Secure Collaborative Model Training with Dynamic
Federated Learning in Multi-Domain Environments

Anestis Dalgkitsis, Alexandros Koufakis, Jorrit Stutterheim, Aleandro Mifsud, Priyanka Atwani,
Leon Gommans, Cees de Laat, Chrysa Papagianni, and Ana Oprescu
Informatics Institute
University of Amsterdam
Amsterdam, The Netherlands
{a.dalgkitsis, a.m.koufakis, a.mifsud, l.gommans, c.t.a.m.delaat, c.papagianni, a.m.oprescu} @uva.nl,
priyankaatwani@live.com, and jorrit.stutterheim @ gmail.com

Abstract—According to the European Union Aviation Safety
Agency (EASA), Al-based algorithms, combined with extensive
fleet data, could enable early detection of potential engine failures,
leading to proactive predictive maintenance in air travel. At
a global level, the Independent Data Consortium for Aviation
(IDCA) recognizes the potential of collaborative data sharing
in the airline industry. However, data ownership-related issues,
such as privacy, intellectual property, and regulatory compliance,
pose significant obstacles to realizing the vision of combining fleet
data to improve predictive maintenance algorithms. In this paper,
we use NASA’s Turbofan Jet Engine Dataset (N-CMAPSS) to
demonstrate how airlines could leverage the power of Federated
Learning (FL) and microservices, to collaboratively train a global
Machine-Learning (ML) model that can enable airline companies
to utilize their data for predictive maintenance, while maintaining
control.

Index Terms—Microservices, Data Privacy, Federated Learn-
ing, Data Aggregation, Multi-Domain Networking.

I. INTRODUCTION

The European Union Aviation Safety Agency (EASA) em-
phasizes that the integration of Al-driven predictive main-
tenance with the extensive fleet data now available has the
potential to significantly enhance the early detection of pos-
sible engine failures [1]. This approach enables proactive
maintenance, which could play a crucial role in improving
safety and preventing incidents in the future of air travel. On
a global scale, the Independent Data Consortium for Aviation
(IDCA) highlights the impact of collaborative data sharing
within the airline industry, recognizing its potential to drive
significant advancements in aviation safety and efficiency [2].

Federated Learning (FL) has emerged as a key technique
in collaborative data training, enabling multiple organizations
to train machine learning models on decentralized data, while
maintaining data privacy and sovereignty. This method offers
enhanced privacy and security compared to traditional ap-
proaches, making it particularly valuable in sectors where data
sensitivity is critical, such as healthcare, finance, and aviation
[3].

Microservices architecture is expanding the possibilities
for data-sharing methods and marketplaces by decomposing
applications into loosely coupled, independently deployable,
and verifiable services. This approach enables seamless data

exchange and integration across various platforms, with the
potential to drive innovation and increase efficiency in data
utilization [4].

Furthermore, advancements in next-generation of network-
ing technology are leading to the development of a pro-
grammable internet architecture that supports network slicing,
virtualization at a deeper level and programmable networking.
The combination of these technologies enable the creation
of multiple virtual networks on physical infrastructures, each
tailored to specific service and application needs. Network
slicing is essential for the future of internet services, ensuring
optimal performance, security, and flexibility.

However, data ownership challenges, including privacy con-
cerns, intellectual property rights, and regulatory compliance,
present substantial obstacles to the realization of collaborative
model training in a shared infrastructure, particularly among
international airlines [1]. These challenges present significant
obstacles to achieving the vision of collaborative model train-
ing among key industries, particularly international airlines,
which are the focus of our work. Without such a framework,
the potential benefits of collaborative data training cannot be
fully realized.

The goal of this paper is to demonstrate how FL could
be deployed using microservices in a multi-tenant and multi-
domain network by utilizing FABRIC, a transatlantic network
slice, described in Section II-C, and DYNAMOS, analyzed in
depth in Section II-B, a tool that enables dynamic microser-
vices deployment based on set policies. DYNAMOS allows
each party to maintain control of their data, privacy concerns
are taken into account by design, and contractual agreements
are enforced.

We validate this approach through a use case relating to
the EASA, detailed in Section III, using DYNAMOS as
middleware to experiment with data-sharing scenarios. This
is deployed on FABRIC to prove that international airline
collaborative critical data exchange through FL training is
possible with the current state of the art in an actual distributed
environment. The key contributions can be summarized as
follows:

o We demonstrate FL on an architecture that adheres to the

standards of the airline industry, and enables support for

collaborative model training for predictive maintenance
algorithms.

¢ We show how this architecture, based on microservices,
allows digital data exchange while ensuring privacy and
contractual agreements by design.

« Finally, we evaluate this proposed architecture by deploy-
ing it on the FABRIC network slices, and orchestrating
the services with the DYNAMOS middleware.

II. BACKGROUND

In this section, we introduce the core concepts and tools
used in this work, FL, DYNAMOS and the FABRIC testbed.

A. Federated Learning

FL is a decentralized approach to training machine learning
models, initially introduced by Google [3]. Unlike traditional
centralized training, which aggregates data into a central
repository, FL allows multiple clients to collaboratively train
a shared, global model while keeping individual data sources
local. This approach minimizes data transfer, enhances pri-
vacy, and leverages diverse, heterogeneous datasets distributed
across different environments. Figure 3 provides a schematic
representation of a multinode FL system where the clients
collaboratively train a shared Global Model without conceding
their private data [5], [6].

B. DYNAMOS: Adaptive Microservice-based middleware

The Dynamically Adaptive Microservice-based OS, or
DYNAMOS!' for short, is a tool used for simulating data
exchange scenarios in a distributed environment. DYNAMOS
strives to establish a self-adaptive system capable of seam-
lessly incorporating policy, and archetypes, as well as func-
tional and extra-functional adaptations, without manual inter-
vention. Microservices [4] are composed of different config-
urations to serve different application goals in a distributed
system.

C. FABRIC: International Testbed Infrastructure

The Framework for Accelerated Built-In Resilience Infras-
tructure for Computing, or FABRIC for short, is a cutting-
edge research infrastructure created to support next-generation
computing systems and networks. It offers a scalable, dis-
tributed environment equipped with high-performance comput-
ing resources, and integrates with containerization technolo-
gies such as Docker and Kubernetes. The testbed also features
advanced networking capabilities [7]. Moreover, the FABRIC
Across Borders, also known as FAB, extension connects the
core North American network with global institutions, fos-
tering international collaboration and speeding up scientific
discovery.

III. USE CASE SCENARIO

According to the EASA, the combination of Al-based
predictive maintenance and the huge amount of fleet data avail-
able [8], could enable the early detection of potential engine
failures, providing proactive maintenance [1] and potentially
saving countless lives in the future of air travel. At a global

Client 1 - KLM -
f— : 3
- -

. Wodel
Register Service Drgr;e:?cr:tcr
PORT 5002 PORT 5004

Training
PORT 5000

— Evaluate ””W”””‘i
S| PORT 5003

Client 2 - Air France

Preprocessor send gradients

opiionally

L

Training |

Preprocessor PORT 5000 l
— Evaluate
@EP| PORT 5003

Client N

send gradients

optionally

—

Training |

Preprocessor I—)l PORT 5000 l
- Evaluate
S| roRT 5003

Fig. 1. Microservices-based implementation of collaborative airline data
model training scenario with FL.

send gradienis

optionally

level, the IDCA [2] recognizes the transformative potential of
collaborative data sharing in the airline industry.

Motivated by this critical obstacle, we are using NASA’s N-
CMAPSS dataset [9], which was created to enhance predictive
maintenance models for aviation engines [10], to demonstrate
how airlines could leverage the power of FL and microser-
vices, to collaboratively train a global ML-model that is able
to accurately and automatically detect possible future engine
failure [11]. We consider two major international airlines lo-
cated at two different networking domains, using DYNAMOS
to deploy a FL collaborative model training service based on
the N-CMAPSS Dataset [9]. The architecture of the studied
scenario can be seen in Fig. 3.

IV. SYSTEM ARCHITECTURE & DESIGN CONSIDERATIONS

In this section, we provide a comprehensive overview of the
architecture, highlighting the key design decisions that guided
its development.

A. Microservices-based FL with DYNAMOS

In our proposed implementation of FL. with microservices,
there are two distinct types of agents:

First, the Central Server that is responsible for the man-
agement of the Global Model (GM), that is collaboratively
trained by the participating clients. The second type of agents
are the Clients, they are parties that agree to participate in
the collaborative FL and they are responsible for training and
evaluating the shared global model locally with their own
private datasets.

Figure 3 shows the microservice composition of the FL use
case with two clients. In particular, Clients contain the Train-
ing service that takes as input the preexisting general model

EU Site

EU Client |
=
=0
_—
o0 e

EU Client Il
—O_ o i
=0

=° &

(]

US Site

w0

DYNAMOS Core
Central Servel
Collaborative =
FL Model y

Orchestrator
Microservice

¥

Orchestrator
Service

N

US Client |

—o Ie"‘ a
=0

v 3‘*\

Fig. 2. Overview of a globally deployed microservices-based FL solution
with DYNAMOS, tailored to the international aviation industry.

s Training data

Training service

(Central Server (Client |
General Model

Parameters

Aggregation
service

Protected
Locally trained Evaluation data Data

model parameters Evalutaion service

Aggregated
model
parameters

=

Gilobal
Model

General Model
Parameters

Client Il
> Training data

Training service

Locally trained
model parameters

Protected
Evaluation data Data

Evalutaion service

Fig. 3. Microservices implementation of the FL components and data
exchange flows.

parameters and consecutively retrains it on the client’s data.
Moreover, the Client agent includes an Evaluation service
that evaluates the GM after every cycle of FL to determine its
local performance on the client’s data The Central Server agent
contains the Aggregation service that combines the locally
trained models by the clients and updates the GM.

B. Containarization of FL components

The core of DYNAMOS is composed of the Orchestrator
and the Central Server, as depicted in Figure 2. The Orches-
trator is responsible for enforcing the policy agreement to
certify compliance during the FL process and initializes the
FL job with the appropriate parameters and participants. The
Central Server component is a Trusted Third Party agent that is
tasked with storing and distributing the GM to the clients and
aggregating the locally trained models by the clients. Finally,
the Clients are agents that are in agreement to collectively
train the GM through FL.

Fig. 4 shows a sequence of calls during an iteration of
collaborative training with FL with two clients. Initially, the
data agreement agency (e.g. IDCA) makes the original request
to DYNAMOS to begin the process. The request includes
information about the clients to participate, training and

aggregation configurations. Next, the Orchestrator processes
and validates the request based on the contract and com-
poses the corresponding microservice chain with an associated
unique ID. Afterwards, the Central Server is triggered by
the orchestrator’s initialization message. The Central Server
first initialises the Global Model according to the desired
configuration and then sequentially instructs each client to
train the GM with their data. When all clients have reported the
updated parameters of the model back to the Central Server,
the aggregation service is called to combine them into the
updated version of the GM. Finally, the Central Server notifies
all clients of the updated GM so that the clients can evaluate
it on their own proprietary data and inform their decisions.
The Aggregation Evaluation process can be repeated multiple
times to improve the quality of the Global Model.

[pyNAmOS
| orchestrator

Central Server

Client | ‘ Client Il ‘

~——»
IDCA Federated
Learning dispatch

Contract check

Microservice Chain |
Initialization :

artici >
T Global Model
Initialization

Start Local Training

Local Iterative Trainlﬁg

-Report-

Start Local Training

[Aggregation

Aggregated Model

Local Iterative Training

F Local Evaluation

Aggregated Model

E}‘J Local Evaluation

Fig. 4. Sequence diagram of one iteration of FL using DYNAMOS.

V. TECHNICAL EVALUATION

In this section we are presenting the evaluation scenario and
the results extracted during the experimental evaluation.

A. Experimental Network Slice Overview

In this work, the experimental evaluation takes place in a
custom testbed, designed and deployed in the FABRIC FAB
network. We opted for a resource slice with 4 Virtual Machines
(VMs) that spans between two sites, one located in the EU area
and the other one at the USA, to simulate collaborative data
sharing between international airlines.

DALL

Operator

AMST
Airline_Client_|

Operator-nic_o|
P -op Airline_Glient_I-nic-ac1

TRANSATLANTIC i

A Netwol
< Service

DYNAMOS_CORE Airline_Client_lI

DYNAMOS_CORE-nic

Airline_Client_lI-nic_ac2

Fig. 5. FABRIC FAB slice configuration exported from the slice dashboard.

As depicted in figure 5, two VMs were dedicated to air-
line clients. One VM for the DYNAMOS Core Kubernetes
Cluster and one for an Operator that was utilized to create
performance testing scenarios. Two FABRIC Across Borders
(FAB) international sites were chosen for this deployment,
DALL the Equinix Data Center, located in Dallas, TX, US,
and AMST the University of Amsterdam node, located at
the Amsterdam Science Park, The Netherlands. The airline
and DYNAMOS VMs provision 16GBs of RAM, 128GBs of
storage and 4 Cores, while the operator machine occupies only
2 cores, 4GBs of RAM and 16GBs of disk storage. An IPv4
Layer-2 network was used to connect the two international
sites. Docker and Kubernetes installations were performed
to allow for containerized application life-cycle, orchestration
and scaling by the DYNAMOS middleware.

B. Dataset

The dataset of choice used for this scenario is the NASA
Turbofan Jet Engine Dataset (N-CMAPSS), as it reflects a
critical collaborative training scenario among airlines. The N-
CMAPSS dataset, an extension of NASA’s earlier CMAPSS
dataset [9], was created to enhance predictive maintenance
models for aviation engines [10].

Fig. 6. Schematic representation of the CMAPSS model [10]

It provides high-fidelity simulations of turbofan engines,
incorporating realistic flight conditions and component fail-

ures. The dataset contains multivariate time-series data from
multiple flight cycles, covering climb, cruise, and descent
phases. This comprehensive dataset is designed to reflect
accurate engine degradation patterns, supporting research in
predictive maintenance and prognostics [12]. Figure 6 provides
a schematic representation of the simulated turbofan engine
and its sensors as used in the N-CMAPSS dataset.

C. Scenario Results

The experimental topology of the deployed networking
slice, exported from the slices tab in the FABRIC portal, can
be seen in Fig. 5.

To demonstrate a realistic scenario of collaborative model
training for the airline industry we are using a LinearRegres-
sion model from scikit-learn as the initial model parameters for
aggregation. The original dataset, stored in HDF5 format, is
partitioned into subsets. We assign ach subset to individual
sovereign clients, that allows them to train local models
independently on their specific data segments (dev_data and
test_data). This partitioning approach facilitates parallel pro-
cessing and scalable model training, leveraging the capabilities
of each client without compromising data consistency. We
conduct tests in two different scenarios:

o Non-disagreement scenario: Clients are willing to share
data with one another and there are no conflicts.

o Disagreement scenario: Clients have conflicts and are
not willing to share their data with one or more clients.

The performance metrics presented below in Table I were
obtained using Apache JMeter [13].

Metric Non-Disagreement | Disagreement
Average Response Time 1108.9 ms 1192.0 ms
Throughput 2.4 req/sec 0.8 req/sec
Max Latency 869.9 ms 601.5 ms
TABLE I
FL SCENARIO PERFORMANCE EVALUATION DEPLOYED WITH
MICROSERVICES.

As we can see, the analysis shows significant variation
between scenarios involving client disagreements and those
without, which can be attributed to the inter-service commu-
nication and model aggregation in the context of FL between
the microservice containers.

Finally, we provide a brief performance analysis between
different types of collaborative training architectures, to justify
the use of the DYNAMOS-based microservices approach.
Each has strengths and weaknesses [14]-[17]. In Fig. 7,
we compare key performance indicators such as the average
response time, throughput, and maximum latency.

Although the performance of the microservices architecture
shows notable differences between scenarios with and without
client disagreements, the client-server architecture faces limi-
tations in scalability because it requires the entire application
to be inefficiently replicated. On the other hand, microservices
excel in scalability by allowing individual services to scale
independently based on demand. They optimize resource usage

Comparison of Microservices Architectures

4500

Emm Mean Response Time
e Latency

4000 A

3500

3000

2500 1

2000

Response Time / Latency (ms)

1500 1

1000 4

500

Non-Disagreements microservices-based architecture

Disagreement microservices-based architecture

Architecture

50

mmm Throughput

40

30

F20

Throughput (requests/sec)

Client-server based architecture

Fig. 7. Mean Response Time, Throughput, and Latency with Error Bars for Different Architectures.

and provide greater flexibility to adapt to changing require-
ments, despite the higher response times and lower throughput
observed in the initial performance metrics.

VI. DISCUSSION

The conjunction of this three-layer evaluation proves that
international collaborative training is possible to foresee criti-
cal air-travel metrics is possible with current technology. This
demo effectively addresses critical challenges, such as data
partitioning, update management and adaptive learning, in
a multi-domain scenario. The efficient use of microservices
architecture thanks to DYNAMOS allows for scaling and
automation between multiple parties. Finally, although the
training is collaborative, via the advances in Software-Defined
Networking (SDN), Network Function Virtualization (NFV)
and FL, the data are always in secure, isolated and fully
controlled environments, by their respective owners.

VII. CONCLUSION

In this paper, we leveraged NASA’s Turbofan Jet Engine
Dataset (N-CMAPSS) to demonstrate a viable solution to the
obstacles international airlines face to collaboratively train
models for predicting critical failures. By employing the FL
technique and DYNAMOS middleware, we showcase how
airlines can collaboratively train a global ML model to detect
possible engine failures accurately, with current technology.
Our deployment on the FABRIC FAB network validates the
proposed approach, showcasing the ability to manage ad-hoc
disagreements among FL participants dynamically in a real
geographically distributed setting.

ACKNOWLEDGMENT

We would like to thank our KLLM colleagues Jeroen Mulder
and Asteris Apostolidis for their support with this research.
This project was made possible with FABRIC and specifically
FABRIC Across Borders, all funded by major NSF grants.

[1]
[2]
[3]
[4]
[5]

[6]

[7]
[8]
[9]
[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

REFERENCES

EASA, “Easa artificial intelligence roadmap 2.0 - a human-centric
approach to ai in aviation,” May 2023.

Data for aviation. [Online]. Available: https://dataforaviation.org

Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1-19, 2019.

J. Lewis and M. Fowler. (2014) Microservices: a definition of this new
architectural term.

M. Sabuhi, P. Musilek, and C.-P. Bezemer, “Micro-fl: A fault-tolerant
scalable microservice-based platform for federated learning,” Future
Internet, vol. 16, no. 3, p. 70-70, Feb 2024.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Kone¢ny, S. Mazzocchi, H. B. McMahan,
T. Van Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
federated learning at scale: System design,” Mar 2019.

[Online]. Available: https://portal.fabric-testbed.net/about/about-fabric
J. B. Simon, D. Karkada, N. Ghosh, and M. Belkin, “More is better in
modern machine learning: when infinite overparameterization is optimal
and overfitting is obligatory,” arXiv (Cornell University), Jan 2023.

S. Chatterjee and A. Keprate, “Exploratory data analysis of the n-cmapss
dataset for prognostics,” p. 11141121, Dec 2021.

M. Arias Chao, C. Kulkarni, K. Goebel, and O. Fink, “Aircraft engine
run-to-failure dataset under real flight conditions for prognostics and
diagnostics,” Data, vol. 6, no. 1, p. 5, Jan 2021.

P. Korvesis, “Machine learning for predictive maintenance in aviation,”
Ph.D. dissertation, 11 2017.

K. Goebel, J. Celaya, S. Sankararaman, 1. Roychoudhury, M. Daigle, and
A. Saxena, Prognostics: The Science of Making Predictions, 04 2017.
A. S. Foundation, “Apache jmeter-apache jmetertm,” 2019. [Online].
Available: https://jmeter.apache.org/

N. Salaheddin and N. Ahmed, “Microservices vs. monolithic archi-
tectures [the differential structure between two architectures],” MINAR
International Journal of Applied Sciences and Technology, vol. 4, pp.
484-490, 10 2022.

K. Gos and W. Zabierowski, “The comparison of microservice and
monolithic architecture,” 04 2020, pp. 150-153.

T. Salah, M. Jamal Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-
Hammadi, “The evolution of distributed systems towards microservices
architecture,” in 2016 11th International Conference for Internet Tech-
nology and Secured Transactions (ICITST), 2016, pp. 318-325.

L. Rushani and F. Halili, “Differences between service-oriented archi-
tecture and microservices architecture,” International Journal of Natural
Sciences: Current and Future Research Trends, vol. 13, p. 30-48, Apr.
2022.

