consider the
question BAleksander Kwasniewski became the president of
this country in 1995.[ The first sentence of the Wikipedia
article on Aleksander Kwasniewski states, BAleksander
Kwasniewski is a Polish socialist politician who served as
the President of Poland from 1995 to 2005.[ Motivated by
this observation, Watson adopts a passage search strategy
against a subcorpus of documents, consisting of those
documents whose titles appear in the question. We refer to
this search strategy as a TIC (Title-in-Clue) Passage search.
In the third case, the answer-justifying document is a

third-party document whose title is neither the answer nor
in the question. We expect traditional passage search
strategies adopted in existing QA systems [11] to be effective
on those questions.
Although the three sets of search results have a fair degree

of overlap, we have empirically shown that each strategy
brings a unique contribution to the aggregated search results

and thus helps improve the overall recall of our search
process [12]. We discuss how we formulate search queries
and how the three search strategies are performed in Watson
in the remainder of this section.

Search query generation
Search queries for a question are generated from the results
of question analysis. For all questions, a full query is
generated on the basis of content terms or phrases extracted
from the question, as well as any LAT detected in the
category. Arguments of relations recognized over the focus
are considered more salient query terms and are weighted
higher. For instance, in Example (1) above, the following full
query is shown, where the arguments of the actorIn
relations are given empirically determined higher weights:

(2.0 BRobert Redford[) (2.0 BPaul Newman[) star
depression era grifter (1.5 flick)

For those questions where the LAT has modifiers, as in
the current example, a LAT-only query is generated in

Figure 1

DeepQA architecture with details for search and candidate generation. (Modified and used, with permission, from D. Ferrucci, E. Brown, J. Chu-
Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C. Welty, BBuilding Watson: an overview
of the DeepQA project,[ AI Magazine, vol. 31, no. 3, pp. 59–79, 2010; �2010 Association for the Advancement of Artificial Intelligence.)
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addition to the full query, based on the LAT and its
modifiers. In this example, the full noun phrase that contains
the LAT is Bthis depression-era grifter flick[; therefore,
the LAT-only query contains the terms

depression era grifter flick

The motivation for the LAT-only query is that in some
cases, the LAT and its modifiers uniquely identify the answer
or narrow the candidate answer space to a small number of
possibilities. This example falls into the latter case. Some
LAT-only queries that identify a unique entity include capital
Ontario and first 20th century US president. Whereas some
LAT-only queries, such as French composer and 20th
century playwright, are too imprecise to be useful, we have
found that, overall, these LAT-only queries are helpful in
increasing system performance.
In the search strategies described below, the full query is

applied to both Document search and Passage search. The
LAT-only queries are applied to Passage search only because
these queries tend to be short and are less effective for
matching against full documents. The different queries and
search strategies produce results that are aggregated for
further processing.
In determining the sizes of the search hit lists, we

attempted to strike a balance between increased candidate
recall, processing time for all candidates, and the effect of the
incorrect candidates on Watson’s ability to rank the correct
answer in top position. We empirically determined the hit
list sizes reported below on the basis of experiments that
measure hit list sizes against candidate recall and end-to-end
system performance.

Document search
Watson’s Document search component uses the open-source
Indri search engine [13] and targets title-oriented documents
that, as a whole, best match the question. Two separate
Indri indices are used, one consisting of long documents such
as encyclopedia articles and the other of short documents
such as dictionary entries. The two separate indices are
necessary because the significant size differences between the
documents caused highly relevant short documents to be
drowned out by longer documents when combined in
one index. The full query, constructed as previously
described, is used to retrieve the top 50 most relevant
long documents and the top 5 most relevant short documents.
A Document search rank and a search score are associated
with each result, which are used as features for scoring
candidate answers, in conjunction with additional features
generated by other downstream answer scorers.

Passage search
To retrieve relevant passages from its unstructured
knowledge resources, Watson extends common existing

approaches [11] along two dimensions. First, we adopt the
TIC Passage search strategy to target search against a small
subset of highly relevant documents, i.e., those whose
titles appear in the question. Second, we leverage multiple
search engines in our implementation of traditional passage
search to increase diversity and hence recall of the results.
To this end, we adopt Indri’s existing passage search
capability and extend Lucene [14] to support passage
retrieval. Indri and Lucene passage retrieval differ in two
major aspects. The first concerns the retrieval model used,
where Indri uses a combination of language modeling and
inference network for ranking [15], and Lucene leverages tf
(term frequency) and idf (inverse document frequency) for
scoring relevance [16]. The second key difference is in the
implementation of passage retrieval, which we discuss in the
section on Lucene Passage search below.
Regardless of the strategy or search engine used, Watson’s

passage search components return one to two sentence
passages scored to be most relevant to a given question.
Watson retrieves ten passages each from TIC Passage search
and Passage search. For the latter, five passages come from
Indri and five from Lucene. Our empirical results show
that an aggregation of five passages from each search engine
achieves higher recall than retrieving ten passages using
either search engine alone. The passage rank is used as a
feature for scoring candidate answers extracted from that
passage. The passage score feature is not used because the
search scores returned by the two search engines are not
comparable.

Indri Passage search
Indri supports passage retrieval through the use of the prefix
#passage½X : Y � for a query. This prefix specifies that
passages be evaluated within an X -word window, shifting Y
words at a time, using a scoring algorithm analogous to
that for document retrieval. In Watson’s implementation, X is
set to 20 and Y to 6, to balance the quality of results and
speed. Watson’s passage search component enhances Indri’s
native passage search results for a QA application in two
ways. First, we extend each 20-word passage at both ends to
sentence boundaries so that the results can be analyzed by
our natural-language processing (NLP) components [4, 8].
Second, we augment Indri’s native scoring algorithm to
account for coverage of query terms, i.e., rewards are given
to passages that cover a large portion of query terms over
those that match a small fraction at high frequency. Our
experiments showed that the rescoring process led to
passages that are more likely to contain the answer to
the question.

Title-in-Clue Passage search using Indri
Watson’s TIC Passage search component uses characteristics
of title-oriented documents to focus search on a subset of
potentially more relevant documents. Its implementation
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makes use of Indri’s support for dynamic subcorpus
specification and a dictionary that maps canonical Wikipedia
document titles1 (e.g., Naomi) to all Wikipedia documents
with that string as their title [e.g., Naomi (band) and Naomi
(Bible), among others]. The dictionary is used to identify
document titles in the question, and a subcorpus of
documents is dynamically constructed by aggregating all
target documents in the matched dictionary entries. Although
the same query is used as in Indri Passage search, we found
that by constraining the corpus to a much smaller and
potentially more relevant subset, this search strategy can
succeed when the general passage search strategy fails.

Lucene Passage search
Indri’s approach to passage search is to treat each passage as
a Bmini-document[ and to apply the same document-scoring
algorithm to these passages. However, this approach did
not fare well in Lucene. Instead, we observed that passages
extracted from documents that are highly relevant to the
question are more likely to contain the answer. We therefore
introduced a two-phase passage retrieval process to Lucene.
First, Lucene Document search is used to retrieve relevant
documents. Second, passages are extracted from these
documents and are ranked according to several criteria
discussed below.
Our Lucene Document search component adopts a

modification of Lucene’s built-in similarity-scoring scheme,
introduced in [17]. It primarily consists of improvements
in term frequency normalization and in document length
normalization. The search query is constructed from question
keywords and phrases and uses Lucene’s support for lexical
affinities [18].
Our extension to Lucene for passage search consists of

evaluating each single-sentence passage from top-scoring
documents separately using a set of query-independent
features and a relevance measure between the sentence and
the query. We identified three query-independent features
that affect the a priori probability of a sentence’s relevance
to a Jeopardy! question as follows.

• Sentence offsetVSentences that appear closer to the
beginning of the document are more likely to be relevant;
therefore, sentence offset is used as a scoring feature.

• Sentence lengthVLonger sentences are more likely to be
relevant than shorter sentences; thus, sentence length is
adopted as a feature.

• Number of named entitiesVSentences containing more
named entities are more likely to be relevant, since most
Jeopardy! answers are named entities. We approximate
the recognition of named entities in documents through

occurrences of anchor texts and document titles in each
sentence.

For estimating the relevance of a passage for a given
search query, given that the passage is extracted from a
document relevant to the query, we found that a simple
measure of keyword and phrase matching outperforms more
sophisticated alternatives. This score is then multiplied by the
search score of the document from which the passage is
extracted.
The query-dependent similarity score is combined with the

query-independent scores described above to determine the
overall search score for each passage. In order to increase
recall, each top-scoring single-sentence passage is expanded
to include the sentence that precedes it in the document. This
expansion is helpful because co-reference targets in the
current sentence can often be found in the preceding
sentence.

Searching structured resources
In addition to searching over unstructured resources, Watson
also attempts to identify relevant content from structured
syntactic and semantic resources. Watson adopts two primary
approaches toward searching against two different types
of structured resources, as shown in Figure 1. The first
approach, Answer Lookup, targets existing knowledge
sources encoding semantic relations, such as DBpedia [19].
The second approach, PRISMATIC search, uses a
custom-built PRISMATIC knowledge base [20], which
encodes syntactic and shallow semantic relations derived
from a large collection of text documents.

Answer Lookup
Early QA systems took the approach of translating natural
language into formal machine language, such as first-order
logic or Bayesian logic. They then either looked up the
answer from a structured knowledge base or performed
reasoning on known facts to derive the answer. Most of
Watson’s QA capability does not depend on this approach,
because the problem of translating natural language into a
machine-understandable form has proven too difficult to do
reliably. There are cases, however, where parts of a question
can be translated into a machine-understandable form: for
instance, when the question asks for a relation between the
answer and a named entity in the question, such as the
actorIn relations shown in Example (1). Watson turns
that part of the question into a query against structured
sources such as DBpedia [19] and the Internet Movie
Database (IMDB) [21] in an attempt to instantiate the
variable in each query (Bflick[ in the example). We call
this capability Answer Lookup.
Effective Answer Lookup requires components that match

entity names in questions to those in structured sources.
More crucially, it directly depends on the quality and

1Wikipedia document titles contain disambiguation information for nonprimary senses of
ambiguous titles. For example, BNaomi (band)[ is the title for the article describing the German
electronic duo, and BNaomi (Bible)[ is the title for the article about the biblical character
Naomi.
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quantity of semantic relations that can be identified in
questions, and relation detection in text, while a problem
studied for some time, remains an open issue. Broadly
speaking, work in that area aims to develop recognition
capabilities either manually or by statistical means.
For the DeepQA technology base, components have been

developed using both recognition styles; these are described
in [4]. The Watson system used only rule-based relation
detection, largely because of performance constraints. For
manual development of relation-bearing patterns, it is critical
to analyze the domainVto identify the most frequently
occurring relations in questions and to obtain appropriate
structured sources that cover those relations.
Our approach, which is predicated on developing

recognition grammars for each relation, entails an effort
significant enough to drive us to focus only on the most
frequent relations. However, the difficulty in automatic

relation detection per se hampers our ability to automatically
determine the most frequently occurring relations in a
question set; in order to count them, one has to be able to
detect them. As an approximation, we analyzed 20,000
randomly selected Jeopardy! questions with their correct
answers against a few data sources we judged to match the
Jeopardy! domain well. For each question, we looked for
known relations in any of the chosen sources between a
named entity in the question and the answer. The frequency
of each relation in the sources linking a named entity in a
question to an answer was aggregated over all 20,000
questions. Based on this approximation, Figure 2 shows
the relative histogram of most frequent Freebase [22]
relations in these questions.
This ranked list of relations sets priorities for the

implementation of relation recognizers in questions. In
general, we are looking for English expressions of these

Figure 2

Approximate distribution of the 20 most frequent Freebase relations in 20,000 randomly selected Jeopardy! questions. (Modified and used, with
permission, fromD. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, J.W.Murdock, E. Nyberg, J. Prager, N. Schlaefer, and
C.Welty, BBuildingWatson: an overview of the DeepQA project,[AIMagazine, vol. 31, no. 3, pp. 59–79, 2010;�2010Association for the Advancement
of Artificial Intelligence.)
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known relations between a named entity and the question
focus, such as actorInðRobert Redford; flick : focusÞ
and actorInðPaul Newman; flick : focusÞ. The Answer
Lookup component first tries to find the known named
entity in the database from the relation argument string
(e.g., BRobert Redford[) using a step called entity
disambiguation and matching (EDM) [2]. If a matching
entity is found, a query is generated to find movies starring
the given entity. As with this example, if multiple relations
are found in the question, each separate relation is
individually processed and its results pooled. An identical
Answer Lookup score is assigned to each search result,
except for those results reinforced by multiple search queries
whose scores are boosted.
The top 20 relations in the Jeopardy! domain (see Figure 2)

are predominately entertainment and geographical relations,
which together appear in approximately 11% of our
questions. The relation detection recall is approximately
60%, and its precision is approximately 80%. The EDM step
has a recall of approximately 80%, and the data sources cover
approximately 80% of the relations we need. Multiplying
these probabilities together, we expect Answer Lookup to
return the correct answer in approximately 4% of the
questions. This estimate is validated by evaluation on a
blind test set discussed later in this paper. The Answer
Lookup score is discriminating only in a few cases, such
as when multiple relation instances are detected and the
intersection of the query results contains only one element,
or when the relation instance detected has only one
answerVsuch as when the question seeks the author of
a book.

PRISMATIC search
PRISMATIC is a large-scale lexicalized relation resource
automatically extracted from massive amounts of text [20].
PRISMATIC provides shallow semantic information derived
from aggregating over syntactic or semantic relation usage
in a large corpus, with generalization over entity types. For
example, it gathers the aggregate statistics of relations
extracted from syntactic parses, such as the frequency of the
string Tom Cruise appearing as the subject of the verb star
modified by a prepositional phrase Bin hmoviei[. The
aggregate statistics can be used to infer selectional
restrictions and other semantics.
One of the semantic relations PRISMATIC records is the

occurrence of isa relations.2 This information is particularly
useful for search and candidate generation because it can
identify the most popular instances of a particular LAT. For
example, consider the question BUnlike most sea animals,
in the Sea Horse this pair of sense organs can move
independently of one another[. Watson’s search strategies

described above failed to retrieve the correct answer as a
candidate since the question mentions a relatively obscure
fact. PRISMATIC search, on the other hand, focuses on
the LAT and its modifiers, in this example sense organ,
and identifies up to 20 most popular instances of the LAT
with modifiers from the PRISMATIC knowledge base.
The correct answer, eyes, is the third most popular instance
of sense organ and is returned by the PRISMATIC search
component. PRISMATIC search rank and score features
are associated with each result for final scoring purposes,
in conjunction with additional features generated by other
downstream answer scorers.

Generating candidates from search results
Once relevant content is identified from Watson’s knowledge
sources, candidate answers are extracted from the content.
For content retrieved from structured resources, the retrieved
results (which are the uninstantiated arguments in the
query) are the candidate answers. For unstructured results
from Document search and Passage search, additional
processing is required to identify plausible candidate answers
from those search results. As a baseline, we adopted a
named entity recognizer from our TREC (Text REtrieval
Conference) QA system [23] and produced as candidate
answers all entities it recognizes as an instance of any of
the more than 200 types in its type system. This candidate
set is a superset of what would be produced as candidates
using a type-based candidate generation approach [24, 25]
using the same type system.Evenwith the superset, we found that
the type-based approach does not produce
high enough candidate recall on Jeopardy! questions [12].
This section describes three general-purpose candidate

generation techniques applied to unstructured search results,
which improve upon our baseline: Title of Document
candidate generation, applied to Document search results
only; Wikipedia Title candidate generation, relevant for
Passage search results only; and Anchor Text candidate
generation, which is appropriate for both types of search
results. These three candidate generation strategies are not
answer type dependent, apply to the vast majority of
questions, and generate most of Watson’s candidate answers.
The other candidate generation strategies, which we do
not discuss in this paper, apply to a small number of
questions or produce a small number of candidates only.
Some of these strategies may be dependent on question type
(e.g., questions seeking verb phrase answers or numeric
answers), and others may rely on typographic cues.
Note that although the discussion below demonstrates how

Watson uses Wikipedia metadata for candidate generation
and the evaluation demonstrates how these strategies affect
Watson’s performance on Jeopardy!, we have previously
demonstrated that the same techniques also effectively
perform on questions from the TREC QA track [12].
Furthermore, the techniques we developed can be easily2Subclass relationships between objects; for instance, a dog Bis a[ mammal.
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applied to leverage metadata from other title-oriented
documents (for Title of Document and Wikipedia Title
candidate generation) and collections of documents with
entity-oriented hyperlinks (for Anchor Text candidate
generation).

Title of Document candidate generation
Recall that Document search identifies title-oriented
documents that, as a whole, best match the facts presented
in the question. For these search results, the entity that
constitutes the title of a matched document fits the
description of the question and is thus proposed as a
candidate answer.
To facilitate the process of answer typing [2] in

downstream processing, candidate provenance information
is recorded for each candidate, if possible, in order to
disambiguate the candidate string. In particular, some
scorers for answer typing use structured resources, such as
DBpedia, whose entries can be disambiguated via Wikipedia
uniform resource identifiers (URIs). For example, the
candidate Naomi with provenance Naomi (Bible) suggests
that the candidate is a person, whereas the same candidate
with provenance Naomi (band) will be typed as a musical
group. For candidates generated from Wikipedia documents,
the distinction between multiple meanings is available in the
candidate generation phase as it corresponds to the document
actually retrieved in the search process. This information
is recorded in metadata associated with the candidate.

Wikipedia Title candidate generation
We conducted an experiment to evaluate the coverage of
Wikipedia articles on Jeopardy! questions and found that the
vast majority of Jeopardy! answers are titles of Wikipedia
documents [10]. Of the roughly 5% of Jeopardy! answers that
are not Wikipedia titles, some included multiple entities,
each of which is a Wikipedia title, such as Red, White, and
Blue, whereas others were sentences or verb phrases, such
as make a scarecrow or fold an American flag. The high
coverage of Wikipedia titles over Jeopardy! answers suggests
that they can serve as an excellent resource for candidate
generation.
The Wikipedia Title candidate generation strategy

extracts from a retrieved passage all noun phrases that are
Wikipedia document titles and are not subsumed by other
titles. These indicate topics in the passage that are sufficiently
salient to warrant their own Wikipedia page and, we
hypothesize, are worth considering as candidate answers.
To identify Wikipedia titles in passages, we use the same
Wikipedia title dictionary used to identify document
titles in questions for TIC Passage search. The target
document titles [e.g., Naomi (Bible)] are used as provenance
information for each candidate to help with disambiguation
in downstream scoring.

Anchor Text candidate generation
Although Wikipedia Title candidate generation achieved
high candidate recall for most passages, we hypothesized
that linked metadata extracted from Wikipedia documents
can be used to improve the precision of candidates
extracted from Wikipedia passages. For example, consider
the passage BNeapolitan pizzas are made with ingredients
like San Marzano tomatoes, which grow on the volcanic
plains south of Mount Vesuvius and Mozzarella di Bufala
Campana, made with milk from water buffalo raised in
the marshlands of Campania and Lazio.[ Whatever the
question for which the passage was retrieved, we expect
terms or phrases such as BNeapolitan pizza[, BMount
Vesuvius[, and Bwater buffalo[ to be plausible
candidates and other terms such as Bgrow[ and Bingredients[
to be less likely as candidate answers. We observed
that plausible candidates typically satisfy two criteria.
First, they represent salient concepts in the passage.
Second, the candidates have Wikipedia articles
about them.
We observed that Wikipedia contains several types of

metadata that, in aggregation, make up a set of plausible
candidates that represent salient concepts for each document
[12]. They include the following:

1. Anchor texts in the document.
2. Document titles of hyperlink targets (which are often

synonyms of terms in 1).
3. Title of the current document.
4. Titles of redirect pages to the current document (which are

often synonyms of 3).

The metadata is aggregated on a per-document basis, and
they become plausible candidates for search results from
that document. In other words, for each search result from a
document, terms or phrases in the plausible candidate set
for that document that appear in the search result are
generated as candidate answers. In the above sample passage,
the italicized terms satisfy one of the four criteria above
and represent the candidate answers that would be generated
from that passage. In Watson, Anchor Text candidate
generation is applied to Wikipedia document titles from
Document search as well as all passages retrieved from
Wikipedia (in lieu of Wikipedia Title candidate generation,
which has nearly identical candidate recall but significantly
lower precision [12]).
For candidate provenance, we take advantage of the linked

nature of these candidate answers to accurately identify
the senses for candidates that can potentially be ambiguous.
For candidate answers extracted from Anchor Text-based
resources (1 and 2 in the list above), the target
document is used to identify the sense of the candidate.
For those extracted from document title or redirects [(3)
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and (4) in the list above], the current document is used to
disambiguate among multiple senses.

Experimental evaluation

Experimental setup
To evaluate the impact of the search and candidate generation
strategies described in this paper, we randomly selected
66 previously unseen Jeopardy! games. We excluded from
these games special questions that require a tailored process
for candidate generation, such as puzzle questions [7] and
common bond questions [26], resulting in a test set of
3,344 questions. We evaluate the coverage of each search
strategy paired with its corresponding candidate answer
generation components and measure performance using the
candidate binary recall metric for each strategy separately as
well as all strategies combined. Candidate binary recall is
computed as the percentage of questions for which the
correct answer is generated as a candidate answer. We adopt
this evaluation metric to reflect our goal of maximizing
candidate recall at the Hypothesis Generation phase of
the DeepQA pipeline.

Results and discussion
The results of our experiments are shown in Table 1. For
each search and candidate generation method, we computed
the number of questions for which at least one result was
returned, henceforth referred to as the active subset. For
each approach, we also computed the average number of
candidates generated per question in the active subset and
the candidate binary recall computed over all questions.
Our results show that Document search and Passage search

have very high coverage, returning candidates for all
questions for Passage search and all but 1% of the questions
for Document search.3 Although they both yield high
candidate binary recall, that is, 74.43% and 79.40%,

respectively, they also generate a fairly large number of
candidates per question. Contrast that with Answer Lookup
and PRISMATIC search, which are active on a much smaller
set of questions and correspondingly have much lower
overall binary recall. However, for these search strategies,
only a small number of candidate answers are added to the
pool. Note that Answer Lookup yielded a candidate binary
recall of 3.53% on blind data, which is close to the 4%
estimate in an earlier discussion.
The row labeled BPercentage unique[ in Table 1

examines the unique contribution of each search and
candidate generation approach, i.e., the loss in candidate
binary recall if that strategy is ablated from the system. Our
results show that although the degree of overlap is quite high
among the different methods, each approach does make
unique contributions to achieve an 87.17% combined
candidate binary recall. We analyzed the 429 questions with
candidate recall failures and found that roughly three-fourths
of them are due to search failures. These questions typically
fail because the question contains extraneous information
that is relevant but not necessary for identifying the answer.
For example, in BStar chef Mario Batali lays on the lardo,
which comes from the back of this animal’s neck[, the
essential part of the question is the segment in bold. However,
the prominent entity BMario Batali[ steered search in the
wrong direction and dominated our search results. For the
other one-fourth, search returned a relevant passage,
but our candidate generation strategies failed to extract the
answer as a plausible candidate. In most of these examples, the
correct answers are common nouns or verbs, which generally
have lower coverage for both our Anchor Text
and Wikipedia Title candidate generation strategies.
Finally, we examined the contribution of each search

and candidate generation strategy on end-to-end QA
performance. The last row in the table shows the QA
accuracy when the candidates generated by each approach
are scored by Watson’s full suite of answer scorers and are
ranked. Our results show that Document search and Passage
search achieve very comparable performance, about 9%

TABLE 1 Search and candidate generation evaluation results.

3The 1% of questions in the inactive subset for the Document search pipeline are questions for
which a numeric answer is sought. For these questions, a specialized number candidate
generation component is employed.
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lower than full system performance. We ran an additional
experiment in which only the full search query is issued to
Indri Passage search to retrieve the ten most relevant
passages. This is the search configuration closest to the
search strategies adopted in many existing QA systems.
When these candidates are scored and ranked, the system
achieves an accuracy of 54.9%. These experimental results
demonstrate the effectiveness of our search and candidate
generation strategies, which, in aggregation, achieve an
accuracy of 71.32%.

Related work
From the earliest days of artificial intelligence and NLP, the
prevalent vision was that machines would answer questions
by first Btranslating[ human language into a machine
representation and then matching that representation against
background knowledge using a formal reasoning process
[27, 28]. To date, however, no one has successfully
produced such formal logical representations from unseen
natural-language questions in a reliable way.
The first QA system to use structured data sources

effectively for candidate generation was the START
system [29], whose roots date back at least to 2000 [30].
Similar to our Answer Lookup approach, a retrieval-based
QA system was augmented with a capability to recognize
relations in questions, and structured sources were queried
with the detected relation and question focus. As reported
here, the gating factor in exploiting this for QA is the ability
to detect the relations in the question.
In the Halo and Aura systems [31], closed-domain

questions (on, e.g., chemistry) are answered using structured
sources containing many axioms about processes and facts
in these domains. Aura addresses classes of questions that are
out of scope for Watson, having mainly to do with problem
solving or procedural questions, such as BHow many ml
of oxygen is required to produce 50 ml of water?[ However,
the natural-language capability of these systems is
constrained by question templates that the system can
map to underlying structured queries.
Most existing open-domain retrieval-based QA systems

adopt a pipeline of passage search against a reference corpus
and generation of candidates of the expected answer type
from the search results. From the search perspective, some
systems have explored the use of web data for the purposes
of both generating new candidate answers [32–34] and
validating existing candidate answers [35, 36]. Furthermore,
online encyclopedias such as Grolier** and Wikipedia
have been used as corpora for several QA systems [37, 38]
and in the CLEF (Cross Language Evaluation Forum)
evaluation effort [39]. However, to our knowledge, these
systems treated the new corpus as an extension of the
newswire corpus used in earlier organized QA evaluation
efforts and did not exploit its inherent characteristics to
improve QA performance. In contrast, we analyzed the

association between title-oriented encyclopedic documents
and question/answer pairs to motivate two additional search
strategies for QA: Document search and TIC Passage
search. These search techniques are effective for title-oriented
documents and have been shown to improve upon the
results of traditional passage search alone.
From the candidate generation perspective, the vast

majority of existing QA systems adopt a semantic-type-based
approach to produce candidates that match the expected
answer type on the basis of a static predefined type ontology
[24, 25]. In contrast, Watson does not rely on such an
ontology but utilizes document metadata, such as document
title, anchor texts, and titles of hyperlink target documents,
to associate salient concepts with respect to each document
and thus to create a pool of plausible candidate answers.
Although this approach generates a substantially larger set
of candidate answers, we have found it to significantly
outperform type-based methods in a broad-domain task
such as Jeopardy! [12].

Conclusion
A crucial step in achieving high QA performance is to cast a
wide enough net in the Hypothesis Generation phase to
include the correct answer in the candidate pool. In this
paper, we described Watson’s multipronged strategies for
identifying relevant content and producing candidate answers
that balance high candidate recall and processing time for
candidate scoring.
In its Hypothesis Generation phase, Watson uses the

results of question analysis to formulate effective queries
to identify relevant content from both structured and
unstructured resources. For search against textual resources,
we extended the common passage search paradigm adopted
by most existing QA systems in two ways. First, to take
advantage of the relationship between the title and content
of title-oriented documents, we adopted a three-pronged
search strategy: Document search, TIC Passage search, and
Passage search. Second, to increase diversity of search
results, we employed two search engines in our Passage
search component. We have empirically found that both
extensions lead to higher candidate recall. For search against
structured resources, Watson employs two strategies: Answer
Lookup and PRISMATIC search. Answer Lookup relies
on recognition of high-frequency semantic relations
involving the focus and retrieves possible instantiations of
the focus from existing structured knowledge sources such
as DBpedia. PRISMATIC search focuses on isa relations
mined from large corpora to produce salient instances of
the LAT plus modifiers.
For candidate generation from unstructured search results,

Watson does not rely on a predefined type ontology because
of the broad range of answer types observed in Jeopardy!
questions. To identify plausible candidates, Watson uses
document metadata such as document titles, anchor texts, and
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Wikipedia redirects to identify salient concepts associated
with each document. These metadata are used for three
candidate generation strategies: Title of Document candidate
generation, applied to Document search results; Wikipedia
Title candidate generation, applied to Passage search results;
and Anchor Text candidate generation, applied to document
titles and passages from Wikipedia documents. Whenever
possible, candidate answers carry metadata that encode
provenance information to help downstream scorers
disambiguate the word sense of the candidate.
Evaluation on a blind set of more than 3,000 questions

shows that the different search/candidate generation strategy
pairs have different performance characteristics. Those
targeting unstructured resources generate a larger number
of candidates per question at high recall, whereas those
focusing on structured resources produce far fewer
candidates per question and have a much smaller active set
of questions. Overall, all strategies make unique positive
contributions, yielding a combined 87.17% in candidate
binary recall.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., Wikimedia Foundation, or Grolier Incorporated in the
United States, other countries, or both.
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