iner Networks
Shar

ecConNet
mart and Secure Conta
for Trusted B

S
S

SECCONNET SMART AND m.mnd

ing

1g Data

7% ," 2 9

S |
o TR

ST LD TN T
A EF KRN

S A RO Y

ISy T

)
S Yy i p
P, Sy Syl ﬂm P
¥ o u % R Lo
S £ ”\ (e
$ DG~ bt ' it a8 V.
F @R T)
s b ™% R
Y X X X XY T YT XX Y (XTI XX XX IXx
e t

=X e ieaat o ioe o Ny e e
w;ﬁlﬂ.memqﬂlia

14

RE CONTAINER NETWOR

kD

R e e T L ey S ———
AV ETAAN T W AN W A N S AN TA

{3 eI 2

ST FEON ok

e v N et ¥ R T O I WS TERE e L7 % TEN
%@“&x-‘ 7 & 2V &Y & F AV 4

s

y -
~

[ot

I AR

ANHIONF FTRODIRNY

e

N

T

%3 £ % 8 3£ 3

2 A k: 13 %
........ s e e e - ez

SecConNet
Smart and Secure Container Networks for
Trusted Big Data Sharing

Sara Shakeri

This work is supported by the Netherlands eScience Center and NWO under the
project SecConNet.

Copyright (©) 2024 by Sara Shakeri
Cover image credits to Tavakoli Amir
Printed by Ridderprint, The Netherlands

ISBN: 978-94-6483-983-8

SecConNet
Smart and Secure Container Networks for Trusted Big Data Sharing

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. P.P.C.C. Verbeek
ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op woensdag 22 mei 2024, te 10.00 uur

door Sara Shakeri

geboren te Arak

Promotiecommissie

Promotores: prof. dr. ir. C.T.A.M. de Laat
prof. dr. P. Grosso
Copromotores: prof. dr. ing. L.H.M. Gommans
Overige leden: prof. dr. ir. F.A. Kuipers
prof. dr. R.V. van Nieuwpoort
dr. Z.A. Mann

dr. C. Papagianni
prof. dr. A.D. Pimentel

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Universiteit van Amsterdam
Universiteit van Amsterdam

KLM

TU Delft

Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam

Contents

1 Introduction 1
1.1 Digital Data Marketplaces (DDMs) 2
1.1.1 Layers of DDM architecture 4

1.1.2 Data-sharing related Projects 5

1.2 Containerization 6
1.3 Software Defined Networking and P4 8
1.4 Research Questions 9
1.5 Thesisat a Glance 11
1.6 Publications 11

2 Modeling and Matching Digital Data Marketplace Policies 15
2.1 Introduction 16
2.2 DDM Sharing Policies 16
2.3 Request handling in DDM 18
2.4 Semantic Modelo 20
2.4.1 Model requirement 20

2.4.2 ODRL Information Model 20

2.4.3 SecConNet semantic model 21

2.5 Matching Module 22
25.1 Exampleo 22

2.6 Discussion Lo 25
2.7 Related Work 26
2.8 Conclusion L 27

3 Applicability of Container Overlays 29
3.1 Imntroduction 30
3.2 Container Overlay Technologies 31
321 Weave Lo 31

3.2.2 Flannel 31

323 Cilium
324 Calico
3.3 Sharing policy enforcement in DDM using container overlays . . .

3.4 Experiments Lo
3.4.1 Experiment Setup
3.4.2 Basic Experiments oL
3.4.3 DDM Related Experiments

3.5 Related Work oo

3.6 Conclusion L

Evaluation of Container Overlays for Secure Data Sharing

4.1 Introduction
4.2 Container-based DDM architecture
4.3 Container Connectivity Types
44 Overlay Setup
4.5 Security
4.6 Performance analysis 0oL

4.6.1 Experiment settings oL

4.6.2 Experiment results
4.7 Discussion
4.8 Related Work oo
4.9 Conclusion Lo

Multi-domain Network Infrastructure based on P4

5.1 Introduction
5.2 Containerized P4-based DDM
5.3 Architecture L
5.4 Workflow scenario
5.5 Security

5.5.1 Security considerations
5.6 Request setup time L

5.6.1 Setup time in sequential mode

5.6.2 Setup time in parallel mode

5.6.3 Global view and step view comparison
5.7 Proofofconcept.
5.8 Measured request setup time
5.9 Discussion
5.10 Related Work
511 Conclusion

vi

43
44
45
47
49
o1
53
]
53
96
57
98

6 Tracking container network connections in a DDM 81

6.1 Introduction 82
6.2 Federated data exchange management system (Mahiru) 83
6.3 Architecture L 85
6.4 Proofof Concept 86
6.5 Tracking Scenarios 89
6.5.1 Access tracking 90

6.5.2 Pattern trackingo 92

6.6 Related Work 95
6.7 Conclusion 96

7 Conclusion 97
7.1 Answers to the research questions 98
7.2 Futurework 100
Bibliography 103
Publications 115
Source Code 117
Acknowledgement 119
Summary 121
Samenvatting 123

vii

Chapter 1

Introduction

Data sharing is becoming increasingly important in science as well as in industry.
Combining shared data allows for richer analysis and deeper insights, such as in
many Machine Learning applications. For example, at KLM, the flight safety
department owns data monitored on the aircraft fleet in order to improve flight
safety and efficiency. Such data also allows maintenance engineers to monitor the
health of certain aircraft components allowing their maintenance to be predicted.
Moreover, the amount of monitored aircraft data will exponentially grow, hence
its benefits for the industry in general. In 2026, the worldwide fleet of 20,000 in-
creasingly advanced aircraft will collect 98 Exabytes per year [1]. This increasing
amount of collected data might be of mutual benefit when allowed to be shared
within the industry to, for example, develop standards to collect data that prove
new ways of scheduling particular maintenance are safe to continue airworthiness.

Sharing nonetheless needs to satisfy constraints regarding the amount or type
of data exposed/provided to other parties, e.g., only part of the whole dataset is
made available, or anonymization is required before sharing. Private sector enter-
prises are reluctant to share their data assets with other enterprises unless access
and use of such assets happen in a platform that conforms to adequately defined,
enforced, and audited sharing policies [2—4]. Digital Data Marketplaces (DDMs)
constitute a novel framework for secure data sharing among organizations, and
they are governed by agreed sharing policies among participating parties. Only
if the DDM strictly enforces the sharing policies organizations will trust to share
their data on it. More explanation about DDMs is presented in Sec. 1.1

In the SecConNet project! we contribute to the development of DDMs focusing
on identifying the foundational elements needed for the creation of the infrastruc-
ture of a DDM. Our emphasis is on building secure, agile, and dynamic network
connections among the endpoints organizations, i.e., domains. In particular, we
research if containers can be used to guarantee quality- and policy-based access
and use of the shared data assets. We research novel container network architec-

!Secure Container Networks: https://www.esciencecenter.nl/project/secconnet

https://www.esciencecenter.nl/project/secconnet

2 Chapter 1. Introduction

tures, which utilize programmable infrastructures and virtualization technologies
across multiple administrative domains.

At the time of starting this work, lots of research had already been published
on the security aspects of executing the containers [5-8]. However, there was little
work that focused on the security of container network connections. The most
basic way to interconnect containers is to use kernel modules. [9] has shown that
kernel modules are well-performing ways to support basic interconnections. A
more sophisticated method to provide inter-container communication is to create
overlay networks. Container overlay networks are virtual networks on top of
physical networks that connect containers through virtual links. They play an
essential role in policy enforcement between containers. Open questions related
to overlay creations have to do with the isolation, exposure, and visibility of
containers to each other; as well as performance. The applicability of the available
overlay networks in a DDM infrastructure has to be evaluated.

In addition, a data-sharing container network is a dynamic environment. Con-
tainers may move across the network, and their addresses may change. Moreover,
according to the sharing policies, the rules of container connections may change
over time. A container network has to support changes in network configura-
tion when needed. We consider using P4 for building a programmable container
overlay and studied which capabilities it can provide to DDM infrastructure.

1.1 Digital Data Marketplaces (DDMs)

Fig. 1.1 shows the general architecture of Digital Data Marketplaces(DDMs) and
the position of SecConNet in this framework. A DDM is a distributed plat-
form with the goal of creating a trusted data processing infrastructure for data
providers and data consumers [2]. In general, the participating organizations in
a DDM can share two kinds of assets: algorithms and data [10,11].

The major consideration in a DDM is that all of the transactions between al-
gorithm suppliers and data suppliers and their customers have to be done based
on the agreements established by all participating parties. The agreement, for
example, can be based on a GDPR (General Data Protection Regulation) data
processing agreement. The sharing policies are according to these pre-established
agreements [12,13]. To make the collaboration of different participating parties
in a DDM more efficient, a general semantic model has to be used to describe
the sharing policies in a standard way. The policies regulate any movement of
data or execution of algorithms. In addition, several other factors like autho-
rization, auditing, and accounting should be taken into consideration. However,
the architectures for secure data-sharing platforms and methods for enforcing the
high-level policies in the infrastructure in practice are still a matter of research.

As shown in Fig. 1.1 the focus of SecConNet is on the methods of building the
infrastructure of a DDM for performing data sharing. Our research focuses on

1.1. Digital Data Marketplaces (DDMs) 3

Dispute
Resolution

-
| Marketplace technical

Parameterization &

Figure 1.1: Secure Digital Data Marketplace Framework [2] and the position of
SecConNet in DDM framework; SecConNet focuses on constructing the DDM
infrastructure using container-based technologies.

four primary areas: Policy checking, Virtualization, Network orchestration, and
Network programming. Policy checking refers to the process of evaluating and en-
forcing high-level data-sharing policies within the network infrastructure. In this
regard, a semantic model can be defined as a structured framework that allows us
to express the sharing policies and their corresponding permission and prohibition

4 Chapter 1. Introduction

rules. Virtualization mainly refers to using containers as the main building block
of the DDM that performs the data sharing. Containerization can provide a con-
sistent and portable runtime environment, enabling efficient resource utilization
and easy deployment across different systems. By utilizing containers, we can
create isolated network environments for running the sharing requests. Network
orchestration explores different methods for orchestrating a container-based net-
work and studies how they can support single and multi-domain network infras-
tructure. Finally, network programmability allows programming and automating
network operations and the management of network behavior. Especially, we in-
vestigate how we can provide isolation and enforce the sharing policies between
containers by programming the network. We explore how these technologies can
improve the construction of a DDM infrastructure.

1.1.1 Layers of DDM architecture

Authors in [14] presented the architecture of a DDM in six layers . They defined
DDM as a group of actors with specific roles and categorized the roles into dif-
ferent layers, as shown in Fig. 1.2. The lower layers deal with connectivity and
infrastructure implementation, and the upper layers deal with sharing agreements
and regulations. Each actor is identified by public and private keys. The private

5 Consortium actors: members, identification
method.

4 Policy actors: e.g. enforceable application
rules, monitoring rules.

3 Application actors: e.g. workflows
implementing data movement pattern

2 Permission actors: e.g. auditor,authorization,
verification.

1 Information actors: e.g. data nodes, function
registries, node address index

0 Infrastructure actors: e.g. storage, compute,
vpns

Figure 1.2: Actors and their roles in different layers of DDM [14]

key is used to sign the transactions performed by the actor and the public key

1.1. Digital Data Marketplaces (DDMs) 5

is used to verify the actor of the transaction. In addition, they used this cryp-
tographic addressing for assigning an address to each shared asset. The shared
assets are addressed by publickey/datahash. Each asset belongs to a data collec-
tion that has a public key and each data asset in the collection is identified by its
data hash. This information is used for monitoring and auditing the activities of
each node or tracking the movement of shared assets.

The focus of SecConNet is on the infrastructure layer (layer0) in Fig. 1.2.
This layer deals with the operational aspects of moving data in the network in-
frastructure. The methods presented in [14] can be combined with the SecConNet
outcome to complete building the layers of DDM.

1.1.2 Data-sharing related Projects

In the following, we summarize related projects which aimed to build data-sharing
platforms for scientific and commercial collaborations. The focus of these projects
is on methodologies for establishing agreements and defining the sharing policies
between organizations. For implementing the operational infrastructure of these
projects, the methodology presented in SecConNet can be considered.

Data Logistics for Logistics Data (DL4LD) is going to provide an ef-
fective solution that allows organizations to agree on how data is shared and
exchanged along with deploying a controllable, enforceable, and goal-oriented
method. The project is based on the architecture shown in Fig. 1.1. It offers dif-
ferent components, including agreements, deployment models, suppliers of digital
resources, and customers. As depicted in this figure, the agreement must be de-
ployed and mapped on the infrastructure before exchanging the digital resources
can take place [2].

International Data Spaces (IDS) is a project initiated by the European
Union with the goal of building a secure and sovereign system of data sharing
in which the data provider can control the use of its data [15]. IDS defines data
exchange protocols and contains a data broker, clearing house, identity provider,
app store, and vocabulary provider [16]. Data are requested from a data provider,
optionally processed, and returned to the data consumer. Several IDS-based or
IDS-supporting data exchange systems are coming online. One is the Smart
Connected Supplier Network(SCSN) [17]. SCSN defines a universal language to
be used by all organizations to provide seamless data in the supply chain and
uses a standardized API to send orders, invoices, and dispatch information. It
offers a new data standard and technical infrastructure to make sharing data in
chains much more efficient.

Enabling Personalized Interventions (EPI) aims to develop a healthcare
platform based upon a secure and trustworthy distributed data infrastructure to
create new, actionable, and personalized insights for providers and patients. It
benefits from the collaboration of medical professionals, data scientists, ICT-
infrastructure experts, and machine learning researchers [3].

6 Chapter 1. Introduction

Green Village Data Sharing Platform is a project defined by the Green
Village with the cooperation of the ICT innovation department of TU Delft and
SURFsara. It aims to provide a reliable and highly available sharing platform to
exchange data among different organizations [18].

The Neutral Logistics Information Platform (INLIP) is a part of the
Netherlands’ Logistics Top Sector program, a leading platform promoting data
exchange in the transport and logistics sector. One of the projects defined in this
context is iISHARE. It is an appointment system for identification, authentication,
and authorization to share the logistics data in a safe and controlled fashion.
This system can be used by all parties which have activity in the logistics sector.
Overall, the NLIP project is trying to facilitate the development of tools and
digital standards for accessing and sharing data sources to eliminate data sharing
barriers and reduce the pressure on physical infrastructure [19].

1.2 Containerization

In e-Infrastructures and clouds, there is a transition from virtual machines to
containers, such as Docker. Containers are a lightweight virtualization solution
that shares the OS kernel [20]. In this thesis, we explore the adaptation of soft-
ware containers as elements for creating and delivering data sharing application
services. In a distributed data sharing platform, containers act on behalf of
the participating parties. Containers can provide the required isolation between
sharing transactions in a DDM. When a container is deployed on a host, each
container’s resources, such as its file system and network namespace, are placed
in an isolated environment that no other container can access [21]. Containers
belonging to different domains must connect to each other securely so data can
be transferred from one party to the other. Containers are connected to each
other through overlay networks. We look into different configurations of overlay
networks to explore how to provide secure connections that preserve the required
isolation.

Comparing Containers with Virtual Machines

In Fig. 1.3 we show the architecture of containers and VMs. Different containers
on the same machine share the same OS (Fig. 1.3a) while each VM contains a full
set of OS on virtualized hardware and runs a complete copy of the OS (Fig. 1.3b).
In VMs, a hypervisor separates the VM from its host. It translates the VM in-
structions to the instructions that are executable by the host, whereas a container
communicates with its host through the system calls. Although these layers in
VM setup impose overhead in virtualized applications when compared with appli-
cations running on bare metal systems, host OS kernel sharing introduces many
security issues, making containers less secure than VMs.

1.2. Containerization 7

| Guest OS H Guest OS |

(a) Container architecture (b) VM architecture

Figure 1.3: Architecture of container vs. VM [6]

Authors in [6] classify the possible attacks in a container-based system to three
different groups:

e Application to container: In this case, an application could gain control
over the container within it’s running. Attacks like remote code execution,
unauthorized access, or embedded malware can happen in this group.

e Container to host: In this case, a malicious container may have access to
confidential data of its host or even target the information integrity. It also
can consume the available resources of the target host. Attacks like data
tampering, container escape, and DoS may happen in this group.

e Container to container: In this case, one or more containers attack the other
containers on the same or different hosts. A malicious container could be
able to access confidential data of other containers, learn resource usage pat-
terns, or target another container’s availability. Attacks like DoS on other
containers, port scanning, ARP spoofing, and MAC flooding can happen in
this group.

The focus of SecConNet is on the container to container and container to host
type of attacks. We study how to improve the security of container networks by
researching container connectivity methods, making isolation between containers
when needed, and enforcing the provided network policies.

Container Orchestration

For orchestrating containerized applications across a cluster, we can use Kuber-
netes [22]. A Kubernetes cluster consists of one master and several worker nodes.
The master manages tasks like scheduling and scaling containers. Each worker
node has an agent called Kubelet for communication with the master. Deploying
containers goes through the master. After a deployment request, the master will
schedule the container to run on its cluster’s worker nodes [20,23]. Kubernetes

8 Chapter 1. Introduction

uses a concept called pods to manage containers. A pod is formed by one con-
tainer or a group of containers. Containers in the same pod are scheduled on the
same node and share resources like storage, network namespaces (an IP address),
and container specific information like image versions. Containers in separate
pods are isolated from each other.

1.3 Software Defined Networking and P4

In SecConNet we explore the question of how to deploy the network programma-
bility to support agile and secure (scientific and business) Big Data sharing across
domains. A data sharing network infrastructure needs intelligent network recon-
figuration to support dynamic container network topologies, adaptation to chang-
ing network conditions, and instantiating the sharing policies. Software Defined
Networking (SDN) is a promising technology that provides programmability by
separating the control plane from the data plane. The control plane defines the
configuration of the network and routing of the traffic [24]. The data plane physi-
cally handles the traffic based on the configuration that is set by the control plane.
A centralized controller manages the data plane switches. In SDN architecture, as
the controller has a global view of the network based on its communication with
the data plane, network management is more efficient compared to traditional
networks. Moreover, SDN provides more flexibility as there are programmable
switches that use open source network operating systems and the vendor-specific
devices are not needed. However, despite the flexibility of SDN, the Openflow
protocol, which was defined for the communication between the control plane and
the data plane, has a fixed specification [25]. The specification is characterised by
a predefined set of header fields according to the Openflow version. On the other
hand, the SDN switches are heavily dependent on the controller, which entails
lots of communication overhead. To resolve these issues, P4 programmable data
plane switches can be used. This allows for transferring some dynamic functions
from the controller to the data plane.

P4 is a high-level language that is designed to program the data plane of packet
forwarding devices. In this thesis, we use the P4 capability to program and mon-
itor the containers’ connections. P4 is more flexible than Openflow offering the
capability of defining new headers and as a result making protocol-independent
programs that can be deployed on different forwarding hardware. A compiler is
used to map those programs to target devices [26].

Fig. 1.4 shows a typical packet processing pipeline in P4. It includes a parser,
ingress match-action, egress match-action, and deparser. The parser is a stage
that parses the packet according to the header definition that is written by a user
in the program. Both ingress and egress match-actions include logical tables that
match the packet against the protocol field and determine the required actions
to apply to the packet. Actions determine common packet modifications, such

1.4. Research Questions 9

as changing header fields, adding/removing headers, or packet cloning. It per-
forms the modification based on forwarding rules. In P4, it is possible to gather
telemetry metadata for each packet, such as ingress and egress timestamps, the
latency of the packet, the link utilization, and the routing path of the packet. In-
formation can also be embedded into the packets and removed at the endpoints.
P4 supports constants, variables, and registers. Variables have local scope, and
they do not keep any state. Registers, on the other hand, keep the state between

various network packets.
Runtime
forwarding rules

D
| P : B H E 0
N A r = 1] r’: P U
R E A i

P | |

T 3 E S U
R Ingress pipeline R Egress pipeline E i

packet modilfica}ion+ packet modification R

egress selection

Figure 1.4: P4 processing pipeline [27]

1.4 Research Questions

In this thesis, we investigate the capability of containers in providing a secure
data sharing infrastructure with our main research question (RQ) as follows:

RQ: How does a container-based infrastructure guarantee secure
and high-performance data sharing among organizations?

To answer this question, we first need to understand how the sharing policies
are defined in a DDM. How do we describe the shared assets, sharing requests,
and matching module for checking the sharing requests? Therefore, we define our
first sub-question as follows:

RQ1: How to describe high-level data sharing policies, and how to
build a module for authorizing the sharing requests?

Once we define and describe the sharing policies, we can study how these
policies can be enforced in a container-based network. We first need to investi-

10 Chapter 1. Introduction

gate different available overlay technologies that connect containers and support
access control between containers. We study their method of implementation and
compare their performance with each other.

As our next step, we study how these available technologies can support the
DDM’s requirements. We define different connectivity types of containers with
different levels of isolation for running sharing requests in a DDM and explain
how these connectivity types can be implemented with overlay technologies.

RQ2: How can overlay network technologies provide the required
policy enforcement and isolation, while maintaining quality in a shar-
ing environment?

RQ2.1: What are the functionalities of the available overlay technologies for
managing container connectivity and enforcing sharing policies?

RQ2.2: Can different configurations of available container overlays meet the
requirements of a DDM?

The network infrastructure of a DDM can be managed by a centralized or-
chestrator (single-domain DDM) or each of the resources in a DDM can be con-
trolled by independent administration systems (multi-domain DDM). In RQ2, we
study the functionality of container networks in a single domain environment. In
the next research question, we aim our attention on designing a multi-domain
container-based network. In a multi-domain DDM each domain administrator
manages the connectivity of its own containers while collaborating with other
domains to run the sharing requests.

RQ3: How to build a containerized multi-domain DDM on a pro-
grammable network infrastructure to enforce sharing policies?

For building a multi-domain container-based overlay, we study programmable
switches and P4. In this way, the whole connectivity between containers can be
managed by the controller of the switch that is under the control of the admin-
istrator. After studying the security aspects of our design, in our next question,
we study how we can use the capability of the P4 program to be able to monitor
the sharing activities between containers.

RQ4: How can P/-based network capabilities assist the data shar-
g management system in providing security and maintaining qual-
ity ?

By using P4, we can track the container connections and reconfigure the con-
nections between containers when needed.

1.5. Thesis at a Glance 11

1.5 Thesis at a Glance

In Fig. 1.5, we show an overview of the structure of the thesis. In Chapter 2, we
answer RQ1 by introducing the ODRL model for describing the sharing policies
and a matching module for handling the sharing requests. After describing the
policies, we focus on studying the container overlay networks and constructing a
DDM container-based infrastructure for data sharing operations. With RQ2.1, we
first investigate the available container overlay technologies to evaluate how they
can support creating containers, connecting containers, and enforcing network
policies. In Chapter 4, according to the DDM requirements, we define specific
container connectivity types, implement the overlay setups based on these con-
nectivity types and compare the implementations from performance and security
perspectives (RQ2.2).

In Chapter 5, we research building a multi-domain DDM in which each domain
administrator can control its own container connectivity. We use virtual switches
to connect containers and use P4 for programming these switches to answer RQ3.
We demonstrate how this method can isolate the connection between containers.
In Chapter 6, we show how using a programmable switch and the P4 language can
assist in monitoring the behavior of containers and their connections to answer

RQ4.

1.6 Publications

Listed below are the author’s contributions to the publications that are used in
the chapters.

Ch 2. Shakeri, S., Maccatrozzo, V., Veen, L., Bakhshi, R., Gommans, L.,
de Laat, C., and Grosso, P. “Modeling and Matching Digital Data Marketplace
Policies”. In 2019 15th International Conference on eScience (eScience), pp.
570-577.

Shakeri designed the architecture. Shakeri, Maccatrozzo, and Veen wrote the
paper. Maccatrozzo described the SecConNet ODRL semantic model and de-
fined the policy matching module. Veen edited the written work. Grosso advised
throughout the study. The remaining authors supervised.

Ch 3. Shakeri, S., van Noort, N., and Grosso, P. “Scalability of Container
QOwerlays for Policy Enforcement in Digital Marketplaces”. In 2019 IEEE Sth
International Conference on Cloud Networking (CloudNet), pp. 1-4.

Shakeri designed the experiments and wrote the paper. Van Noort set up and ran
the experiments. Shakeri and van Noort analyzed the data. Grosso consulted
the study and edited the written work.

12

RQ2

RQ1

Chapter 1.

Introduction

Chp1: Introduction

Chp2: Modelling and Matching Digital Data

Marketplace Policies

RQ1: How to describe high-level data
sharing policies, and how to build a module
for authorizing the sharing requests?

Chp3: Applicability of container overlays for data
sharing in Digital Data Marketplaces

RQ2.1: What are the functionalities of the
available overlay technologies for managing
container connectivity and enforcing sharing

policies?

RQ3

Chp4: Evaluation of container overlays for secure
data sharing

RQ2.2: Can different configurations of
available container overlays meet the
requirements of a DDM?

Chp5: Multi-domain network infrastructure based
on P4 programmable devices for Digital Data
Marketplaces

RQ3: How to build a containerized multi-
domain DDM on a programmable network
infrastructure to enforce sharing policies?

RQ4

Chp7 : Conclusion

Chp6: Demonstrating how P4 capability can
assist the sharing application for monitoring
the network activities

RQ4: How can P4-based network capabilities
assist the data sharing management system in
providing security and maintaining quality?

Figure 1.5: The overview of the thesis, including the chapters and research ques-
tions

1.6. Publications 13

Ch 4. Shakeri, S., Veen, L., and Grosso, P. “Evaluation of Container Quver-
lays for Secure Data Sharing”. In 2020 IEEE /5th LCN Symposium on Emerging
Topics in Networking (LCN Symposium), pp. 99-108.

Shakeri designed the architecture, defined the different connectivity types, im-
plemented the overlay setups, and ran the experiments. Veen extended the
experiments and analyzed the data. Veen contributed to editing the written
work. Grosso consulted the study and edited the written work.

Ch 5. Shakeri, S., Veen, L., and Grosso, P. “Multi-domain network in-
frastructure based on P4 programmable devices for Digital Data Marketplaces”.
Cluster Computing (2022).

Shakeri designed and implemented the proposed method with P4. Veen defined
the methodology for calculating request setup time. Shakeri performed the ex-
periments and analyzed the data. Grosso consulted the study and edited the
written work.

Ch 6. Shakeri, S., Veen, L., and Grosso, P.“Tracking container network
connections in a Digital Data Marketplace with P4”. In 2022 International
Conference on Computer Information and Telecommunication Systems (CITS),
pp. 1-8.

Shakeri designed the architecture, implemented the method with P4, and wrote
the program for running the tracking scenarios. Veen consulted the experiments
and edited the written work. Grosso supervised and consulted the study.

Ch 6. Veen, L., Shakeri, S., and Grosso, P. “Mahiru: a federated, policy-
driven data processing and exchange system”. Submitted to arXiv:2210.17155
Veen wrote the paper, designed the methodology, and developed the prototype.
Shakeri worked on the implementation part. Grosso consulted the study.

Chapter 2

Modeling and Matching Digital Data
Marketplace Policies

In this chapter, we introduce the concept of sharing policies and sharing requests
in Digital Data Marketplaces. We explain the methods for sharing data in DDMs
and discuss how they can be built up on a container-based network architecture.
This chapter is related to RQ1l: How to describe high-level data sharing policies,
and how to build a module for authorizing the sharing requests?

In particular, we present a semantic model for describing sharing policies by
means of semantic web technologies. We use and extend the Open Digital Rights
Language (ODRL). The ODRL information model allows for a flexible description
of policies by modeling what is permitted and what is not, as well as other terms,
requirements, and parties involved. In the DDM, users can submit requests to
use specific datasets or algorithms and specify the location of execution. We
introduce a matching module to allow for the automatic management of user
requests.

This chapter is based on:

Shakeri, S., Maccatrozzo, V., Veen, L., Bakhshi, R., Gommans, L.,
de Laat, C., and Grosso, P. “Modeling and Matching Digital Data
Marketplace Policies”. In 2019 15th International Conference on eScience
(eScience), pp. 570-577.

15

16 Chapter 2. Modeling and Matching Digital Data Marketplace Policies

2.1 Introduction

Digital data marketplaces provide a distributed alternative to data silos run by a
small number of large parties or organizations. In a distributed system, control
over data is kept with the owner or subject of the data. This benefits privacy, in-
creases business interest of the owner, and reduces market-distorting monopolies.
Accordingly, providing a data sharing platform among different participating par-
ties is of paramount importance. However, there are still many challenges about
the methods for bringing the required trust and security in DDMs as sharing en-
vironments [28,29]. Arranging appropriate sharing policies in the platform plays
a very important role in the functionality of digital collaborations. By describing
and implementing these policies, the owners of the data can be sure that only
authorized users can access their data and this will increase trust in DDMs.

In this chapter, we use the terms party and organization interchangeably.
We define them as the members of the DDM that own data and play a role in
determining the agreements for sharing the data.

A sharing policy is a set of access rules that determine permission and pro-
hibition related to a specific object in a specific location. The first major step
for developing a secure data sharing platform is describing these rules and regu-
lations in an efficient way. A full description will make the rules more clear and
then implementing them in the infrastructure will be more straight-forward.

We built a data sharing platform to support automatic handling of users’
requests. We do this by means of Semantic Web technologies. In particular, we
use and extend the Open Digital Rights Language (ODRL) to describe sharing
policies between participating organizations and to model users’ sharing requests.

In this chapter, we present the following:

e An introduction to the DDM sharing application handling mechanism.

e A generic semantic model that leverages the ODRL ontology and extends
it specifically for data sharing applications in DDMs.

e The deployment of the semantic model for automatic handling of users’
sharing requests in the data sharing platform.

2.2 DDM Sharing Policies

A sharing policy is a set of rules including the permitted transmission of shared
digital resources. Fig. 2.1 shows examples of policies with possible use cases,
which can be defined in a DDM. We categorize the policies into two types: Type
A and Type B; Type A policies describe processing a data set using an algorithm
when two parties are involved. Type B policies involve two parties supplying
data and software to be combined, and a trusted third party (TTP) controlling

2.2. DDM Sharing Policies 17

Type A Type B
Private Sharing | | Software as Infra as Sharing Data
Operation Results a Service a Service
Algorithm
Org. B Org. B
H Org. B E P ‘g_’
data Algorithm S HICHE
' ’ ° data output <
(l oA J (org.A) Sharing Code
) S y O, via TTP
output ata Algorithm (Org—C]

. g $§ output
Sharing Sharing Algorithm | |Reproducible| | ¥ ¥/ data
Data Code to Data Science

data output i

output Algorithm | | output data m

Share Code and
Data via TTP

Org. B Org. 0Org.B) (Org.B

g

data output data %
&

<

2| Algorithm | @
() Algorithm ()

(org.A) (Org.

)

o

a
Q

S

Figure 2.1: DDM policies; Type A with two parties involved; and Type B: with
two parties and a TTP (Trusted Third Party) involved;

execution. Corresponding policies may be constructed in a similar fashion as for
Type A. Following is an explanation of each use case in this figure.

e Private operation is a degenerate case, in which no exchange takes place
or is permitted.

e Sharing results is when only the result of an operation is shared from
one organization to the other organization. This can be part of a chain of
policies that allow the use of an algorithm’s operation output on data as
the input for the next operation.

e Software as a service is when an organization uses the algorithm of an-
other organization as a service for performing operations on its data.

e Infrastructure as a service is when an organization is using the infras-
tructure of the other organization for performing the operation. It sends
its algorithm and data to the other organization that is providing resources
including storage, compute, and network.

e Sharing data is when an organization is selling its data to be used by
other organizations.

e Sharing code is when an organization is selling its algorithm to be used
by the other organization.

18 Chapter 2. Modeling and Matching Digital Data Marketplace Policies

e Algorithm to data is when an organization does not agree to share its
data. It takes other algorithms, runs the algorithm on its data, and then
sends the results back.

e Reproduce science is when the experiments of a scientific use case must
be repeated. The other scientists can use the data and algorithm of the
specific use case to reproduce the results.

e Sharing data/code via TTP is when both the data provider and algo-
rithm provider do not want to send their data or algorithm to the other
organization. They send their shared assets to a trusted third party and
the results will be used by data provider or algorithm provider according to
the use case.

e Sharing data and code via TTP is when an organization uses a trusted
third party infrastructure as a service and then the output is shared through
the TTP.

In a specific scenario, the corresponding rules can be formulated permitting ex-
actly the transmission of a digital object with specific functionality (algorithm or
data) to a specific location. For example, ”Sharing Data Via TTP” use case in
Fig. 2.1, depicts a simple sharing policy including three sharing rules. A rule that
allows transmitting the input data from Org. A to Org. C. The other rule allows
the transmission of the algorithm from Org. B to Org. C; and the last rule allows
the output to be transferred to Org. B. Any other transfer of data and algorithm
is denied.

2.3 Request handling in DDM

Digital data sharing and digital collaboration in a DDM rely on the sharing poli-
cies and agreements between parties. Ensuring the enforcement of these policies
introduces the need for representing an efficient and secure data sharing system in
a DDM. Fig. 2.2 shows the mechanism of accepting or rejecting a sharing request
in a DDM. By construction, it relies on four components: 1) Sharing applica-
tion; 2) Sharing policies; 3) Matching Module; and, 4) Container-based network
infrastructure. In the following, we describe each of these components.

e Sharing application Two kinds of digital resources can be shared in the
proposed DDM system.
— Digital Algorithm: A program that operates on data.
— Digital Data, including;:
x Input Data: Input data of the algorithm.

2.3. Request handling in DDM 19

Reject

Container-based Network
Infrastructure

Application

Figure 2.2: Digital Data Marketplace request handling mechanism

* Output Data: Result of executing the algorithm.

We consider an application as a set of sharing requests. In each sharing re-
quest the operation that the algorithm performs on the input data and the
generation of the output is defined. Fig. 2.3 shows an application encom-
passing two different sharing requests. Here the output of sharing request
1 is used as an input for sharing request 2.

M g

Algorithm1 Input Data 2 Input Data 1

1 i
e sharingRequest1

m Input Data 3

Output Data 2

Figure 2.3: Digital Data Marketplace sharing application; it includes two sharing
requests and the output of the first sharing request is the input for the second
sharing request.

e Sharing policies As explained in Sec. 2.2, the policies describe rules to
apply how and where data and algorithms may be processed.

e Matching module As shown in Fig. 2.2, the matching module automat-
ically verifies whether the sharing application satisfies one of the available
sharing policies in the DDM or not. Let’s consider a scenario in which a
user from a specific organization has a request based on the application
in Fig. 2.3. If this sharing application matches one of the available shar-
ing policies, the system will set up the infrastructure based on the sharing
policies and will start performing the sharing application. Otherwise, the
request will be rejected.

20 Chapter 2. Modeling and Matching Digital Data Marketplace Policies

e Container-based network infrastructure This is the platform that pro-
vides the connections amongst different parties. Several infrastructure ar-
chitectures are possible. Containers proved their flexibility and applicabil-
ity in data sharing platforms in other projects like DL4LD and EPI. In this
thesis, we looked into how we can build the network infrastructure with
containers considering sharing security and performance.

2.4 Semantic Model

In this section, we describe the guiding principles of the semantic model, the
Open Digital Rights Language (ODRL) ontology, and the extensions needed.

The main goal of our model is to describe how digital resources can be trans-
ferred and/or shared among different parties in a DDM.

2.4.1 Model requirement

We need a simple language to describe how shared resources can be used by
different parties. ODRL is a W3C recommendation language designed to model
permissions, obligations, and prohibitions regarding digital resources. Through
these rules, the model allows describing the terms of use and reuse of digital
content. This model shares many similarities with our requirements, and we
needed only a few extensions to customize it for our needs. In the next subsections
we introduce the ODRL information model' and, propose the extensions for a
DDM.

2.4.2 ODRL Information Model

The ODRL information model allows for a flexible description of policies by mod-
eling what is allowed and what is not, as well as other terms, requirements, and
parties involved. The classes from the ODRL information model that we use are:

e Asset: a digital resource, e.g., data, and algorithms.

— AssetCollection (sub-class of Asset): a group of Assets with common
characteristics. This is used to describe categories of assets. Note that
ODRL allows both extensional and intensional definitions of AssetCol-
lections.

e Action: an activity performed on an Asset. This is used to describe how
the Assets can be shared in the DDM.

e Rule: description of an action to be performed over an Asset.

Thttps://www.w3.org/TR/odrl-model/

https://www.w3.org/TR/odrl-model/

2.4. Semantic Model 21

— Permission (sub-class of Rule): a description about what is allowed to
do with an Asset.

— Duty (sub-class of Rule): a description of an action a party is obliged
to perform with an Asset.

e Party: entity that assumes a role in a rule. A party is a member of the
DDM. The DDM agreements are pre-approved by party.

— PartyCollection (sub-class of Party): a group of parties with common
characteristics (e.g. employees of the same company).

e Constraint: Refinement of an Action, a Rule, and a Party/Asset collection.
This is used, for instance, to refine the movement of an asset to a specific
digital location.

e Policy: a group of rules. Policies are defined by means of rules about the
usage of digital resources (i.e., assets).

— Agreement (sub-class of Policy): granting of Rules from assigner to
assignee parties. This class is used to describe the contract signed by
the parties in the DDM.

2.4.3 SecConNet semantic model

In Fig. 2.4, we present an example of a policy, representing the policy ”sharing
data via TTP” shown in Fig. 2.1. The figure includes three main boxes, from top
to bottom: Algorithm, Input, and Output. In every box, we can see the Asset
description on the left (the Asset Collection box). Asset Collections are used to
group together assets that share the same rule set. In particular, given the fact
that contracts in DDMs define how assets can be used by the parties and that
there could possibly be an unlimited number of parties, with an unlimited number
of assets to share, it would be rather inconvenient to define rules for every asset
in the DDM. To overcome this issue, we propose to define categories of assets, i.e.
Asset Collections, hence a party needs only to declare which category its assets
belong to. Every box also includes the description of the actions allowed on that
specific asset. Most of these actions are described by a rule of the type permission.
In the Output box, there is a rule of the type duty. This rule describes the fact
that the output generated by the algorithm has to be moved to location Org. B.

Data in DDMs is shared for use as input to other parties’ algorithms. While
the concept of output (defined as the asset that is created from the output of an
action, see Output box in Fig. 2.4) is included in ODRL, the concept of input is
missing. When the target of action is an algorithm and the action is ”execute”,
we have no way to define the data used as input. So, we extend the ODRL model
by adding the ”input” property, as we show in Fig. 2.4 in the input box.

22 Chapter 2. Modeling and Matching Digital Data Marketplace Policies

In the SecConNet semantic model, we also use other models, such as the
provenance Ontology (PROV-0)? to describe and record every action performed
in the DDM, friend of a friend (FOAF)? to describe parties, and the data cat-
alog vocabulary (DCAT)* to describe datasets. However, these models are not
included in Fig. 2.4, as the focus of this chapter is on the modeling of the policy.

2.5 Matching Module

The matching module’s main goal is to allow for automatic management of user
requests. In the DDM, users can submit requests to use specific datasets or
algorithms, specifying the location of execution. When sending an application,
users, have to specify:

e the dataset they want to use;

e the algorithm they want to use;

e the location of execution of the application;

e the location where the results of the application have to be sent.

Finally, using SPARQL queries, the matching module will verify whether the
request is doable and approve or reject it.

While the main goal of the matching model is to verify the applicability of the
request, it can be easily extended and used to guide the user in the submission
of the request. For instance, considering the user’s credentials, only the datasets
that the user is allowed to use will be listed. Once the dataset is selected, only
allowed locations will be shown, and so on, until all the fields are filled in.

We illustrate the behavior of the matching module with the following example.

2.5.1 Example

We show the functioning of the matching module by testing the applicability of
the sharing policy ”sharing data via TTP” in Fig. 2.1. As a contract defining the
DDM, we use the one described in Fig. 2.4.

The application request consists of:

e use an Org. A dataset (Datal);

e use an Org. B algorithm (Algorithm1);

https://www.w3.org/TR/prov-o/
3http:/ /xmlns.com/foaf/spec/
4https://www.w3.org/ TR /vocab-dcat/

https://www.w3.org/TR/prov-o/

2.5. Matching Module

23

"Algorithm
Category 1"

rdf: type

ODRL:partof

ODRL.
Asset Collection

rdf: type

dttype ODRL:Asset

ODRL:output

ODRL:target— "Permission2"

ODRL ODRL:duty
"Policy1" ~ ODRL
ODRL:permission:
ODRL
Algorithm ODRL:permission
Asset Collection |
ODRL:partOf- "Algorithm1" ODRLtarget
ODRL:action

ODRI
Reproduce

DRL:action ODAL:

Move

ODRL: refinement

ODRLirightOperand— ODRL:Constraint ODRL: letfOperand

ODRI
virtualLocation

Input

/Asset Collection
ODRL:partOf-

"Data Category 1"

i type ODRL:partOf

DFlL: arget

" Copy Data 1"

"Permission3"

ODRL:output

!

"Permission4"

ODRL:action

ODRL:action

ODRL:rightOperand

ODRL:
Reproduce
ODRL:
Move
ODRL: refinement

ODRL:Constraint ODRL: letfOperand

ODRL:
virtualLocation

oDl | L:target

ODRL:nput:

Output

Asset Collection

"Output Category 1"

ODRL:partOf

rdf: type

ODRL:
Asset Collection

"Permissions"

ODRL:Asset
rdf:type

=

ODRL:rightOperand

ODRL: refinement

ODRL:Constraint —ODRL: letfOperand

ODRL:Constraint
ODRL:rightOperand
Org. B

ODRL: refinement:

ODRL: letfOperand

ODRL:
alLocation

@prefix ODRL: <https://www.w3.org/ns/odrl/2/>
@prefix rdf: <https:/Mww.w3.0rg/1999/02/22-rdf-syntax-ns#>

Figure 2.4: An example of a policy. The figure translates the policy ”sharing
data via TTP” in Fig. 2.1 into our semantic model.

[R T N I

10
11
12

24 Chapter 2. Modeling and Matching Digital Data Marketplace Policies

SELECT ?location
WHERE {SECCONET:algorithmAsset/Algorithml PROV:atLocation ?location.
b

SELECT ?location
WHERE {SECCONET:dataAsset/Datal PROV:atLocation ?location.

}

Figure 2.5: SPARQL queries to verify where Algorithm1 and Datal are located.

e trusted is the location of execution;
e the results need to be sent to Org. B.

With the help of Algorithm 1, we guide the reader through the steps the
module performs. The first step is to verify where the dataset and the algorithm
to be used in the application are located (see Algorithm 1 line 8). In Fig. 2.5, we
show the SPARQL queries to find the location of Algorithm1 and Datal. Location
of all the assets in the DDM is recorded using the property PROV:atLocation.
In case the assets are not in the requested execution location, we need to verify
whether they could be moved (see Algorithm 1 line 3). In Fig. 2.6, we show
the SPARQL queries to verify whether the assets can be moved to the requested
location of execution, after being copied.

Algorithm 1 Matching module algorithm to check if a sharing request is accepted
or rejected according to sharing policies
Input: Algorithml, Datal, Execution Location, Output Location
Function moveAllowed(Asset, Location)
if location(Asset) # Location then
‘ return whether Asset may be moved to Location
end
return (True)
end
Outputl = outputOf(Algorithm1, Datal)
if moveAllowed(Algorithm1, Ezecution Location) and moveAllowed(Datal, Exe-
cution Location) and moveAllowed(Outputl, Output Location) then
‘ Accept the Request
else
‘ Reject the Request
end

The last step for completing the matching is to verify whether the results
could be moved to the location Org. B (see Algorithm 1 line 8-9). In Fig. 2.7
we show the SPARQL query to verify whether Algorithm 1 can be executed in
location trusted with input Datal and if the results could be moved to location
Org. B.

2.6. Discussion 25

SELECT ?moveAlgorithm
WHERE {
?ruleCopy ODRL:action "reproduce".
?ruleCopy ODRL:target SECCONET:algorithmAsset/Algorithml.
?ruleCopy ODRL:output ?moveAlgorithm.
?rule ODRL:target ?moveAlgorithm.
?rule ODRL:action "move".
?rule ODRL:constraint ?constraint.
?constraint ODRL:virtuallLocation SECCONET:location/trusted.

SELECT ?moveData
WHERE {
?ruleCopy ODRL:action "reproduce".
?ruleCopy ODRL:target SECCONET:dataAsset/Datal.
?ruleCopy ODRL:output ?moveData.
?rule ODRL:target ?moveData.
?rule ODRL:action "move".
?rule ODRL:constraint ?constraint.
?constraint ODRL:virtuallLocation SECCONET:location/trusted.

Figure 2.6: SPARQL queries to verify whether it is possible to move Algorithm1
and Datal to the requested location.

SELECT ?ruleMoveOutput

WHERE {

?rule ODRL:action "execute".

?rule ODRL:target SECCONET:AlgorithmAsset/Algorithml.

?rule ODRL:output ?output.

?rule ODRL:input SECCONET:DataAsset/Datal.

?rule ODRL:constraint ?constraint .

?constraint ODRL:virtuallLocation SECCONET:location/trusted.
?ruleMoveOutput ODRL:action "move".

?ruleMoveOutput ODRL:target ?output.

?ruleMoveOutput ODRL:constraint ?constraint2.

?constraint2 ODRL:virtuallLocation SECCONET:location/ Org. B.
}

Figure 2.7: SPARQL query to verify whether it is possible to move the results of
the application to the requested location.

2.6 Discussion

The example presented in Sec. 2.5.1 shows how we use the semantic model of
a policy to perform an automatic matching of the application request with the
rules of the DDM.

Mello et al. [30] provides three requirements for infrastructures for sharing
clinical trial data: 1) the system must provide sufficiently broad access, 2) it
must ensure accountability of all parties involved, 3) and it must be practicable.
As both commercial and privacy aspects play a role for clinical trial data, we
believe that their criteria apply more broadly, and provide a good reference to
measure our approach against.

A system that can accommodate complicated requirements with respect to
access to and use of data and algorithms will arguably allow more parties to par-
ticipate. ODRL is a powerful right description language, and the use of semantic
technology makes it easy to extend the ontology if needed. It is flexible enough
to be extended to support different types of policies when it is necessary.

From a technical perspective, a DDM consists of users, data and algorithm

26 Chapter 2. Modeling and Matching Digital Data Marketplace Policies

providers, and infrastructure providers. To ensure accountability of users, re-
quests need to be matched against the sharing policies specified in the contracts
as demonstrated above. Some improvement can still be made in describing data
sets and algorithms, however. Algorithms (or specifically implementations) will
have to be audited by a human auditor, as automatic software verification is
unlikely to be feasible in daily practice. The system should provide digital sig-
nature verification to support this as demonstrated before by Cushing et al. [31].
The semantic description can also be used as a machine-readable base for au-
diting network configuration and performance, in order to ensure accountability
of the infrastructure providers. Complex constraints can be verified by querying
or theorem proving. Finally, provenance recording can be done for after-the-fact
auditing, as well as for reproducibility in a scientific context.

With respect to practicality, automatic request validation as demonstrated
here is a necessity for providing a timely response to user requests. The present
implementation could be improved upon by support for more sharing policies
(as in [31]) and more complex workflows, and by leaving more of the details of
where and how to execute to the system, rather than the user. This needs more
advanced algorithms for matching and scheduling, however, which we plan to
develop. From the system administration perspective, RDF’s flexibility allows
for putting fewer constraints on users. Our approach allows for the translation
of a simple human-understandable concept like the sharing policies presented in
Fig. 2.1, into a machine-understandable concept such as the model presented in
Fig. 2.4, removing the burden of the translation from the system’s administrator.

2.7 Related Work

One of the first works in semantic policy management was proposed by Uszok et
al. in [32). KAOS is composed of two core ontologies: the actor ontology, which
describes people and software subjects of an action, and the action ontology,
which provides support for describing actions and related context. There are
four types of policies: positive or negative authorization and positive or negative
obligations. This model seems to be deprecated.

The Legal Knowledge Interchange Format (LKIF) presented by Hoekstra et
al. [33] includes a legal core ontology and a legal rule language that can be used to
deploy comprehensive legal knowledge management solutions. This model lacks
a proper representation of the temporal aspects. Gandon et al. present in [34] an
extension of LegalRuleML [35] for deontic reasoning on normative requirements
and rules. LegalRuleML is a rule interchange language proposed by OASIS, based
on RuleML (Rule Markup Language). RuleML is a unifying system of families of
languages for Web rules specified through schema languages for Web documents
and data. These models allow for very specific logic reasoning, which is not
required by our model. We prefer to keep the modeling lighter, to allow for more

2.8. Conclusion 27

flexibility.

XACML (eXtensible Access Control Markup Language) [36], is an OASIS
industry standard language for access control requests and policies. It provides
a common ground regarding terminology and workflow between multiple vendors
building implementations of access control using XACML and interoperability
between the implementations. XACML is a general policy language model, while
ORDL focuses on modeling digital rights over assets [37].

L4LOD is a lightweight vocabulary for expressing licensing terms in Linked
Open Data [38]. Its aim is to provide the means to represent existing licensing
models in RDF. However, we are using ODRL which already provides support
for RDF representation of the contracts.

Palmirani et al. [39] introduce one of the first GDPR inspired ontologies in-
tegrated with deontic logic model, called PrOnto. PrOnto allows for privacy and
data protection regulation in order to define the legal concepts in legal frame-
works and the relationships among them. In the context of medical data privacy,
Li and Samavi propose Data Sharing Agreement Privacy Ontology (DSAP) [40].
This ontology is specific to the medical domain, and it is not widely applicable.
Our work focuses on sharing datasets, and these models do not allow for modeling
the business aspects, e.g. sharing data.

2.8 Conclusion

In this chapter, we presented the notion of sharing policies and sharing requests
within the concept of DDMs (Fig. 2.1). We introduced an architecture for request
handling and explained its components to show how a sharing request can be
executed when it is matched with one of the sharing policies. For describing the
sharing policies we used a semantic model, instrumenting an example of data
sharing in the business domain. We modeled the policies using and extending
the Open Digital Rights Language (ODRL) and defined a matching module that
checks if a request is allowed to be executed or not.

In Chapter 3, we focus on implementing the described sharing policies in a
DDM network infrastructure. We introduce containers as the main components
of the network infrastructure that contain the shared assets and explain how the
sharing policies are enforced between containers.

Chapter 3

Applicability of
Container Overlays for Data Sharing in
Digital Data Marketplaces

In this chapter, we evaluate the capabilities of container overlays in construct-
ing a container-based DDM, with a focus on enforcing high-level DDM sharing
policies. Secure data sharing in a DDM relies on ensuring the implementation
of sharing policies in the infrastructure. However, converting high-level sharing
policies in a DDM into operational infrastructure is still a matter of challenge.
Container-based overlays are a promising approach for making virtual connections
between containers and managing filtering rules. There are multiple available
container overlay models with different methods of implementation and function-
alities. In this chapter, we first show how a sharing request can be mapped to
a container-based network and how high-level sharing policies can be translated
to container overlay network policies. We then select Calico [41] and Cilium [42]
as container overlays that have better support for creating a secure environment
and compare their performance by measuring the network throughput when the
number of network policies and the number of pods increases. To this end, we
set up a container-based sharing platform for emulating a DDM and building a
Kubernetes cluster implementing the aforementioned overlay technologies. This
chapter is related to RQ2.1: What are the functionalities of the available overlay
technologies for managing container connectivity and enforcing sharing policies?

This chapter is based on:

Shakeri, S., van Noort, N., and Grosso, P. “Scalability of Con-
tainer Overlays for Policy Enforcement in Digital Marketplaces”. In 2019
IEEE 8th International Conference on Cloud Networking (CloudNet), pp.
1-4.

29

30 Chapter 8. Applicability of Container Overlays

3.1 Introduction

Agreements between DDM participating parties need to be converted into deploy-
ment models and specifications in the infrastructure. A container-based solution,
e.g., Docker [20] can be deployed to construct the sharing application platform in
which the Docker container can act as a participating party in a DDM and sup-
port data sharing. However, the security of the connections between containers
and the method of policy enforcement has to be investigated.

For executing a data sharing request, the containers of the participating par-
ties have to be connected, and at the same time, all of the high-level sharing poli-
cies have to be imposed between them. Container overlay network technologies
are the available approaches that put the containers in connection with each other
and enforce the network policies between them. In this chapter, we investigate
the capability of overlay network technologies in providing a secure connection
and enforcing the sharing policies.

There are multiple container network overlay technologies with different fea-
tures and implementation methods, and selecting the proper one is dependent on
the application’s workload and its requirements. We consider making a secure
connection, ability to enforce sharing policies, and data transfer throughput be-
tween containers as the essential KPIs of a sharing platform. We then compare
different container overlay network technologies to evaluate how they can fulfill
these KPIs.

We set up a container-based sharing platform for emulating a DDM and run-
ning sharing requests. We then present the methods by which the sharing policies
that are explained in Chapter 2 can be mapped to the network policies of over-
lays. We explain the method of implementation of the four most popular container
overlays: Weave [43], Flannel [44], Calico [41], and Cilium [42] and present their
features in supporting the policy enforcement and making secure connections.
For throughput experiments, we select Cilium [42] and Calico [41] as we conclude
they have the best support for enforcing the policies in the network. To com-
pare Cilium and Calico performance, we observe how their throughput in data
transfer scales well with an increasing number of policies and pods. The main
contributions of this chapter are:

e Presenting an overview of available container overlay technologies and their
capabilities in supporting container-based DDM

e Demonstrating how the sharing policies can be mapped to the network
filtering rules between containers using overlays

e Comparing the data transfer throughput of Calico and Cilium with an in-
creasing number of policies and pods

3.2. Container Overlay Technologies 31

3.2 Container Overlay Technologies

The concept of an overlay network is not a new idea. It is a virtual network
on top of the physical network to build virtual links among containers [45, 46].
In container network overlays, each container has a private IP address for its
communication. The mapping between the container’s private IP addresses and
their host IP addresses will be saved in a distributed key-value (KV) store, that is
accessible by all joined nodes in the overlay network. Most overlay technologies
use eted as KV store [47]. When a packet is sent to another container in a
different physical machine, the overlay network uses the KV store to find the
destination host IP address. The original packet will be encapsulated in a packet
with the host source and destination IP address and then it will be sent to the
destination. The encapsulation can be done in different layers depending on the
implementation of the overlay technology.

There exist various implementations of overlay networks for Docker containers
that are also integrated with Kubernetes. However, their capability of deploying
the sharing policies in a DDM has to be investigated. In this section, we intro-
duce four popular container overlay technologies: Weave, Flannel, Cilium, and
Calico. We explain their method of making the connection between containers
and enforcing network policies.

3.2.1 Weave

Weave is a virtual network solution developed by Weavework [43]. Weave deploys
a weave router container on each Docker host. Weave creates a mesh overlay
network between each of the nodes in the cluster, allowing for flexible routing
between participants. It uses a custom encapsulation method, and each packet is
encapsulated in a tunnel protocol header and sent to the destination host, where
the header is removed. The communications among weave endpoints can be en-
crypted using the NaCl crypto libraries [48] to enhance data security. Weave uses
iptable for implementing the network policies and supports Kubernetes network
policy enforcement.

3.2.2 Flannel

Flannel is a virtual network developed by CoreOS [44]. It inserts a virtual net-
work interface, flannel0, between docker bridge and the physical interface of the
docker host and gives a subnet to each node to allocate IP addresses internally.
Containers within the same host can communicate using the Docker bridge, while
containers on different hosts will have their traffic encapsulated in VXLAN pack-
ets for routing to the appropriate destination. A distributed KV store, eted [47], is
maintained to store network configuration and address mappings. Project flannel
is focused on networking and does not support network policy enforcement.

32 Chapter 8. Applicability of Container Overlays

3.2.3 Cilium

Cilium is an open source technology that is developed for securing the network
connectivity of the Linux containers which are being managed by Docker and
Kubernetes [42]. Tt leverages eBPF [49] as a technology for filtering and security
policy enforcement. In the Cilium architecture, the Cilium agent runs in the user
space of the host which interacts with the orchestration systems like Kubernetes.
It will set up the connectivity and networking among containers in a cluster and
also is responsible for deploying the network security policies. Linux kernel e BPF
runs the bytecodes which are compiled by Cilium in order to enforce the security
and policies over the traffic among containers from within the kernel. In Cilium,
all the packets which are sent by a container to an endpoint in the overlay network,
are encapsulated by VXLAN. Cilium uses IPsec for encrypting the container to
container traffic.

The policy enforcement in Cilium is based on the labels that are dedicated to
the containers or the pods. Each container or pod has its own label and all of the
rules and policies are based on these labels. Defining the identity of each container
based on labeling provides dynamic policy enforcement and makes the security
independent of addressing. Moreover, Cilium provides the HTTP layer filtering
in addition to L3-L4 operation. Cilium has full support for Kubernetes Network
Policy based on a modern identity-based implementation built entirely in eBPF.
Extensive visibility functionality eases problem troubleshooting and compliance
monitoring. It supports simulation and policy audit in a way that the effect of
network policy changes can be inspected before dropping live traffic.

3.2.4 Calico

Calico is used to create overlay networks and establish connections between con-
tainers across the nodes [41]. The Calico node agent consists of three main com-
ponents: felix, bird, and confd. feliz is responsible for providing the connectivity
and policy enforcement by programming the routes and iptable on the host. bird
distributes the routing information which is programmed by feliz between hosts
as a Linux BGP agent. In case of any changes to the BGP configuration in the
eted datastore confd triggers bird to reload the changes on each host.

Generally, there are two methods for bringing connectivity between multiple
hosts in Calico: BGP and IPIP. In the first method, BGP should be enabled on
the underlying router so that the nodes can be added as the BGP peer in the
cluster. On the other hand, in IPIP the original packet with the container 1P
addresses will be encapsulated at the network layer with the host IP address.
Calico uses IPsec for encrypting the traffic between hosts [41]. In Calico, the
policy will be translated to the host iptable rules. feliz is responsible for deploying
the policies in the iptable. All pods’ traffic traverses iptables rules before they are
routed to their destination. Calico has an anomaly detection feature analyzing

3.8. Sharing policy enforcement in DDM using container overlays 33

Table 3.1: Features of four different container overlay technologies

Overlay technology | How it works Policy enforcement method | Encryption | Ingress/Egress policy | Other features
- : e 15
Weave Custom encapsulation | iptable NaCl Yes Tlot%h‘lesho_otmg [50]
Auditing [51]
Flannel VXLAN No No
Control on application protocol [42]
AR .,
Cilium VXLAN Bpf IPSec Yes Simulation and audit [52]

Flow logs at L3-L7 [42]
Troubleshooting [53]

Policy monitoring [54]
Attack mitigation [55]
Calico IPIP/VXLAN iptable Wiregnard | Yes Troubleshooting [56]
External firewall integration [57]
Image assurance [58]

network activity and identifying anomalous and suspicious behavior detected in
the cluster.

Table 3.1 shows a summary of the features of these technologies. Except
for Flannel, the other technologies support the policy enforcement. In the next
section, we present the way that the sharing policies in a DDM can be mapped
to the network policies of these overlay network technologies.

3.3 Sharing policy enforcement in DDM using
container overlays

According to the agreements established in a DDM, various sharing policies can
be defined for sharing the data and algorithms. Four of them are depicted in
Fig. 3.1. Each sharing policy determines the permitted and prohibited traffic
flow among the organizations, which can be translated to network policy and
then implemented in the container-based infrastructure. Let’s consider scenario

A . A
output @ Algorithm data
output
data Algorithm

Scenario 1 B Scenario 2

A

A
@ Algorithm @

output % c Algorithm
ata @
output data

B Scenario 3 B Scenario 4

Figure 3.1: Examples of sharing policies in a DDM

34 Chapter 8. Applicability of Container Overlays

1 in Fig. 3.1 as the target scenario which should be implemented in the infras-
tructure. It shows the algorithm of organization A will be executed on data of
organization B at the location belonging to organization A, and then organization
A will use the output of the operation. To implement this, it is necessary to de-
fine a policy in the network that permits the connections from organization B to
organization A on the required port numbers. As an example, Listing. 3.1 shows
the Kubernetes network policy that allows the ingress connection from organiza-
tion B to organization A on port 80 of protocol TCP. Let’s denote that only the
connections that are defined in the policies are allowed. Therefore, a connection
that does not match any of the defined policies will be rejected. However, running
the policy imposes an overhead on the network and may affect the network per-
formance, especially when the number of policies increases. It becomes therefore
very important to quantify policy scalability.

1 kind: NetworkPolicy
2 metadata:

3 name: Network_Policy_Ezample
4 spec:
5 podSelector:
6 matchLabels:
7 id.pod : Organizationd
8 policyTypes:
9 - Ingress
10 - Egress
11 ingress:
12 - from:
13 - podSelector:
14 matchLabels :
15 td.pod : OrganizationB
16 ports:
17 - protocol: TCP
18 port: 80
Listing 3.1: A

container network policy, specifying connection rules
between organization A and organization B

Another important factor is the network performance when the number of pods
increases. In many cases in a sharing platform, it is necessary to run multiple
numbers of pods at the same time to handle the applications’ requests. There-
fore, it is worth it to investigate the DDM performance in handling concurrent
communications between multiple pods, i.e., pod scalability.

3.4. FExperiments 35

3.4 Experiments

Considering the capabilities provided by each of the four technologies, we can
conclude that Calico and Cilium are more suited to our purposes than Flannel
and Weave. Especially useful for us is the fact that Calico provides an attack
mitigation method [59] and Cilium supports L3-L7 filtering rules [60]. Therefore,
to compare the performance of these two technologies we set up a Kubernetes
container cluster deploying Cilium and Calico and evaluate them in terms of
policy scalability and pod scalability.

3.4.1 Experiment Setup

We have set up the sharing platform as a Kubernetes cluster, utilizing three
VMs running on separate physical machines. The VMs are connected via 10Gbps
Ethernet link and each VM is running Ubuntu 18.04 and Linux kernel 4.15 as
the operating system and has access to one CPU core. The MTU of the network
interfaces is 1500 bytes. One of the VMs is functioning as a master node (VM 1).
The other two VMs are joined to the cluster as worker nodes and run Kubernetes
pods (VM 2 and VM 3). We use Cilium version 1.6 and Calico version 3.5 as
overlay networks in the experiments. Fig. 3.2 depicts the experimental setup.

VM1

Kubernetes
Master Node

Vii2 V3

| Overlay Network |
Worker#1 | | Worker#2

@

Figure 3.2: Experimental setup using container overlays

In our experiments, we use iperf3 as the throughput testing tool [61]. List-
ing. 3.2 shows how the servers and clients started on the respective VMs.

36 Chapter 8. Applicability of Container Overlays

Start iperf3 server
$ iperf3 —server —json —logfile result.json

Start TCP client
$ iperf3 —c <IP pod—x> —b 0 —json —logfile result.json —t
200

Listing 3.2: Iperf3 commands to start a server and connect a client.

3.4.2 Basic Experiments

We define two basic experiments. In the first we measure the TCP throughput
of the network between two worker nodes of the setup in Fig. 3.2 (VM-to-VM
Experiment). In the second experiment, we measure the throughput between
containers on top of the VMs when Calico or Cilium are deployed as the container
network overlay (Container-to-Container Experiment: C-to-C). Figure 3.3 shows
the results of the experiments, both for the VM-to-VM and the C-to-C cases. We
can observe that the VMs reached a TCP throughput of 9.31 Gbit/s. However,
we see that there is a throughput loss when using containers. Cilium only reaches
20.9% TCP throughput of what the VMs reached. Calico does better with 26.7%.

10

Throughput Gbit/s

VM-to-VM C-to-C-Calico C-to-C-Cilium

Figure 3.3: The TCP throughput in the experiment setup of Fig. 3.2: from VM
2 to VM 3 (VM-to-VM), from a container on VM 2 to a container on VM 3 using
Calico (C-to-C Calico), and from a container on VM 2 to a container on VM 3
using Cilium (C-to-C Cilium).

We were interested in understanding the substantial throughput degradation
in both Calico and Cilium. We determined that this was related to Linux in-
terrupts; In Linux, sending and receiving packets is partly handled by kernel

3.4. FExperiments 37

interrupts [62]. Linux’s interrupt handler knows two types of interrupts: hard-
ware interrupts and software interrupts. After a packet is sent or received by the
NIC, a hardware interrupt is raised. This hardware interrupt will also cause a
software interrupt. Linux uses softirq as a software interrupt. On the sender side,
softirq is used to free up the resources utilized by the packet after sending the
packet. On the receiver side, after the NIC receives a packet, it is up to softirgs to
move the packet through the network stack and get it to the application socket.
In the case of TCP, softirq plays a role in buffer management when buffering
is required, it also has the task of handling the ACK messages. If the softirq
processes need more time to finish, they are moved to the ksoftirqd thread [62].
Thus when the CPU usage of ksoftirqd increases, it takes more time to send and
receive a packet.

Calico and Cilium use IPIP and VXLAN respectively for encapsulating the
packets and transferring data between containers. Encapsulation and decap-
sulation cause overhead in processing the network packets. On the receiving
side, after decapsulation the packet must start all over again by being processed
through the network stack, introducing more CPU usage of ksoftirqd.

To show the impact of ksoftirqd, we measured the mean CPU usage of ksoftirqd
threads during the execution of an iperf3 measurement between two VMs and two
containers using Calico and Cilium. Fig. 3.4 shows the results. The containers
using Calico and Cilium consume much more CPU via ksoftirqd than the VMs.
This reflects back in the performance degradation we saw in Fig. 3.3. We can
also see a difference between the CPU usage of Calico and Cilium. This is likely
due to the difference between the encapsulation methods. It is explained more in
Sec. 3.4.3.

TCP Client TCP Server

8

35 35
ES B
o 21 o
o =)
© ©
v 251 w 25
S S
o] o}
a. 20 a 20
O [S]
o o
T 154 T 15
= =
8 S
a 104 a 10
~ Y
5 5
0- . s o A e
M Calico Cilium M Calico Cilium

Figure 3.4: The mean CPU usage of ksoftirqd threads during an iperf3 TCP
measurement. This is done between two VMs and between two containers using
Calico and Cilium.

38 Chapter 8. Applicability of Container Overlays

3.4.3 DDM Related Experiments

When the need for transferring more data between organizations in a container-
based DDM increases, more pods are required and consequently, the number
of policies between those pods will increase. To compare Calico and Cilium
performance and evaluate their applicability in DDMs we measure the policy and
pod scalability in our experimental setup.

Policy scalability experiment — We evaluate the network policy scalability by
measuring the throughput of the network when the number of policies increases.
A policy is defined using the generic template introduced in Listing. 3.1. To
create a new policy we change the port number used to filter traffic. The policies
are ordered in such a way that the incoming traffic will match the last policy.
This ensures that all incoming traffic has to traverse the entire policy list before
making a decision.

Fig. 3.5 depicts the result of our experiment measuring the throughput of the
network from a running pod in a worker node to another when the number of
policies goes from zero to 4000 policies. We increase the number of policies in
steps of 100 from zero policy to 1000 policies and in steps of 1000 from 1000
policies to 4000 policies. We run each experiment three times using iperf3 for a
duration each time of 300 seconds. We take the average of the three runs as the
representative throughput.

As the results in Fig. 3.5 show overall both Calico and Cilium perform well

in policy scalability. There is 6% throughput degradation in Calico and 4%
throughput degradation in Cilium.
Pod scalability experiment — The pod scalability will be tested by increasing
the number of pods and measuring the throughput in the network. In every single
experiment carried out in our setup (see Fig. 3.2), we run a certain number of
pods in one VM functioning as a client and the same number of pods in the
other VM functioning as a server. We increase the number of pods in each VM
in steps of 1 from 1 to 10 pods and in steps of 10 from 10 to 40 pods. For
each experiment, we have calculated the total throughput that is achieved in the
network and compared it to the expected throughput. The expected throughput
is the maximum throughput that can be achieved in the network when running
one single client-server stream. We run each experiment three times using iperf3
for a duration each time of 300 seconds and take the average of the three runs as
the representative throughput.

The result of pod scalability is depicted in Fig. 3.6. The throughput achieved
with Calico is higher than the one with Cilium. However, there is throughput
degradation for both Calico and Cilium. Calico has 39% Gbps throughput loss,
and Cilium has 51% drop for 40 pods. We can conclude that both Calico and
Cilium do not scale well with an increasing number of pods.

To explain the difference between Cilium and Calico performance in pod and
policy scalability, we consider two major implementation differences between Cil-

3.4. FExperiments 39

2.5 1 FErEFEFEEey
""""" e e Y e
2.0 1
_ e e g e T, E———————. I
2
a
O 154
5
o
<
=)
3 1.0 1
<
-
0.5
-~ Calico
—[— Cilium
0.0 -— T T T y
0 1000 2000 3000 4000

Number of Policies

Figure 3.5: The mean throughput as a function of the number of network policies
using Calico and Cilium

ium and Calico:

¢ Encapsulation method As seen in Sec. 3.4.2, Calico has always better
throughput than Cilium. This is mainly because of the different encapsula-
tion methods. Calico uses IPIP which imposes less overhead than VXLAN.
In fact, VXLAN will increase the packet size more than IPIP and conse-
quently, because of the limited MTU in the network interface, the packet will
be fragmented. Therefore, the number of packets that should be handled
increases. This increases the CPU usage in the host and creates additional
interrupts in the network interface.

e Policy translation method As is shown in Fig. 3.5, the throughput drop
in Calico is higher than Cilium as we increase the number of policies. The
reason is the difference in the policy translation method and their way of
filtering the packets. Cilium uses BPF program running inside the host
kernel for policy enforcement. It defines the identity of each pod based
on its label and then uses a hash table for storing the policies. However,
Calico will translate the policies to the iptable rules of the host. In Cilium
increasing the number of policies does not significantly affect the filtering
process due to the fact that Cilium checks the policies for every packet with
a hashtable lookup. However, in Calico as the rules are translated to the

40 Chapter 8. Applicability of Container Overlays

21 —_—
-
2.0 4 —
@ D'&‘Iq!} Bt S8
= . Tl
a S~ Sl
O 154 e ~
— T~
g. .\'\
£ TE.
=2 ~—.
3 1.0+ S
—
= .
[—— Calico Expected
0.5 4. — Cilium Expected
-f- Calico
—[— Cilium
0.0 4
0 10 20 30 40

Number of Pods per Node

Figure 3.6: The cumulative throughput as a function of the number of pods

host iptable rules, more rules should be checked by increasing the number
of the policies and this will negatively affect the throughput. Therefore, the
throughput reduction will be more in Calico than in Cilium.

3.5 Related Work

There are multiple studies and projects about setting up a secure sharing plat-
form. For example, iSHARE [63] is an appointment system for identification,
authentication, and authorization to share the logistics data in a safe and con-
trolled fashion. This system can be used by all parties which have activity in the
logistics sector.

DLA4LD project [2] focuses on providing an effective solution that allows orga-
nizations to agree on how data is shared and exchanged along with deploying a
controllable, enforceable, and goal-oriented method. Here we specifically investi-
gate running a container-based data sharing platform utilizing container overlay
network technologies.

Moreover, there are multiple works that investigate container network tech-
nologies and evaluate their performance. For example, in [5] authors presented an
empirical study about different methods of container networks. They conducted
a qualitative comparison of available methods regarding their different levels of
isolation and overhead. Then, they have done lots of experiments for evaluating

3.6. Conclusion 41

the performance of different container networks.

The authors in [64], investigated the possibility of deploying Osmotic Com-
puting environments in order to deploy distributed microservices among Cloud,
Edge and IoT devices. In particular, they deployed two different microservices:
FTP and CoAP inside Docker containers orchestrated by Kubernetes. In order
to find the best overlay solution they performed scalability analysis on four dif-
ferent network overlays: OVN, Calico, Weave, and Flannel. Their results show
the difference between the overlays is not substantial.

Also, [7] represented a performance evaluation of three different container net-
work technologies: Flannel, Docker Swarm, and Calico. Moreover, they presented
a comparison of the configuration setup of each implementation.

[8] proposed a method for specifying IP addresses to the containers utiliz-
ing EVPN and ILA as overlay technologies. In addition, the authors evaluated
Cilium/eBPF performance in network filtering, specifically in multi-tenant envi-
ronments.

All of the above studies have considered different implementations of container
networking and evaluated each of them. However, in this work, we focus on the
applicability of overlays in a DDM and show how a sharing request can be mapped
to a container network and how the sharing policies can be deployed between
containers. We investigate the capability of overlays in providing more security
in the network and compare their performance when the number of policies and
pods increases.

3.6 Conclusion

In this chapter, we presented how a sharing request can be mapped to a container
based network and how the sharing policies in a request could be translated to
the network policies between containers. As the connection between containers
and enforcing the network policies happens by container overlays, we studied the
implementation method of four different available overlay technologies: Flannel,
Weave, Cilium, and Calico. We first compared these overlays from security as-
pects. With the focus on the capability to support the network policies and the
features they can have for providing better security we chose Calico and Cilium.
We then compared them in terms of the throughput of the network with in-
creasing the number of policies (policy scalability) and the number of pods (pod
scalability) in a Kubernetes cluster.

We established that both Cilium and Calico scale well in policy scalability
as a function of the number of policies in the network. In fact, the number of
policies applied to a cluster has little effect on the throughput, especially when
Cilium is used. However, there is a substantial throughput degradation in both
technologies in pod scalability. This introduces a challenge for deploying these
technologies when there is a requirement for running a large number of pods. It

42 Chapter 8. Applicability of Container Overlays

depends on the application of the data sharing platform whether the throughput
losses are acceptable. Overall, Calico had better throughput in all experiments.
Therefore, for our next experiments we choose Calico as the overlay technology.

In Chapter 4, we define different connectivity types for different types of shar-
ing requests in a DDM. We then use the available container overlay technologies
to implement the network according to these connectivity types. We compare the
isolation level of each implementation and perform experiments to measure their
performance.

Chapter 4

Evaluation of Container Overlays for
Secure Data Sharing

In this chapter, we define possible container connectivity methods in a container-
based DDM by deploying available overlay technologies. Our focus is on improv-
ing security by controlling inter-container connectivity and providing isolation
between sharing requests of a DDM. To this end, we implement three differ-
ent overlay setups according to container connectivity types and study how they
provide isolation between containers. We investigate which type of attacks are
possible in each method. We also measure the time required to complete a shar-
ing request in each method. The results show that providing higher isolation
between containers can lead to a longer time for completing a sharing request.
This chapter is related to RQ2.2: Can different configurations of available con-
tainer overlays meet the requirements of a DDM?

This chapter is based on:

Shakeri, S., Veen, L., and Grosso, P. “Evaluation of Container
Overlays for Secure Data Sharing”. In 2020 IEEE 45th LCN Symposium
on Emerging Topics in Networking (LCN Symposium), pp. 99-108.

43

44 Chapter 4. FEvaluation of Container Overlays for Secure Data Sharing

4.1 Introduction

Data exchange entails copying data (sub)sets and algorithms from one system to
another. In a container-based DDM, each sharing request consists of a number of
containers (depending on the number of participating parties) that are connected
together for transferring data or algorithms. However, due to a lack of isolation
in container-based setups, in a sharing environment constructed from containers,
data confidentiality is at risk. Providing more isolation in a container-based
network will decrease the probability of specific kinds of attacks, and this will
improve network security [6].

Two types of isolation can be provided in a container-based network: 1) isola-
tion between containers and their host and 2) isolation between containers them-
selves [6]. Multiple studies have focused on bringing isolation between containers
and their host suggesting hardware and software solutions by utilizing Linux ker-
nel security modules [65-67]. However, an in-depth study for providing isolation
between containers themselves is missing. This is of prime importance for im-
proving security, especially in a data sharing platform. In fact, lack of isolation
between containers of distinct sharing requests may lead to different kinds of
attacks between containers like ARP spoofing or MAC flooding that will affect
the shared data confidentiality [68,69]. In this chapter, we define three different
container connectivity types in a container-based DDM with the goal of improv-
ing security by controlling inter-container connectivity and providing isolation
between sharing requests.

We then implement three different overlay setup methods according to con-
tainer connectivity types using Kubernetes, Calico, and Docker Swarm technolo-
gies [22,41,70]. We study how each implementation provides isolation to improve
security between containers of sharing requests. We also take the performance of
each overlay setup into consideration by measuring the required time to complete
a sharing request in each method.

More specifically, the main contributions of this chapter are:

e Presenting a container-based architecture for data sharing infrastructure
that can translate high-level DDM policies to respective network configura-
tions and run data sharing requests in practice.

e Defining three types of container connectivity with the goal of improving
security through providing higher isolation between containers of sharing
requests. The connectivity types are then implemented by container over-
lays and are called Overlay per DDM, Overlay per request, and Overlay per

group.

e Studying the security aspects of the proposed methods with respect to how
they are secure against inter-container types of attacks. In addition, we

4.2. Container-based DDM architecture 45

present a performance evaluation regarding the time taken to complete a
sharing request.

4.2 Container-based DDM architecture

DDM sharing policies describe agreements between parties. Each party in a DDM
can define a desired service from the DDM as a sharing request. A sharing
request can be defined in the same format as DDM sharing policies including
participating parties and the requested flow of data or algorithm (see Sec. 2.2).
We define two types of sharing requests based on the number of parties that are
involved in that sharing request.

e Type A for requests that two organizations are involved.

e Type B for requests that three organizations are involved. In this case, two
organizations share their data or algorithm with a third organization which
is called a trusted third party (TTP).

The organization that has control over the connectivity between containers of a
request is defined as the owner of the request.

Fig. 4.1 shows the proposed architecture for constructing a container-based
DDM. A sharing request is executed by creating requests’ containers and setting
up the connection between them by means of overlay setup considering DDM
sharing policies of that request. Executing a sharing request is handled in three
main steps, and each step contains different modules in the architecture.

Step1: Policy check

Sharing Requests

DDM Policies

DDM Policy
Matching
Module

- - - - - - —— — — - _“____"_'_____"_'______'_'i_____—_"_'___—_"_'___—__'_l e — ——
Request Handler I
v

r‘ Request Translator }—l
_]
L = 5 L
B)
Req1: N':;‘:;;k Reql: <
Container oy Network @
setup o traffic flow g
°

Step2: Network setup I

A I -
1
B o e Rl i = IS
Step3: Data transfer | Request Executor ‘

Figure 4.1: Container-based DDM architecture

46

Chapter 4. FEvaluation of Container Overlays for Secure Data Sharing

e Stepl - Policy check that verifies if the request is matched with available
policies in DDM. It is handled by DDM Policy Matching Module in the
architecture.

e Step2 - Network setup that builds the elements in the network for exe-
cuting a sharing request. It is handled by Request Handler, Overlay Setup,
and Request Translator modules.

e Step3 - Data transfer that transfers data between containers of the shar-
ing request according to the traffic flow and is done by the request executor
module in the architecture.

The functionality of each module is explained in the following:

— DDM Policy Matching Module: A sharing request needs to be
matched with one of the pre-established DDM policies that are de-
scribed by Open Digital Rights Language (ODRL) [71] in a DDM as
explained in Chapter 2. When a sharing request comes in, the pol-
icy matching module searches for a policy that is matched with the
requested sharing scenario. If a match is found, the request will be au-
thorized to be executed on the infrastructure and sent to the request
handler. Otherwise, the request will be rejected at this level.

— Request Handler: Request handler is responsible for orchestrating
the execution of necessary modules for running sharing requests, i.e.,
overlay setup and request translator.

— Overlay Setup: In the proposed container-based DDM, overlays pro-
vide the connection between containers. Different types of connectiv-
ity between containers can be implemented by means of overlays that
lead to different levels of isolation between sharing requests. In this
work, we propose three overlay setups in a DDM that are described in
Sec. 4.4.

— Request Translator: For implementing a DDM in practice, the high-
level described DDM policies and sharing requests should be translated
to the network configurations. Therefore, after receiving a sharing re-
quest, its corresponding containers, network policies, and traffic
flow will be generated in the Request translator. Fig. 4.2 shows an
example of the traffic flow of a sharing request between three organi-
zations A, B, and C.

— Request Executor: In this module, the overlay is set up, containers
and their corresponding policies are created on the overlay, and the
request is executed by sending traffic between containers based on the

4.8. Container Connectivity Types 47

0‘
® e

Figure 4.2: A sharing request’s traffic flow.

requested traffic flow. As an example, for the request shown in Fig. 4.2,
three containers will be created for this request, the network policies
will be deployed to allow required data transfer, and then data will
be transferred between these containers according to the steps of the
traffic flow.

4.3 Container Connectivity Types

With the goal of improving security in a DDM by isolating sharing requests’
containers, different possible container connectivity types in a DDM have to be
investigated. As a matter of fact, with less connectivity comes a higher level of
isolation and consequently, the security will be improved [6].

In this section, we define three different container connectivity types in a
DDM based on the level of accessibility of a container to other containers. We
do this by considering that a container’s network accessibility depends on overlay
network configuration.

DDM connectivity (Fig. 4.3a): In this type of connectivity, all of the
containers are allocated to one overlay network and therefore, all of them are
connected together. In this type, if for example, a container of a request of
organization B is compromised (the white circle in the center) all of the other
containers in the DDM are at risk. This type has the highest attack surface and
the lowest level of isolation between containers. For running sharing requests of
this type just one overlay needs to be set up, and all the containers are joined to
this overlay.

Request connectivity (Fig. 4.3b): In this type, there is one overlay for
each single sharing request. Therefore, only the containers related to the same
request are in the same overlay. As is shown in Fig. 4.3b, the connection between
containers is automatically limited by just being in the same overlay. In this
connectivity type, if a container of a sharing request is compromised, only the
container of that sharing request will be affected. Therefore, this method has the
highest level of isolation. However, in this type, one overlay has to be set up for
each single sharing request to connect its containers together. This will increase
the network setup time and negatively affects the time of completing a sharing
request. By increasing the number of sharing requests, this item can disrupt the

48 Chapter 4. FEvaluation of Container Overlays for Secure Data Sharing

nectivity type:
all of the con-

tainers are | (b) Request Connectivity type: |(c) Group Connectivity type:
connected to | containers of the same request |containers of the same group
each other. are connected to each other. are connected to each other.

Figure 4.3: Three container connectivity types in a DDM

network availability that in delay-sensitive requests is not negligible.

Group connectivity (Fig. 4.3¢): As an intermediate type between the two
previous ones, we define the Group connectivity type. In this type, the requests
and their respective containers will be assigned to different groups. Containers
related to the same group will be in the same overlay network. For grouping the
requests, we define two characteristics:

e The set of participating organizations in the DDM: this is the list of organi-
zations in a DDM that are involved in sharing transactions in a DDM. For
example in a DDM with three participating organizations (Org. A, Org.
B, Org. C) and two types of requests (Type A, Type B), there will be two
lists of participating organizations; (Org. A, Org. B) for sharing requests
of Type A and (Org. A, Org. B, Org. C) for sharing requests of Type B.

e The owner of the request: this is the organization that has control over the
connectivity of containers of a request.

All sharing requests can be expressed with the same formalism, as Group ((Set of
participating parties), owner of the request). For example Group ((Org. A,Org.
B),Org. A) represents two organizations A, B are involved in data or algorithm
exchanges and organization A is the owner of the request. Therefore, in a DDM
with two organizations A, B, and a TTP (organization C), four different groups
are defined. As is shown in Fig. 4.3c, the containers of requests of organization
A are isolated from the containers of requests of organization B. In this case,
if a container is compromised (the white circle) only the containers in the same
group will be affected, which means that the attack surface is less than the DDM
connectivity type. In addition, the number of overlay networks that have to be
set up matches the number of groups.

4.4. Owerlay Setup 49

[cov]

reoN
of-| ot c2-| c2- o3[o l |
o rece| et o rea2| reqt req2| reqt roor

Virtual machine 2 || Virtual machine 3 ‘ ‘ Virtual machine 1 | | Virtual machine 2 ‘ ‘ Virtual machine ‘

‘ Virtual machine 1 |

‘ Physical machine A | ‘ Physical machine B || Physical machine C ‘ Physical maching A ‘ Physical machine B ‘ ‘ Physical machine C ‘

(a) Overlay per DDM network setup, (b) Overlay per Request network setup,
one cluster consisting of three virtual one cluster consisting of three virtual
machines machines

Chistergup 2 Cluster-group 3
- Cluster -group 4
Overlay 2 Oueay§ 9oy

Overlay 4

Cluster-group 1
H
I
]
e D

‘ Physical machine A

‘ Physical machine B H Physical machine C ‘

(c) Overlay per Group network setup,
four clusters consisting of one or two
virtual machines

Figure 4.4: Overlay network setup in a DDM

4.4 Overlay Setup

In this section, we present the method of setting up DDMs according to con-
tainer connectivity types by means of container overlays and explain the policy
enforcement method in each setup. In the following, we focus on DDMs with
three participating organizations, but this is just to show the overall operations
of the system and that the insights are clearly applicable to other topologies. In
all setups, for constructing a DDM with organizations A, B, and C, we consider
three physical machines acting as the organization’s node in the DDM. Containers
of each organization will be created on its own node.

Method 1: Overlay per DDM (Fig. 4.4a)

This method constructs the DDM according to the DDM connectivity type.
In this method, all containers related to different sharing requests will be running
inside one overlay network for the whole DDM. For implementing the configura-
tion, we created one Kubernetes [22] cluster and connected all of the containers in
the cluster by a Calico overlay network [41]. We selected Calico considering the
results of Chapter 3. In addition, it is deployable in most cloud environments that

50 Chapter 4. FEvaluation of Container Overlays for Secure Data Sharing

is integrated with Kubernetes. A Calico node contains two processes: Felix and
Bird. Felix programs host route tables and Bird is responsible for route sharing
among nodes [72]. After installing Calico, it uses IP-in-IP for encapsulating con-
tainer’s packets, which are then routed by the host through a specific interface.
With this implementation, all containers are connected to each other inside one
overlay network.

Policy enforcement method: In this method, DDM policies are enforced
by Calico network policy rules. Calico filters the traffic between containers by
generating iptable rules in the host machine of containers. Considering data
flow in Fig. 4.2 as an example, the policy rules allow any traffic according to
request traffic flow (source and destination) and forbid any traffic from any other
container.

Method 2: Overlay per Request (Fig. 4.4b)

In this method, all of the connections are based on the Request connectivity
type. We used Docker Swarm cluster technology for implementing this method
as it is the available technology for running multiple overlays between the same
nodes in one cluster [70,73]. We first created a specific overlay for each request
and then created related containers inside that overlay network. Each overlay
has one docker bridge and containers of the same request are connected to each
other through this bridge. Accordingly, containers of different requests are sepa-
rated from each other. Fig. 4.4b shows that as an example four different overlay
networks have been created for running four sharing requests in DDM. Docker
Swarm uses VXLAN for building overlay networks.

Policy enforcement method: DDM policies are enforced by separating
sharing requests via one overlay per request. In this method, defining firewalling
rules between containers is not possible and the connection should be confined by
overlays. Unlike in the overlay per DDM method, where containers are connected
to each other in the network layer but traffic is controlled by filtering rules, in
this method, there is no network connectivity between containers of two different
requests.

Method 3: Overlay per Group (Fig. 4.4c)

This method implements the Group connectivity type. A separate overlay was
created for each group and the traffic of containers of each group has to be filtered
by network filtering rules. We could not use Swarm as it can not implement the
filtering rules between containers of a group. Therefore, we used Kubernetes.
Considering the four groups that are needed for constructing a DDM with two
participating organizations and one other organization as a TTP (Trusted Third
Party), we need four overlay networks. As we can just create one overlay in

each Kubernetes cluster, we created four Kubernetes clusters, one for each group.

4.5. Security 51

Depending on the participating organizations, two or three virtual machines are
involved in each cluster. We used Calico as overlay technology in each cluster. As
a result, all of the containers related to the same group were connected via one
overlay network, but there was no connection between the containers in different
groups.

Policy enforcement method: Policy enforcement in this method was im-
plemented using Calico network policies. We defined the Calico network policy
based on the permitted traffic flow of a request for containers inside a group.

4.5 Security

For providing security, three main aspects of security should be considered in a
DDM:

1. Availability: The resources required to run authorized sharing transac-
tions should be readily available to organizations. This means that during
the processing of multiple sharing requests on different hosts, all relevant
containers must be accessible for legitimate traffic transmission and inac-
cessible for illegitimate transactions.

2. Confidentiality: Unauthorized access to data must be strictly forbidden.
If a container is compromised, it may gain unauthorized access to data
related to another request.

3. Integrity: Compromised containers may gain access to data related to
other organizations, allowing the attacker to change the data and thereby
compromising the integrity of the data.

As is explained in Chapter 1, authors in [6] provide a clear classification of all
kinds of attacks that can happen in a container-based platform: application to
container, host to container, container to host, and container to container. Given
our focus in this chapter, we consider the container-to-container attack types.

In Container to container kind of attacks, a compromised container at-
tacks containers of other sharing requests. Other containers can be in the same
or in a different host. We classify the container to container type of attacks into
three main attack scenarios:

ARP Spoofing: A compromised container may gain access to confidential
data via an ARP (Address Resolution Protocol) spoofing attack on other requests’
containers. Method 1 is secure against this kind of attack because Calico makes
the connection between containers on layer three and therefore, ARP spoofing
can not happen [74]. This is also true about method 3, as it also uses Calico. In
method 2 as the containers are connected to different bridges and they are not
in the same local area network, ARP spoofing can not happen between them.
Therefore, these three methods are all secure against ARP Spoofing.

52 Chapter 4. FEvaluation of Container Overlays for Secure Data Sharing

Table 4.1: Inter-container attack analysis of method 1(Overlay per DDM), method
2(Overlay per request), and method 3(Overlay per group)

Attack Type Attack Scenario T Security 1

| Method! | Method2 | Methods |

ARP Spoofing The i iner can have ized access to data sets which are related to other requests | migh | High | High |

Malware Spread A malicious container may spread a malware across container that is connected to | tow | migh | Medium |

L3 DoS Attack A compromised container might flood the other container related to another request at layer 3 | vow | High | Medium |

Application DoS Attack | A compromised container might flood the other container related to another request at the application layer | migh | righ | migh |

Malware Spread: A malicious container may spread malware across mul-
tiple containers that are connected to it. This is container-to-container traffic
that may not be detected by network policies because there is no inspection of
the content of transferred data among containers. In this type of attack, all of
the containers that are connected to the malicious container are at risk and the
confidentiality and integrity of DDM are affected. Comparing the three different
methods, as there is no network connection between every two requests’ contain-
ers in method 2, it can provide more security than method 1. As in method 3
containers are distributed in groups, its security against this kind of attack is
higher than method 1 and lower than method 2.

Denial of Service (DoS) Attacks: In DoS attacks in a container-based in-
frastructure, a compromised container can send a huge amount of traffic to other
containers, interrupt their service, and affect the availability of DDM. We classify
possible DoS attacks into two categories: L3 DoS attacks” and ” Application
layer DoS attacks”. In L3 DoS attacks, for example, a malicious container over-
whelms the other container by sending a large number of echo requests to affect
its functionality. The isolation level between containers of different requests plays
a major role in mitigating this kind of attack. As there is no network connection
between different requests’ containers in method 2, it is the most secure method
compared to the two other methods. However, in method 1 containers are all
connected together and it does not have a mechanism for mitigating this kind
of attack. Method 3 is more secure than method 1. It takes advantage of the
distribution of requests between different overlay groups and this will decrease
the number of requests that may be affected by this kind of attack.

In the application layer DoS attacks, due to the fact that in the current setup of
all methods no session can be established between containers of different requests,
belonging to different transactions, all of the methods are secure.

Table 4.1 summarizes the security analysis of proposed methods. It shows the
degree of security of each method. We defined high, medium, and low as quali-
tative metrics where high means more protection against the attack considered.
Method 2 provides the most security against all kinds of attacks because setting
up an overlay network for every single request increases inter-container isolation
between requests’ containers.

4.6. Performance analysis 53

4.6 Performance analysis

In this section, we analyze the performance of the proposed methods by measuring
the time taken to complete a sharing request in each method.

4.6.1 Experiment settings

Hardware specification: Our experiments were performed on three servers,
connected by 10 Gigabit Ethernet. Each server is equipped with a dual 10-core
Intel Xeon E5-2690 2.9GHz processor and 8GB memory.

Software specification: We used Ubuntu 18.04 and Linux kernel 4.15.0 as
the host OS, Docker Community Edition 18.09, Kubernetes 1.18 for managing
containers, and Calico version 3.8 to implement the overlay networks.

We performed a number of experiments aimed at assessing the times required
to complete a request in the proposed methods. In each experiment, we first
selected the type of requests, either Type A or Type B based on the pattern shown
in Fig. 2.1. We then, simultaneously, submitted a group of requests consisting of
a mix of sharing scenarios from the chosen type. The following group sizes are
considered:

group_size € {10, 20, 30,40, 50}

As discussed in Sec. 4.2, completing the execution of sharing requests includes
three steps: policy check, network setup, and data transfer. As in this chapter,
the focus is on network overlay setup, in our experiments, we consider two steps
of network setup and data transfer and skip the policy check step. To make
a comparison between different connectivity methods, we measured the average
network setup time, the average transfer time, and finally the average total time
for completing a request. We repeated every experiment three times to ensure the
consistency of the results. For every repeat, the mean of the quantity of interest
was calculated across the group of requests. In the plots, the mean and standard
deviation of these means is shown.

Setting up the network in methods 1 and 3 involves creating the request’s
containers and deploying the network policies between them. In method 2, an
overlay is established for each request and the request’s containers are then al-
located to the overlay. In all methods, the shared data transfer is executed by
sending 1 GByte data for each traffic flow of the request using iperf3 [61].

4.6.2 Experiment results

e Setup time: Fig. 4.5 shows the average setup time of a request in each
connectivity method. Setup time increases in all three methods with the
increasing number of requests. Method 2 has the largest setup time and
method 3 has the smallest. In our experimental setup, in method 3 two

54 Chapter 4. FEvaluation of Container Overlays for Secure Data Sharing

—4— Method 1 (Overlay per DDM) +¢:- Method 2 (Overlay per request) Method 3 (Overlay per Group)

Type A Type B
200 ye 200 ye

network setup time per request (second)

10 20

a0 50 10 2o

ER) ES) 4o
Number of Requests Number of Requests

Figure 4.5: Network setup time as a function of the number of requests for the
three methods. Setting up an overlay network (green) takes more time than
configuring traffic filters (blue) within an existing overlay network. Using one
overlay per group is the fastest, but most of the apparent difference is due to
having more resources available (see main text).

clusters are used and half of the group size is running in each cluster.
Therefore, the setup time of method 3 should be compared to the setup
time of method 1 at half of the group size. For example, the setup time of
40 requests in method 3 is almost equal to the setup time of 20 requests in
method 1.

e Transfer time: Fig. 4.6 shows the average transfer time. Transfer time in
Type B is larger than in Type A for all methods. That is because of the
difference between the number of transactions in requests of Type A (1.43
on average) and requests of Type B (3). As for the setup time, method 3
is faster than method 1, however, it has more resources available.

—4— Method 1 (Overlay per DDM) -+¢:- Method 2 (Overlay per request) Method 3 (Overlay per Group)

Type A Type B
350 ye 350 ye

200 1

transfer time per request (second)

a0 B 10 20

ER) 50 4o
Number of Requests Number of Requests

Figure 4.6: Transfer time as a function of the number of requests in three methods.
A separate overlay network per request appears to be much faster than using a
single network but is mostly a result of the requests being scheduled differently.
See Fig. 4.7 and the text.

These performance results differ between requests of Type A and Type B.
Also, for Type A and method 2, transfer time decreases with increasing

4.6. Performance analysis

goupld

qoupld gt
—
[
- I
—
4 I (0 E—
g g —
H I H ——
Es B —
H | i —
H s —
I _ s I
€ € —
|| o -
| I =
25| —
| —
g
w
S hbaE DB DS D b & 8 m) I EEEEEE
Tine Tine Tine Tine
quupld gt g gous)
—
| | y——————
75
I
—
| I —
3 I
¢ | I ——
B Ens
3 I
o 100 I
i | I v —
H -4 I
g |) —
T | ——
50{
I
B I
* — =
0 [} [} =

R EEEER]] P
Time Time

B

A 0 6 B om m W
Time. Time. Time

Figure 4.7: Transfer time of each request for Method 2 and different group sizes,
for Type A (top row) and Type B (bottom row). The requests are submitted at
time zero. Each request’s bar starts when the setup step of the request is done
and the transfer step starts and ends when the transfer finishes. For large group
sizes (rightmost plots), there is on average less overlap between the requests,
causing them to be completed more quickly. The total time required to execute
all requests is still larger for larger groups of requests. The effect is much stronger
for Type A (top row) than for Type B (bottom row) requests.

group size, which is unexpected. For Type B, a decrease relative to method
1 is also visible for larger group sizes.

To investigate this further, we plot the exact transfer time of each individual
request for different group sizes for both type A and type B of Method
2 (Fig. 4.7). When increasing the number of requests and having more
containers to set up at the same time, the average setup time increases, as
was shown in Fig. 4.5. As the group size becomes larger more requests are
running in parallel, which increases resource contention and slows down the

requests.

For Type A (Fig. 4.7, top row), less data is transferred and the transfer
step is shorter. As a result, the cluster spends more time setting up and
shutting down the networks. Therefore, the requests are scattered in time,
which leads to fewer transfers running in parallel and a lower average trans-
fer time. This effect becomes larger for larger group sizes and it explains
the decrease in transfer time for Type A groups over 30.

56 Chapter 4. FEvaluation of Container Overlays for Secure Data Sharing

o Total time: Fig. 4.8 shows the average total time of completing a request.
The overall time for Type B is more than Type A in all methods. For Type
A, the average total time in method 2 is less than method 1, whereas for
Type B method 1 is faster. In both types of requests method 3 takes less
time, and roughly half of the time of method 1, that is due to the fact that
it has more resources.

—4— Method 1 (Overlay per DDM) -+¢:- Method 2 (Overlay per request) Method 3 (Overlay per Group)

Type A Type B

100 4

total time per request (second)

B 10 2

ER) a 50 4
Number of Requests Number of Requests

Figure 4.8: Total time to complete a request as a function of the number of
requests in three methods. For Type A requests, an overlay per request was
measured to be faster, due mainly to the way the requests were scheduled here.
The results for Type B are more representative and show that an overlay per
request is slower than using a single overlay network for the whole DDM. Overlay
per group is on par with overlay per DDM when resource differences are taken
into account.

4.7 Discussion

In this section, we will discuss in more detail the implications of our findings.
We are particularly interested in how the three methods compare with respect to
security and performance, so an optimal setup can be chosen when implementing
a DDM. For Type A, in our experiment method 2 was faster than the other
methods. However, our results indicate that this may be partially caused by the
Swarm scheduler, and more research is needed into the scheduling behaviour of
Kubernetes and Swarm to see how this affects performance for this use case. For
Type B, method 2 is slightly slower than the others, and this can be considered
as a more general result.

While method 2 is the slowest method, it is also the most secure one against
the mentioned types of attacks. Method 1 is the fastest but the least secure,
and method 3 is in between from both perspectives. In general, the performance
difference between methods is small however, in most cases method 2 will be
preferred.

The presented experiments show the performance of the proposed methods
(time to complete a request) when the system is under pressure. In a real-world

4.8. Related Work 57

system, loads will vary with time. In these experiments, all of the requests ar-
rived at the same time, which can be considered a worst-case scenario. However,
the results are consistent across different load levels, which suggests that the
conclusions will hold for lower load levels as well.

4.8 Related Work

We expect the adoption of DDMs to increase in the coming years. The research
and efforts to arrive at working platforms are ongoing. Several initiatives tackle
the problem of establishing contracts between parties. For example, the Dutch
logistics sector has defined iSHARE [63]. iSHARE is a uniform set of agreements
for identification, authentication, and authorization to share logistics data in a
safe and controlled fashion. This system can be used by all parties which have
activity in the logistics sector. However, efforts like this do not define, as we do, an
effective architecture for deploying the contracts and agreements in infrastructure
to make a DDM work in practice by using container overlay networks.

In regard to the evaluation of overlay technologies’ performance, there is a
number of previous studies that have provided us with guidelines. The authors
in [64] investigated the possibility of deploying Osmotic Computing environments
in order to deploy distributed microservices among Cloud, Edge, and IoT devices.
In particular, they deployed two different microservices: FTP and CoAP inside
Docker containers orchestrated by Kubernetes. In order to find the best overlay
solution, they performed scalability analysis on four different network overlays:
OVN [75], Calico, Weave [43], and Flannel [44]. [8] proposes a solution for con-
necting containers utilizing EVPN and ILA as overlay technologies. They study
the performance of Cilium/eBPF in network filtering. Authors in [76], evaluate
the scalability of Calico and Cilium [42] as two popular overlay technologies by
measuring the network throughput with increasing the number of containers and
the number of deployed network policies between containers. Finally, the work
in [5] presents a performance analysis of different methods of implementing the
network connectivity between containers including overlays. In our work, we do
consider these efforts and we move further to identify the better-suited overlay
setups depending on relation to the data sharing request characteristics.

Different methods have been studied for providing security in Docker con-
tainers. For example, [68] and [77] utilize Linux Kernel security modules like
Apparmor [65] and SELinux [66] to enhance the access control mechanism of
the containers and provide more protection of the host against a malicious con-
tainer. [67] studies a virtualized trusted platform (vIPM) in a container-based
architecture for protecting containers from a malicious host. The main focus of
these works is on limiting the container’s accessibility to the resources of the host
but not on the connection between containers in the network layer.

Authors in [69] discuss important security issues of Docker containers and

58 Chapter 4. FEvaluation of Container Overlays for Secure Data Sharing

proposed solutions. They also propose an algorithm to tackle Dos attack issues
by limiting container resources. [78] performs a comprehensive study about the
security of Docker containers and denotes the possible vulnerabilities in Docker
containers and the available solutions in literature works. It also specifically inves-
tigates the inter-container attacks and suggests the container network separation
method as a solution, however, no practical solution is presented. In this chapter,
we focus on providing network layer isolation between containers by means of
overlay setups specifically for data sharing services in a DDM.

4.9 Conclusion

In this chapter, we proposed an architecture for implementing sharing requests
and deploying high-level DDM policies in container-based network infrastructure.

We defined three different connectivity types that are different in isolation
they provide between containers of a sharing request. We implemented these
connectivity types by setting up the overlay networks between containers us-
ing Kubernetes and Docker Swarm. The implementations are called overlay per
DDM, overlay per group, and overlay per request. To evaluate each method, we
studied how they are secure against inter-container types of attacks. This work
reasoned that the number of attacks that can happen in ’Overlay per request’
method is less than the other methods as it provides better isolation between re-
quests. However, to further validate the security of the different methods against
potential attacks, future work could involve conducting actual attack experiments
on the methods and measuring their effectiveness against various types of attacks.
This will provide a more comprehensive assessment of the security of each method.

We also compared the time required to complete a sharing request between
the methods. The three methods performed similarly, although the ” Overlay per
request” method is slower than the others in larger types of requests.

In Chapter 5, we focus on building a more complete DDM involving multiple
sites and applications running across the DDM building a multi-domain over-
lay network. In addition, we investigate how dynamic programmable network
architecture can be used to build a more secure system.

Chapter 5

Multi-domain Network Infrastructure
based on P4 Programmable Devices for
Digital Data Marketplaces

In Chapters 3 and 4 we presented how to build a single domain data sharing plat-
form based on containers. In this chapter, we extend the model to a multi-domain
DDM. In a multi-domain DDM the participating organizations have control over
the enforcement of the sharing policies between the containers within their infras-
tructure, which allows them to control the accessibility of data and algorithms
locally. In the proposed architecture in this chapter, the containers within a do-
main are connected to each other through a virtual switch and the configuration
of each switch is managed by a domain administrator. We use P4 [26] for pro-
gramming the switch and setting up the connections. The proposed method can
handle the communication of multiple domains and guarantee that the operation
of transactions is based on pre-defined policies. We assign a connection ID to
every asset (algorithm and data) within a domain and the cooperation between
domains is established based on these IDs. We study the security implications of
the architecture considering P4 as the underlying network technology. In addi-
tion, we measure the setup time and discuss the overhead of using P4 switches.
This chapter is related to RQ3: How to build a containerized multi-domain DDM
on a programmable network infrastructure to enforce sharing policies?

This chapter is based on:

Shakeri, S., Veen, L. and Grosso, P. ”Multi-domain network infrastruc-
ture based on P4 programmable devices for Digital Data Marketplaces”.
Cluster Comput (2022). https://doi.org/10.1007/s10586-021-03501-2.

99

60 Chapter 5. Multi-domain Network Infrastructure based on P

5.1 Introduction

A DDM needs to provide means for data exchange and/or processing while enforc-
ing sharing policies in its infrastructure. In some cases, legal restrictions keep data
from being exchanged at all, for example when GDPR rules apply to data. Still,
even under these constraints, it is possible to combine data from different sources
through techniques like distributed machine learning, secure multiparty compu-
tation, and homomorphic encryption. Initial implementations of such algorithms
are becoming available in systems like Vantage6 [79], PySyft [80], MPyC [81], and
IBM’s Federated Learning Library [82]. DDM algorithms are communication in-
tensive, and in order for a DDM to support them efficiently, processes running
on different independent systems will need to be able to exchange data directly
while still maintaining the security level specified by the policies governing the
application. In this chapter, we refer to the shared algorithms and data as assets.

A DDM is a multi-domain environment. For preserving privacy and imple-
menting sharing policies all the connections related to each participating party,
i.e, the domain, have to be managed by its own domain administrator. In Chap-
ters 3 and 4, we showed how we could build a single-domain data sharing platform
by using containers. We used both Kubernetes [22] and Docker Swarm [70] as
container network orchestrators for creating network overlays and setting up fil-
tering rules between containers. However, these methods are not applicable in a
multi-domain environment: in all these frameworks one node should be selected
as a master node so it has access to all of the containers in the network and can
manage their connections. In a multi-domain scenario, each participating party
should be able to manage its own domain connectivity independently from other
domains participating in the sharing platform. Multiple masters need to work to-
gether while maintaining the sharing policies. Building a container-based DDM
network infrastructure that can be integrated with the per-domain orchestrators
is still an open challenge, which we study in this chapter.

For building a multi-domain DDM we adopt P4 [26] as the network data
plane technology. We study in deploying P4 programmable switches satisfies our
requirements, i.e., per domain orchestration and managing container connections.
All the connections between containers will be programmed in such switches and
can be controlled by the administrator. In addition, the connections can be re-
configured when needed which leads to dynamic management of DDM containers
connections and sharing policies.

We conduct a security evaluation showing that our P4-based network setup
is secure against most types of attacks. Moreover, we introduce a model for
measuring the network setup time in our system, which we demonstrate to follow
the real measurements and can be used for further design or topology decision
makings. In addition, we measure the network setup time of our proposed method
and show the low overhead of using the P4 switch.

5.2. Containerized P4-based DDM 61

The main contributions of this chapter are:

e Presenting an architecture for a multi-domain container-based DDM with

P4

e Describing the required steps for executing a sharing request in the proposed
architecture

e Studying the security aspects of the proposed framework

e Modeling and evaluating the setup time of the request execution

5.2 Containerized P4-based DDM

For constructing a container-based DDM we follow three main goals:

e Constructing a multi-domain environment in which each domain can
manage its related configuration. As a matter of fact, DDM consists of
different, independently managed, and configured domains, with data shar-
ing to be done across the domains.

e Improving security by providing higher ¢solation between containers, con-
trolling their network connections, and providing more advanced filtering
possibilities.

e Providing programmability in the network. Because of the dynamic be-
havior of a network of containers, it is important to provide the ability to
program and change the network configurations when needed. Especially
in a DDM where sharing policies may change at any moment.

In overlay technologies like Calico or Cilium [41,42] filtering rules can be set
between containers, so they can provide the required isolation. However, by using
Calico or Cilium, all the hosts are under the control of one master node that makes
a cluster. Therefore, these methods are single-domain and are not applicable in
our case.

The simplest way of connecting containers in a network that can be used
in a multi-domain environment is using the Docker bridge in each domain [83].
However, in this method, all the containers are connected to the same bridge and
it is not possible to set the filtering rules between them in the host. Therefore,
this method cannot provide the required network isolation between containers.

As another method, a user-defined network in which a separate bridge is
defined for each group of containers can be deployed. In this case, the containers
connected to the network bridges are separated from each other [84]. It can
provide better isolation compared to the single Docker bridge method, however,
still, the containers that are connected to the same bridge are connected to each

62 Chapter 5. Multi-domain Network Infrastructure based on P

other and their traffic cannot be filtered so the containers are not fully isolated.
As a result, we selected programming the switch to handle all the mentioned
requirements in one setup.

Given the inflexibility of OpenFlow switches due to the limitations of the
OpenFlow protocol and their significant overhead on the switch controller, we
have opted to use P4 [25]. P4 offers a more flexible and programmable approach,
allowing us to address these issues effectively. By using P4, we can offload dy-
namic functions from the switch controller to the data plane, reducing the burden
on the controller [26].

In our architecture, in each domain, the P4 switch is in charge of routing the
traffic based on match-action rules independently from other domains so it can
be deployed in a multi-domain environment. In addition, there is no connectivity
between containers before setting up the rules in the switch. Therefore, every
single container’s connectivity is controlled by the switch. This provides more
isolation between containers compared to the available methods. Finally, any
connection and filtering rule between containers can be programmed dynamically.

In addition to the aforementioned capabilities, P4 can provide more features
to the DDM:

e As the packet’s header can be parsed in the P4 switch, every single field of
the header at different layers can be checked against matching rules. This
provides high flexibility in deploying the filtering rules.

e As containers are individually connected to the P4 switch interfaces, differ-
ent kinds of telemetry information, like the amount of traffic that is being
transferred via a specific interface, or the time of entering a packet to that
interface can be tracked in P4 [85,86]. This will help manage the traffic and
prevent different kinds of attacks [87-89] to improve security.

e The P4 program can be run on SmartNICs [90,91]. Therefore, the packet
processing can be offloaded to the hardware, and the host’s CPU will not
be used for the processes. This leads to better performance.

e New protocols can be implemented using the P4 programming language
and therefore, if needed, extra information between multiple domains can
be transferred through packets.

An alternative approach to connecting containers is through the use of VPNs,
where each pair of containers is connected together. VPNs are a reliable and
well-established approach, providing encryption and establishing secure connec-
tions. They have been widely used for creating secure network connections across
different locations or networks. We investigate how P4 capabilities allow admin-
istrators to have fine-grained control over network behavior. This level of control
enables efficient management of connections within the DDM system, leveraging
techniques such as utilizing telemetry information [85,86]. Additionally, similar to

5.3. Architecture 63

VPNs, P4-based solutions can also incorporate encryption mechanisms to ensure
data security [92,93]. Therefore, the P4-based approach explores the potential of
P4 programmability and its benefits in administering connections while offering
encryption capabilities as well.

5.3 Architecture

Fig. 5.1 shows the architecture of the multi-domain containerized DDM with
three distinctive blocks: the orchestration block in charge of the coordination of
the operations in the DDM, the containerization block in charge of creating and
management of containers, and the networking block in charge of setting up the
P4 network and the required connection between containers.

Orct
block
Domain administrator
l Message
ID generator transfer
controller
Policy store
L N N Networking
Containerization Switch runtime block
block Docker agent controller
Docker P4
container switch

Figure 5.1: A Multi-domain containerized DDM architecture. It includes three
main blocks: orchestration block, containerization block, and networking block

In each domain, all components are under the control of the domain adminis-
trator. The domain administrator can handle and manage all connections based
on the policies and rules that have been established in the DDM. The role of each
component in the architecture is as follows:

e Orchestration block

— Domain administrator: Manages all components in its own domain
and controls the sequence of steps for running the execution of a shar-
ing request.

64 Chapter 5. Multi-domain Network Infrastructure based on P

— Message transfer controller: The domains need to exchange neces-
sary information in order to make the connection between containers.
The message controller is in charge of sending/receiving the required
information to/from the other domains.

— ID generator: In each domain, each asset within a container is identi-
fied by a unique number called the connection ID. This number identi-
fies the destination port of the connection to the container that includes
the asset. The ID generator generates this unique ID.

— Policy store: All policies and rules about permissions to access spe-
cific data or algorithms in a domain are recorded in the policy store.
Before running any request, the domain administrator checks in the
policy store if the request is permitted or not. If it is not permitted
the request will be rejected.

e Containerization block

— Docker agent: This component is in charge of creating docker con-
tainers and setting up the required configurations for their network
interfaces.

e Networking block

— Switch Runtime Management: This component sets the rules in
the switch. The rules are created by the domain administrator based
on the information from the policy store, the Docker agent, and the ID
generator. The rules allow traffic with a specific connection ID (port
number) to a specific container.

— Software P4 switch: This is the core networking element that will
switch the traffic appropriately.

5.4 Workflow scenario

The operation of our proposed architecture can be better understood by looking
at a concrete scenario. We consider two domains, domain A and domain B, in
a DDM and assume the whole architecture described in the previous section is
running on two servers, one in each domain (see Fig. 5.2). Therefore, Domain A
is a Linux server that is connected to another server in Domain B.

Suppose that domain B requests access to an asset in domain A. We call
domain A server-side and domain B client-side. In the following, we will guide
the reader step by step through each of the operations that occur to set up the
connection between containers in the two domains for running the sharing request.

5.4. Workflow scenario 65

ID generator

}—»| Administrator

Policy checking

Switch runtime Switch runtime
Docker agent controller controller Docker agent

. P4 software P4 software
Container switch switch Container
1 i
—— o R —

Figure 5.2: Steps for making the connection between containers of two different
domains using a unique connection ID

e stepl: The domain administrator of domain B sends a request to the ad-
ministrator of domain A through the message controller. The request iden-
tifies the asset that it wants to access and asks for the unique ID that is
needed for starting the connection between containers.

e step2: The domain administrator in domain A checks the request per-
mission in the policy store and if the request is allowed it takes the next
required steps for making the connection.

e step3: The ID generator in domain A creates the connection ID.

e step4: The domain administrator of domain A asks the Docker agent to
create a container for the request. The container is initially created without
any interfaces. Then, the Docker agent configures the network interface
of the container with a specific IP address, and after that, it peers the
container interface with one virtual interface (veth) of the host server. It
must be noted that at this stage the container is still not connected to the
switch.

e step5: After the container has been created and its IP address and inter-
faces are set, the domain administrator instructs the switch runtime con-
troller to connect the container interface to one of the ports of the switch
that is programmed with P4.

66 Chapter 5. Multi-domain Network Infrastructure based on P

e step6: In this step the domain administrator generates the rules that allow
establishing a connection between the containers of the two domains and
set the rules via the switch controller in the switch. Each rule includes
the matching phrase and the action on the packet if the match happens.
On each side, two rules are needed. One for packets from the container
to the other domain (outbound), and one for packets from the outside to
the related container(inbound). In this step, we explain the required rules
in domain A. The outbound rule matches the packets by the port that
they entered the switch. The inbound rule matches the packets by their
destination port (the connection ID). In the outbound rule, the action is
setting the packet’s source IP address to the host’s public IP address and
the source port number to the connection ID. In the inbound rule, the action
is setting the destination IP address and port number of the packet to the
IP address and port number of the destined container and sending out the
packet to the container.

e step7: When all of the required configurations are set in Domain A, the
domain administrator sends the unique ID out to Domain B. This also
indicates that Domain A is ready for a connection with that specific ID.

e step8: Like domain A, domain B creates the container related to this
request. The interface configuration is the same as domain A.

e step9: In this step the domain administrator connects the container to the
switch port via the switch runtime controller.

e stepl0: Finally, in this step, domain B sets two rules that are needed for
making the connection to the specific container based on the unique ID.
On the client-side (that is domain B), the combination of the destination
IP address and destination port is unique. Therefore, packets sent from
a local container in domain B to the switch are matched with these two
specifications and then sent out to the server-side. The second client-side
rule is for packets coming from the server-side. These are matched by the
same unique combination (which here is the source IP address and source
port number) and then sent to the specific container.

By performing all of these steps the DDM creates a connection between two
containers in a multi-domain environment. The connection between domains
is isolated and based on a unique number that is specific to that request and
is not repeated by any other connection, hence guaranteeing isolation between
concurrent requests.

5.5. Security 67

5.5 Security

In this section, we looked at possible types of attacks that can happen in a multi-
domain containerized DDM and studied how the architecture proposed in this
chapter is secure against these kinds of attacks.

DDM
Local
DomainA ==
atc emote
atc: attack to container
Req2 v ath: attack to host
Container2 Container

DomainB |

Host1 :

Req1 *

Container3

Container2

Figure 5.3: Threat model in a multi-domain DDM. Two types of attacks are
possible: local attacks - Attacks from a container to host (ath) or to another
container in the same domain. (atc); remote attacks - Attacks from a container
to other container (atc) or host (ath) of the other domain

Fig. 5.3 shows the threat model of the architecture. In all attack scenarios,
we assume that the attack originates from a malicious container. We considered
below types of attacks:

1. container to container of the same request (atc in the figure);
2. container to container of different request (also called atc in the figure);

3. container to its host’s service (called ath); in this case, a container attacks a
service that is running in the host and listening on a specific port number.

In addition, in a multi-domain DDM, these types of attacks can be local, i.e.
the attacking container is in the same domain as the victim, or remote, i.e. the
attacker is in the other domain.

68 Chapter 5. Multi-domain Network Infrastructure based on P

c2c_remote

~ ~
/ CoanerNs \ " ComanerNS \ / Contanerhs)

\ | Vo \

1 [Contaner ll [VT Contanert 4

[Reqt | Req! 11 Req2 |

| | \ I\ I

\ WNIC ! WNIC I\ |
4

Software P4 switch GW

Figure 5.4: Container connections possible in a multi-domain DDM: connection
to containers of the same request in the local domain (c2c_local); connection to
containers of the same request in the remote domain (c2c_remote); connection to
the local host (¢2h_local).

Table 5.1: Possibility of attacks in a multi-domain containerized DDM: OAttack
is not possible ®Attack is possible but it can be mitigated @Attack is possible
and it cannot be mitigated

. Arp Mac P Syn HTTP

Type of attack Domain Spoofing | Flooding | Spoofing | Flooding | Flooding
. . Single domain | O @] ®© © ©
Container to container of the same request Multi-domain | C o) o) o)
T T) o) - C O
Container to container of different request Smglf‘: doma.m O S O U —
Multi-domain | O O ®] [©] O
. . Single domain | O O O [[
Container to host Multi-domain | O O © O O

In particular, we only consider networking attacks related to container con-
nections. Based on the architecture and the possible connections that a malicious
container can make, we discuss the feasibility of each attack.

Fig. 5.4 shows all possible connections that a container can make to any other
services of other containers or hosts in our multi-domain environment. These
include the local connection that happens in the same host with the container
of the same request (c2c_local) or the host service (c¢2h_local); or the remote
connections (c2c_remote) to the other domain.

In our architecture, any connection from a container to any other container
is through the switch. However, for the connection between a container and the
host, the packet does not need to go through the switch because of peering with
the host virtual interfaces veth that are in the host network namespace.

Table 5.1 shows the possible attacks that can happen: ARP spoofing, MAC
flooding, IP spoofing, Syn flooding, and HTTP flooding. In regard to the fea-
sibility of each one of them, there are three possible outcomes: 1) the attack is
not possible; 2) the attack is possible but it can be mitigated; 3) the attack is

5.5. Security 69

possible and it cannot be mitigated.
The possibility of each kind of attack is explained in the following:

ARP spoofing and MAC flooding: For these kinds of attacks to happen
there must be a connection between containers at layer 2 [94]. In our case,
each container is in a different network subnet and the connections are at layer
3. Therefore, ARP spoofing and MAC flooding are not possible in any of the
possible scenarios.

IP spoofing: In an IP spoofing attack scenario, an attacking container imper-
sonates another container’s IP address and sends packets with an incorrect source
IP to another service that is running in the network. Therefore, the response of
the packet will be sent back to the victim and not the actual source [95].

In our architecture, the feasibility of an IP spoofing attack depends on whether
the attack is local or remote and on whether the attacked node is another con-
tainer or a host.

More precisely we can observe that IP spoofing is not possible if the packet has
to go through the switch, i.e. when the attacker wants to make a connection to
other containers in the same host or to the outside world. As the routing is based
on the unique ID number that is independent of the container’s IP address, the
packet will be dropped as it does not match any rule. This means that c2c_remote
and c2h_local are not possible.

IP spoofing is possible if the attacker tries to make a connection to its host ser-
vice and perform the attack via host service, like in the c¢2c_local and c2h_remote
types of attacks. In these cases, packet does not go through the switch. However,
its source IP address can be checked in the host’s IPtables. Therefore, when the
source P address is not correct, the packet will be dropped.

Syn and HTTP flooding: In all cases where a container can make a connec-
tion, flooding attacks are possible. For cases in which the packet is going through
the switch (c2c_local and c2c_remote) the attack can be mitigated by detection
methods that can be implemented in the P4 program [87-89]. However, for the
c2h_local type of attack, the attack cannot be mitigated as the packet does not
go through the switch and the connection is directly between containers and the
host service.

To conclude, as is shown in Table 5.1 most network attacks are either not
possible in the proposed P4-based DDM or can be mitigated by customizing the
P4 program. We must observe that security depends also on the availability of
the P4 switch. As all containers are connected to the P4 switch and the whole
setup relies on the rules in the P4 switch, this can become a failure point in the
network. However, as there can be multiple servers in a DDM when the switch
fails in a domain, only the containers that are connected to that specific switch
will be affected.

70 Chapter 5. Multi-domain Network Infrastructure based on P

5.5.1 Security considerations

Data encryption can happen in the P4 switch. To this purpose, there are multiple
available algorithms that encrypt the connection in a P4 switch and can also be
deployed in this work [92,93,96]. This can help mitigate the risk of Man in the
Middle attacks.

The orchestration services at the two sites communicate with each other via
the public Internet, which means they must be publicly accessible, and they
also control the network plane, which requires at least some administrator-level
privileges. This is clearly a potentially risky combination. Several steps must
be taken to mitigate this risk. First, the connection between the orchestration
services needs to be authenticated and encrypted, for example by using an HT'TPS
connection with client- and server-side certificates for authentication.

Next, to mitigate the risk of the orchestration application software itself being
compromised, the network administration functionality must be separated out
into a separate program, which is given the minimum necessary privileges (e.g.
CAP_NET_ADMIN on Linux) and implements the bare minimum functionality
needed to support the functioning of the system. The orchestration service itself
can then be run as an unprivileged user so that if it is compromised the attacker
will be limited to unprivileged operations plus a small number of very inflexible
network administration functions.

Beyond these specific design features, all the usual general measures must
be taken, including code quality assurance through testing, code reviews, and
automated analysis.

5.6 Request setup time

In a containerized DDM, the setup time is from when a client issues a request
until the moment that the network is ready for starting the data transfer between
containers. In many cases, it is important and critical for a client to know the
approximate setup time of the request; for example, for federated machine learn-
ing having the knowledge of resource availability is critical for running the model
efficiently.

In a single domain DDM, as there is one centralized controller that handles
all of the resources, the network setup is simple and straightforward. However, in
a multi-domain DDM, as domain administrators have to communicate with each
other, and all of the setup processes in one domain are separated from the other
one, setup is lengthier. In fact, the client-side should be sure that the destination
is ready for establishing the connection.

There are two approaches we can take to measure the setup time: one is a
Global view that considers the time from when a request comes in, to when the
network is ready for data transfer. It is measured by setting a timestamp from

5.60. Request setup time 71

Table 5.2: Theoretical request setup timetable based on the duration of every
single step, T, is the time taken for running step n

Domain A Domain B Parallel time
Total time Ty Tp Max(Ty, Tp)
Calculated time T, Ty Max(T,, Tp)
Model error (Ty — T4/Ta) 100 | (T — Ty /Tg) % 100 | (Max(Ta, Tg) — Max(T,, Tg)/Max(Ta, Tp)) * 100
Communication delay | 7's; Ts1+ Ts7
Creating container Tsy T'sg
Adding interfaces Tss Tsg
Adding rules Tsg Tsy

starting a request until it is ready to start transferring data.

The other one is a Step view which looks at the duration of each individual
step. We measured the duration of each step by setting timestamps before and
after running each step. For example, for measuring the duration of step 4, that
is creating containers in domain A, we register the time stamp before running
step 4: Ca(start(Sy)). It is a timestamp of the clock of domain A related to the
start point of step 4. Likewise, we register the time stamp after finishing step 4 as
Ca(end(Sy)). Therefore, the duration of step 4 is calculated based on Equation
5.1.

Tsy = Calend(Sy)) — Ca(start(Sy)) (5.1)

However, we must observe that there will be a challenge in measuring the
duration of T's; and T's;. That is because the starting and ending of these steps
are not in the same domain and the time is dependent on the clock time of both
domains. To solve this problem, we assume that T's; and T's; are equal and
eliminate clock differences by adding timestamps of different domains according
to Equation 5.2.

Ts; =Ts; = (Calend(S1)) — Cp(start(S1))+
Cp(end(S7)) — Ca(start(Sy)))/2

We investigated two different approaches to set up the network: a sequential
and a parallel mode.

(5.2)

5.6.1 Setup time in sequential mode

As explained in Sec. 5.4, the network is set up in 10 steps. If they are executed
sequentially then the total time is the sum of the duration of each step. If we
define T's,, as the time taken to run step n then the total time can be calculated
as in Equation 5.3.

10
Sequential setup time = Z Ts, (5.3)

n=1

72 Chapter 5. Multi-domain Network Infrastructure based on P

5.6.2 Setup time in parallel mode

To optimize the total setup time, it is possible to perform some of these steps
in parallel. Looking back at Fig. 5.2, after the first three steps the other steps
can be run simultaneously as they are in different domains and independent from
each other. The parallel setup time is the sum of the duration of the three first
steps and the maximum time of running the other steps in each domain. This is
expressed in Equation 5.4.

3
Parallel setup time = Z Ts,+

n=1
6 10 (5-4)
Mazx (Z Tsn, Z Tsy)
n=4 n="7

5.6.3 Global view and step view comparison

Table 5.2 shows the theoretical model for calculating the setup time. The total
time in Table 5.2 represents the global view and the calculated time represents
the step view. Communication delay, Creating container, Adding interfaces, and
Adding rules are individual steps that are considered in the step view model.
By comparing total time and calculated time (Model error in Table 5.2), we can
determine the accuracy of the step view model. Concretely this would tell us
if there is any overhead in running the steps that the model does not capture.
If the overhead is negligible then we can conclude that the time to set up is
predictable, which enables prediction of the setup time and other calculations for
decision-making for making any further improvements.
Ty, Tp, T;h and Té in Table 5.2 are calculated based on equations 5.5-5.8.

Ty =Ty, + Ca(end(Ss)) — Ca(start(S)) (5.5)
Tp =Ts + Ts, + Ca(end(S1)) — Ca(start(Ss)) (5.6)
Ty=Y Ts,+» Ts, (5.7)

3 10
Tp=> Tsu+» Ts, (5.8)
n=1 n="7

5.7 Proof of concept

To test the operations of our architecture (see Sec. 5.3) we built a prototype DDM
software suite. We implemented the connections between all the building blocks,

5.7. Proof of concept 73

starting from the domain administrator at the higher level all the way down to
managing the network configuration in the P4 switch. We then instantiated two
DDM domains and connected them to validate the scenario in Fig. 5.2.

In our setup, we did not implement the policy checking part of the architecture
and we assumed that all of the requests that come in are according to the agreed-
upon rules.

For our implementation, we used Ubuntu 18.04 and Linux kernel 4.15.0 as the
host OS, Docker Community Edition 18.09 for container management, and bmv2
P4 switch as the programmable software switch in each server [97].

The scenario in Fig. 5.2 is written in a bash script, which initiates each step by
calling the programs to implement the functionalities of each block of architecture.

We have two servers representing the two different domains, each running the
full software suite. Each server can be the requester server (client-side) or the one
that is requested to share data (server-side). The servers are connected together
through a switch, which serves as the physical underlay for our connectivity.

For message transfer between domain administrators, the script calls a mes-
sage transferring program using RabbitMQ [98]. The receiver side of each server
is always running and waiting for a new message. When a sharing request comes
in from a client for access to data of the other domain, this program sends the
access request information to the other domain. Likewise, the receiver side com-
municates back through the message bus.

After sending or receiving the required messages, the domain administrator
starts to create containers and sets the interface configurations. This is the con-
tainerization block of the architecture. Listing 5.1 shows the procedure to create
and connect containers to the network.

sudo docker run
-it -d --net=none "container_image"

container_pid =
$(sudo docker inspect --format ’{{ .State
.Pid }}’ "container_name")

1
2
3
4
5

6
7 sudo tp link add

8 vethl type weth peer name veth2
9

10 sudo ip link set
11 veth2 netns contatiner_pid

13 sudo docker ezec
14 "container_name" tfconfig wveth2
15 "container_IP_address”

Listing 5.1: Container interface configuration procedure

At first (line 1-2) containers are created without any interface. Next (line 7-8) we
create the virtual interfaces and these are then moved to the container’s network

74 Chapter 5. Multi-domain Network Infrastructure based on P4

namespace (line 10-11). Finally (line 13-15) we configure the container interface.
After the container configuration, the switch with the compiled P4 program can
start running.

P4 program: Listing 5.2 shows the P4 program that was used for managing
the connection between containers based on a unique ID.

1 table client_send_t {

2 key = {

3 hdr.tcp.dstPort :ezact;

4 hdr.ipv4.dstAddr :ezact;
5 ¥

6 actions = {client_send; }
7 }

8 table server_receive_t {

9 key = {

10 hdr.tcp.dstPort :exact;

11

12 }

13 actions = {server_receive; F}
14 }

15 table server_send_t {

16 key = {

17 hdr.ipv4.srcAddr :exzact;

18 }

19 actions = {server_send; }
20 F

21 table client_recetve_t {

22 key = {

23 hdr.tcp.srcPort :ezact;

24 hdr.ipv4.srcAddr: exzact;

25 v

26 actions = {client_receive;}
27 Jr

Listing 5.2: List of tables used in the P4 program running
in the switch defining the expected operations for packets
sent or received by the server and client sides of the DDM

As each server can act as both server and client there are four tables defined
in the P4 program:

e client_send_t (line 1-7): when a packet is sent from client-side to server-side;
e server_receive_t (line 8-14): when a packet is received on the server-side.

e server_send_t (line 15-20): when a packet is sent from server-side to client-
side;

e client_receive_t (line 23-31): when a packet is received on the client-side;

5.7. Proof of concept 75

A packet entering the switch is matched against the fields shown in Listing
5.2. If a packet matches any of the fields in one of the tables the specified action
will be taken, else it will be dropped.

The actions for each table are shown in Listing 5.3. The action taken will
depend on whether the packet is coming from the outside or from an internally
connected container, and whether it is on the server-side or client-side.

1 action server_receive (bit<32> dst_ip,
bit<9> port){

2 hdr.ipv4.dstAdddr=dst_ip;

3 stdmeta.egress_spec = port;

4 F

5

6 action client_receive(bit<32> dst_ip,
bit<9> port){

7 hdr.ipv4.dstdddr=dst_ip;
8 stdmeta.egress_spec = port;
9 }
10
11 action server_send (bit<32> src_ip, bit
<9> port){
12 hdr.ipv4.srcAdddr=src_ip;
13 stdmeta.egress_spec = port;
14 }
15
16 action client_send (bit<32> src_ip, bit
<9> port){
17 hdr.ipv4.srcAddr=src_ip;
18 stdmeta.egress_spec = port;
19 }
Listing 5.3: P4 actions associated with the P4 program
tables

When a packet comes into the P4 switch to be sent to a local container, the
destination IP address is changed to the correct local (container) IP address,
and the packet is sent to the destination: these are server_receive (line 1-5) or
client_receive (line 6-10) actions.

When a packet leaves the P4 switch toward the other domain the source IP
address of the packet is changed to the public address of the local server: these
are the server_send (line 11-15) and client_send (line 16-19) actions.

The last call is related to adding new rules associated with containers con-
nection. Adding these rules allows connection between two containers created in
two domains; that is the only permitted connection between these two containers.
Domain administrator uses the switch command line to insert required rules for
making connection possible. For example, listing 5.4 shows these rules related to
client-side. The first rule is when the packet is outgoing from the container to

76 Chapter 5. Multi-domain Network Infrastructure based on P

server-side. The second rule is when the response from server-side arrives. Be-
cause filtering rules are a combination of IP address of the source or destination
and of the connection ID, the connection ID needs only to be unique in each
host but not between domains. Therefore, there are 64K values for every host to
assign as connection ID and that is enough in practice.

1 table_add client_receive_t
client_receive "Source_port" "
Source_ip_address" => "
Destination_ip" "Egress_port"

2

3 table_add client_send_t client_send "
Destination_port" => "
Source_ip_address" "Egress_port"”

Listing 5.4: List of rules in the P4 program

5.8 Measured request setup time

The next step for us was to measure the setup time in our experimental environ-
ment and try to numerically identify the possible overhead.

Setup time of one request: According to Table 5.2 and based on what is
explained in Sec. 5.6 we measured both the total setup time based on Equation 5.4
as well as the duration of every single step (see Sec. 5.6.3). Table 5.3 shows the
average value across 3 experiments. The results show that the model error is
less than 3%. As the difference is negligible we can conclude that the stepwise
model is reliable for estimating the setup time and that it can be used for further
decision making and possible optimizations. The creating container step is the
longest step for setting up the network (~ 1.8 seconds). The other steps related
to the P4 switch are adding interfaces (~ 0.50 seconds) and adding rules (~ 0.110
seconds); they take much less time than creating the containers and this shows
the low overhead of using a P4 switch in the setup process.

Table 5.3: Request setup time table in seconds, numbers are according to Ta-
ble 5.2

Domain A | Domain B | Parallel time
Total time(s) 2.561 2.721 2.721
Calculated time(s) 2.499 2.700 2.700
Model error(s) 0.025 0.007 0.007
Communication delay(s) | 0.082 0.163
Creating container(s) 1.765 1.850
Adding interfaces(s) 0.540 0.571
Adding rules(s) 0.112 0.116

Setup time as a function of increasing load: For further investigation
and to observe the individual impact of each step on the setup time, we explicitly

5.8. Measured request setup time 7

0
30 / us

T

Request setup time (second)
Request setup time (second)

)) 0) o 1) E) [
Number of messages sent concurrently Number of containers created concurrently

(a) Increasing load by increasing the num- (b) Increasing load by increasing the num-
ber of messages being sent concurrently ber of containers being created concurrently

’g‘” —— Total time

3 § bt ete===4 | -+~ Calculated total time

g | | t 1 2 —$- Communication delay

82 f Eu «¢+ Creating container time
| e S GREETTINY S SR ;- . .

gl 4 I__ _______ I S e b IR R +- *| -4 Adding interfaces time

[R S [—— " ! :

fl § =4 Adding rules time

3 o1

o 0

o I3}

g <

.................)Y G UURRNY STUTPRPPOPYY |
gosp !) » » @ %
«) Number of rules created concurrently

Number of interfaces created concurrent! . . .
Y (d) Increasing load by increasing the num-

(c) Increasing load by increasing the num- ber of switch’s rules being set in P4 switch
ber of interfaces being created concurrently concurrently

Figure 5.5: The impact of adding load on the system by increasing the number
of operations related to each step separately

overloaded our system with concurrent operations and observed the change of
setup time as a function of the increasing load. In each experiment, we measured
each step’s duration and also calculated the total time based on the stepwise
model (see Sec. 5.6). We performed four different experiments (Fig. 5.5):

e Message transfer experiment: Fig. 5.5a shows the setup time of one shar-
ing request, when the number of concurrent messages that are being sent
from client-side to server-side is increasing. To create this additional load
we sent a number of messages unrelated to the request from the client-side
to the server-side via the message bus. We varied the number of concur-
rent messages from 10 to 50. The plot shows that the delay for message
transferring between two domains is positively correlated with the number
of concurrent messages on the bus. We observe a maximum increase of
~ 50%. On the other hand, as this step takes much less time than creating
containers, its dependency on the number of concurrent messages does not
have a substantial effect on the overall setup time.

e Creating container experiment: To produce an additional load we created

78 Chapter 5. Multi-domain Network Infrastructure based on P

a specific number of containers not related to the specific request we are
measuring. We issued requests to the Docker engine for 10 to 50 containers
in step 10. As shown in Fig. 5.5b, by increasing the number of containers
that are being created at the same time, the creating container time of a
single request also increases. The additional amount of time is substantial
compared to the other steps. Additionally, this step is always the longest
(see Table 5.3), and its dependence on the load will have the greatest impact
on the variability of the total time.

e Adding interface experiment: Fig. 5.5¢ shows the effect of running concur-
rently adding interface operations on the setup time. We created containers’
interfaces (varying the number from 10 to 50) and added them to the P4
switch at the same time. The figure shows that the time is lower than the
container setup time and in addition, it does not change with an increasing
number of concurrent operations.

e Adding rule experiment: In this experiment, we created an additional load
by adding a varying number of rules, in the range of 10 to 50, into the
P4 switch. Fig. 5.5d shows the same trend as for the adding interfaces
experiment; in fact, the time for adding the rules to the switch does not
increase with an increase in the number of rules.

As the results show, the creating container step is the step that is most af-
fected by increasing load on the system, and more precisely when the system
has to create many containers simultaneously. The steps that are related to the
P4 switch, i.e., adding interfaces and adding rules do not change with increasing
numbers of interfaces and rules. So we can conclude that the P4 switch is scal-
able enough for running multiple sharing requests. Also, in all experiments, the
calculated setup time is close to the total time and this proves the accuracy of
the stepwise model.

5.9 Discussion

We must note that in the scenarios in Sec. 5.4 we assume that all of the steps
are run successfully. However, in reality, one or more of the steps may fail. This
especially affects the parallel scenario (see Sec. 5.6), as the domain in which the
error did not occur will continue to reserve resources that will never be used. In
this case, running in sequential mode would be more efficient.

Our architecture is flexible and can easily scale up. What we have shown in
this chapter is an example of an implementation of a containerized DDM running
in one server per domain, e.g. all the containers in one domain reside in one
physical node. However, the number of required containers may be more than
the capacity of one device. In the case where there is an increasing number of

5.10. Related Work 79

requests in DDM and more containers are needed, other servers can be easily
added to the domain. Each server has its own software P4 switch. All the P4
switches would then be connected with each other and with the physical network
infrastructure in the domain.

As we explained all connections between switches are based on a connection
ID. Even if a malicious container can find other connection IDs, it cannot use
them. As all the packets are going through the P4 software switch, the connection
ID can be checked that it is from an eligible container.

5.10 Related Work

DDM prototypes are currently in development in a number of scientific and in-
dustrial contexts, including the Internet of Things, supply chain logistics, health
care, and the exchange of personal information.

Datapace is a commercial blockchain-based DDM platform for trading IoT
data streams [99]. It also has a blockchain-based trading infrastructure, in which
URLs are traded and data may be retrieved. Datapace sells a curated collection
of streams but also allows external sellers on its platform. Data is routed through
its central infrastructure. The Ocean Protocol is similar but is inspired more by
financial markets, with market makers and derivatives. Data exchange is done
directly between buyers and sellers and is somewhat outside the scope of the
platform [100]. Both of these systems list data processing as a possible future
extension but do not currently support it.

International Data Spaces (IDS) is a DDM project addressing amongst others
supply chain logistics. It defines data exchange protocols and provides central
components including a data broker, clearing house, identity provider, app store,
and vocabulary provider [16]. Data are requested from a data provider, optionally
processed, and returned to the data consumer. An example use case is provided
by the DL4LD project, which will apply this technology to enable sharing of
potentially sensitive data regarding the transport of goods [2].

A science use case concerns personalized medicine: the EPI project will de-
velop a secure and trustworthy platform to share patient data across medical
institutions to help with diagnosis and decision making for patients and health
providers; the sharing of information will still fully preserve patients’ privacy. It
also studies policy definitions and how to set up network infrastructure to enforce
them [3].

None of these systems support data processing, nor is the implementation of
data exchange described at the technical level. Our work shows how to realize the
required network connectivity between DDM participating parties, e.g domains.

For building a containerized DDM within one domain, we have already pro-
posed a number of solutions. In [101] we studied whether available container
network overlay technologies are suitable for deployment in a DDM. We com-

80 Chapter 5. Multi-domain Network Infrastructure based on P

pared the performance of each technology in terms of the network throughput
with an increasing number of network policies and pods. In [102] we remained
focused on single domain DDMs but we shifted our focus onto providing isolation
between containers and improving the security. We studied three methods of con-
tainer overlay implementations with particular attention devoted to the isolation
between containers while enforcing the data sharing policies.

Xin et al. proposed a multi-domain distributed architecture for policy-driven
data sharing applications [103]. The architecture includes components to manage
policy auditing as well as to implement network connections. To do this, they use
Docker containers and connect containers of each domain via VPN connections.
Although this approach can secure the data by encryption, the ease of connection
management method on larger scales and also the security aspects had not been
studied.

In our current work, we are able to manage connections in a dynamic and
straightforward programmable method. As we mentioned we did not cover en-
cryption, but this can also be done in P4 switches. The load of this operation
could, if needed, be offloaded to hardware by using SmartNics.

5.11 Conclusion

In this chapter, we proposed a multi-domain data sharing architecture that is
constructed with containers and software P4 switches. Our architecture supports
network connectivity between DDM domains. We described the required steps for
setting up the network connections according to the architecture. We reasoned
how the architecture is secure against a number of typical network attacks, con-
sidering the proposed approach of isolating every single connection via a unique
ID number. However, to further validate the security of the architecture against
potential attacks, future work may involve performing actual attack experiments
and evaluating the efficacy of the proposed approach.

In addition, we studied the network setup time and security implications of
adopting P4 programmable switches as underlying technologies. To support net-
work setup and planning, we introduced a model for measuring the setup time
and then showed that the model is reliable according to the experiments’ results.
We also determined that the overhead of using a P4 switch in the setup process
is negligible, which makes it a promising technology to support the networking
requirements of DDMs.

In Chapter 6, we focus on improving the P4-based network’s functionality
when it is under high load and enhancing its security by using the P4 program
capabilities. To this end, we introduce methods to observe the status of the
network based on real-time events and take the proper action accordingly. In
addition, we introduce the federated policy-driven data exchange management
system (Mahiru) and integrate it with the current work.

Chapter 6

Tracking container network connections
in a DDM

In this chapter, we first introduce a federated data exchange management system
(Mahiru) [104]. In the DDM framework, Mahiru handles the policy checking
and manages the communication between participating parties to schedule the
execution of the sharing requests.

We then demonstrate how a P4-based network infrastructure can assist Mahiru
to acquire insight into the interactions between containers. We relate the incom-
ing traffic to the shared assets by labeling the connections. In addition, we
program the P4 switch [105] to gather and classify the information based on the
labels. This information will be used to monitor the traffic behavior of each con-
tainer and consequently the asset related to this container. Mahiru can analyze
this information to make further decisions about scheduling the sharing requests
and detecting potential anomalous behaviour in data transfer between containers.
This chapter is related to RQ4: How can Pj-based network capabilities assist the
data sharing management system in providing security and maintaining quality?

This chapter is based on:

Shakeri, S., Veen, L., and Grosso, P. ”"Tracking container network
connections in a Digital Data Marketplace with P4”. In 2022 International
Conference on Computer, Information and Telecommunication Systems
(CITS), Piraeus, Greece, 2022, pp. 1-8.

Veen, L., Shakeri, S., and Grosso, P. “Mahiru: a federated, policy-driven
data processing and exchange system”. Submitted to arXiv:2210.17155.

81

82 Chapter 6. Tracking container network connections in a DDM

6.1 Introduction

DDMs currently in development support access to data or algorithms from other
parties, federated machine learning, and other forms of distributed data pro-
cessing. DDMs that support distributed applications such as federated machine
learning need to run software made by third parties or users of the system. This
presents a security risk. Besides sandboxing and enforcing network connectivity
policies, two other ways exist to mitigate this risk: code inspection and moni-
toring. Code inspections can detect bugs and malicious code, but they cannot
do so perfectly; they are time-consuming, and sufficient expertise needs to be
available. Furthermore, measures need to be taken to ensure that the code that
runs matches exactly the code that was inspected, which entails repeatable builds
and re-reviewing every new release. As a result, code inspections are expensive
and cumbersome. Monitoring execution may provide an alternative or addition.
Monitoring can be automated completely using Al and the potential for catch-
ing malicious behavior will deter would-be adversaries and reduce the risk in the
system even if it is not guaranteed to catch all malicious behavior.

In addition, monitoring can help to improve performance. As the size of DDM
increases, more data must be shared with more peers, and the scalability of the
system becomes important. In a containerized DDM, where both data sets (data
assets) and algorithms (compute assets) are containers, scalability can be achieved
by adding more instances (horizontal scaling), if the network infrastructure is
flexible enough to route incoming requests accordingly. To steer this process and
select the method for scaling, the container’s transactions must be tracked.

In this chapter, we first explain the implementation of the policy driven data
exchange management system (Mahiru) that is in charge of checking the consis-
tency of the user’s sharing requests with the available policies and then planning
the execution in the network infrastructure. Afterward, we present how Mahiru
can be integrated with the DDM network infrastructure [104].

We then focus on monitoring the network traffic between containers. Since our
infrastructure uses P4 switches, monitoring data can be gathered by P4 programs
running on the switches. The sharing transactions can be logged in the switch and
then sent to the controller or upper layers for further analysis. In our architecture,
each container has only one asset. We define a sharing transaction as the
action of transferring an asset from one container to the other one through an
established connection. However, tracking the transactions related to the assets
is not trivial. The traffic that is being logged must be related to each asset, i.e.,
what is understandable for the data exchange management system. Therefore,
just the information about the traffic of different flows in the network is not
helpful by itself. A mechanism has to connect the traffic flows to the asset and
their corresponding policies.

We design a P4-based containerized network that can handle these challenges.

6.2. Federated data exchange management system (Mahiru) 83

We specify a unique ID for each connection, and we use this ID in network
connections for transferring the assets. By using this connection ID, we can track
the transactions related to each asset in the DDM. We present sharing scenarios
in a DDM to demonstrate how connection tracking can assist in providing security
and improving performance.

The main contributions of this chapter are:

e Introducing Mahiru as a federated data exchange management system that
can be deployed in a DDM

e Building a containerized DDM in which the flow of the traffic in the network
infrastructure is associated with the shared assets in the DDM

e Demonstrating how the sharing transactions can be tracked in that infras-
tructure

e Presenting examples of the tracking scenarios to show how logging informa-
tion by P4 can improve security and performance in DDM

6.2 Federated data exchange management sys-
tem (Mahiru)

This section aims to give an introduction to Mahiru, a federated data exchange
management system that is a work of collaboration with the eScience center of
netherlands !. It is designed for federated data processing and exchange opera-
tions between multiple organizations in science that can be used in DDMs [106].
In designing the proposed architecture in this chapter, we considered the features
and requirements of Mahiru. Mahiru and the P4-based container network intro-
duced in Chapter 5 can be integrated to complete the process of execution of the
sharing requests [104].

Different projects are currently in progress to create different kinds of cross
organizational data sharing systems, including centralized download sites, peer-
to-peer data exchange systems, and designs for federated learning and other kinds
of distributed data processing. These data exchange and processing patterns can
all be expressed as workflows in the Mahiru data exchange system. Mahiru runs
the data sharing workflows and supports different models of distributed data
exchange. It supports enforcing the policies that are established by the owners
of data to determine how the data can be processed or transferred. The users
of Mahiru submit their requests to their local setup on their own site. Mahiru
plans and executes the steps for executing the requests according to the pre-
established policies in collaboration with other involved sites. In Mahiru policies

Thttps://www.esciencecenter.nl/projects/secconnet /

84 Chapter 6. Tracking container network connections in a DDM

i DomainA | i DomainC | \ DomainB |

|

Figure 6.1: Mahiru’s global architecture and operation. The system consists of
any number of sites and a registry which records their identity and location.
1) Workflow submission, 2) registry update, 3) policy update, 4) planning, 5)
execution request, 6) distributed execution, 7) result return.

are a collection of rules to permit sharing, processing, and delegation of control
over assets. The rules are based on assets, parties, and sites. Assets are digital
resources that are shared in DDM. Sites store assets, as well as their exchange
policies. Parties are the owner of the assets that are participating in DDM. Each
object in a DDM (Asset, Party, Site) has a unique identifier. MayAccess(asset,
site) is an example of Mahiru’s rules. This rule determines which data/algorithm
asset can be presented/executed on which site. Mahiru also has rules for data
processing and organising objects.

Requests for processing the data in Mahiru are workflows in the form of
Directed Acyclic Graphs (DAG). Shared asset transfers along the edges, and
each node represents a workflow step in which a compute asset processes one or
more data assets.

The overview of Mahiru’s global operation is shown in Figure 6.1. The user’s
application initiates the execution by submitting a workflow to the local Mahiru
site (1). The site ensures the validity of its information about the parties and sites
involved in the data sharing system. This information is stored in Registry(2); it
then checks the current state of the policy replicas for the sites serving policies
for the assets used in the workflow (3). After these checks, the site creates an
execution plan (4) that determines the site at which each step in the workflow
will be executed. The site then sends an execution request (5) containing the
workflow and the plan to each of the involved sites. Upon receiving the request,

6.3. Architecture 85

each site verifies that they have up-to-date policy replicas and that the requested
actions are permitted before starting to execute the steps as their inputs become
available.

6.3 Architecture

Fig. 6.2 represents the architecture of the containerized data sharing system. It
is constructed of five main building blocks: the data exchange management sys-
tem block, the administration block, the containerization, and networking block,
and the monitoring block. In multi-domain DDM domain administrators com-
municate to build the connection according to the relative sharing policies. More
details about the method of communication are represented in Sec. 6.4.

Policy Checking

Contai ' Data Base
ontainer rr;anagemen Domain Asset: ID
system administrator

- 1
Switch run-time ‘

controller

H 5 Analyzer

P4 software
switch

Figure 6.2: Architecture of the containerized DDM with tracking capability

Data exchange management system block: This component is in charge
of checking the policies and collaborating with other domains for scheduling a
request or a chain of requests (see Sec. 6.2).
Administration block: This block contains three components. The container
management system creates the container and attaches the related asset. Contain-
ers containing a data asset are called data containers, and containers containing a
compute asset are called compute containers. The containers are then connected
to the switch.

The unique connection ID related to each connection is generated and then
saved in a database. This connection ID will then be used for tracking the sharing
transactions. Finally, there is a domain administrator. It takes the information

86 Chapter 6. Tracking container network connections in a DDM

about the created container from the containers management system and the
connection ID from the database. It then creates the appropriate P4 rules that
make the allowed connections to this asset possible. These rules are passed to
the controller.

Containerization and networking block: In this block, the P4 switch con-
nects the containers. When the packets arrive with the specific connection ID,
they are matched with the rules that are set by the controller and sent to the cor-
responding container. Importantly, the information of the traffic going through
the switch will be saved in the switch’s registers. Registers are stateful elements
used to store values. They keep the state of the network between various network
packets. The controller is in charge of setting up the rules on the switch. In ad-
dition, it reads the information from the registers of the switch when it is needed
and sends it to the monitoring block.

Monitoring block: In this component, the monitoring information is translated
from the networking traffic information to asset access information. Of course,
it uses the connection ID mapping database to relate the traffic with specific
connection IDs to assets. The information can be reported to the data exchange
management system or domain administrator for further action.

6.4 Proof of Concept

Fig. 6.3 shows the steps for setting up the network for transferring a data asset
from a data container in domain2 to a compute container in domainl. We call
domainl which is requesting the data the client-side and domain2 which is serv-
ing the data the server-side. Domains are distinguished by their IP addresses.
The IP address is the IP of the server hosting the container. For our implemen-
tation, we used Ubuntu 18.04 and Linux kernel 5.4.0 as the host OS, Docker
Community Edition 20.10 for container management, and bmv2 P4 switch as the
programmable software switch [97].

In the following, we will guide the reader step by step through each of the
operations that occur in a domain to set up the connection between containers:
stepl: The request from the other domain will be checked against the available
policies in the data exchange management system. If the request is allowed, the
data exchange management system sends the request to the domain administrator
to set up the network for the required connection.
steps 2 and 3: The domain administrator asks the ID generator to generate
the ID for the connection for transferring the data asset from the data container
to the compute container in step 2. The connection ID will be sent back to the
administrator in step 3. The connection ID is a unique number for each Data
asset ID, client-side IP address, and Compute asset ID:

Connection ID = Unique number of (DataAsset] D, Client—sidel Paddress, ComputeAssetI D)
step4: The domain administrator asks the container management system to

6.4. Proof of Concept 87

=
" Dataexchange / ihsset \ Dataexchange .
/ it management
K management nager \
system i \

/
I '
: o o
\ Follcy Policy H
X Checklng Checking J
\ K
N /

Re m 3« d
Domam 1

=
Compute

AssetID | Connection ID

ID generator

Data Asset

D Client-side

Switch runtime witch runtime [Docker agent I
l Docker agent J controller controller

Compute
Data Asset 1 1 Asset 1 1580
Compute Compute
Data Asset 2 1 Asset 2 1680 P4 software P4 software switch [*7" Container
switch
Compute
Data Asset 3 3 Asset 1 1780

Figure 6.3: Steps of setting up the network for a request from client-side to server-
side. (An extended version of Fig. 5.2. In this figure we added Mahiru and the
table of generating the connection ID)

create a container for the Data Asset. The container management system then
sends back the container specification to the domain administrator.

step5: The domain administrator connects the container to one of the ports of
the switch.

step6: The domain administrator creates the appropriate rules and sends them
to the controller of the switch for setup. In the connection from the client-side
to the server-side, the connection ID will be used as the destination port of the
connection.

In the following, we explain the rules of the server and client-side.

server-side: Listing 6.1 shows the rules and actions for incoming packets to
the server-side in our setup. In this case, the packet’s destination port number
(the connection ID), and its source IP address - which is the client-side IP address
- will be checked (line 4-5).

We first save the destination port number (connection ID) in a variable for
further use (line 14). For sending the packet to the server-side container, we have
to change the destination IP address to the server-side container’s IP address (line
17) and the port number to the number that the server-side container is listening

o (line 18). At this point, the packet is ready to be sent.

When a packet comes back, we have to be able to set the port number and

IP address back to the original one. Therefore, before sending the packet to the

88 Chapter 6. Tracking container network connections in a DDM

server-side container, we save the original source port in a register (line 15) and
modify the source port number of the packet to the previously saved connection
ID (line 16).

1
2 table server_receive_t {

3 key = {

4 hdr.tcp.dstPort :exact;
hdr.ipv4.srcAddr : ezact;

5
6

7 ¥

8 actions = {server_receive; }

9 }

10

11

12 action server_receive (bit<32> dst_ip,

bit<16> dst_port, bit<9> port){

14 Connection_ID_s = hdr.tcp.dstPort;

15 reg_srcport.uwrite(Connection_ID_s |,
hdr.tcp.srcPort);

16 hdr.tcp.srcPort = Connection_ID_s;

17 hdr.ipv4.dstAddr = dst_ip;

18 hdr.tcp.dstPort = dst_port;

19 stdmeta.egress_spec = port;

20

21 }

Listing 6.1: P4 table and actions related to the incoming
packets in the server-side

Listing 6.2 shows the rules and actions for outgoing packets from the server-side to
the client-side. In this case, the packet’s destination port number (the connection
ID) and its destination IP address, i.e., the client-side IP address, will be checked
(line 4-5).

The destination port of the current packet is saved in a variable (line 12).
When a packet is coming back from the server-side container, we have to change
its source IP address to the IP address of the server-side (line 13). We then
have to change the source and destination port numbers. We change the source
port number to the connection ID that we saved in the variable (line 14) and
the destination port to what we have saved in the register (line 15). Finally, the
packet will be sent out to the related egress port of the switch (line 16).

6.5. Tracking Scenarios 89

1

2 table server_send_t {

3 key = {

4 hdr.tcp.dstPort :ezact;
hdr. ipv4.dstAddr :ezact;

6 }

7 actions = {server_send; }

8 }

9

10 action server_send (bit<32> src_ip, bit
<9> port)d{

11

12 Connection_ID_c = hdr.tcp.dstPort;

13 hdr.ipv4.srcAdddr = src_ip;

14 hdr.tcp.srcPort = Connection_ID_c;

15 reg_srcport.read (hdr.tcp.dstPort,
Connection_ID_c);

16 stdmeta.egress_spec = port;

17 }

Listing 6.2: P4 table and actions related to the outgoing
packets from the server-side

Client-side: On the client-side, the routing between containers is more
straightforward. When a packet is sent out to the server-side, we change its
source IP address to the host IP address. When a packet comes back from the
server-side, it can be directed to the right container by looking at the connection
ID (source port). However, as different domains may give the same connection
ID for different requests related to the same host, the connection ID may be used
by another server-side host. Therefore, what is unique is the combination of the
source IP address and the connection ID that will be used for matching rules.

6.5 Tracking Scenarios

We evaluated the use of P4 switches in DDMs in two different cases corresponding
to the two concerns raised in the introduction: scalability and security. If a DDM
participant has a popular asset, or the DDM contains another participant with
a large number of users that access many assets simultaneously, then the system
of the data provider must scale to meet demand, and the network reconfigured
accordingly. It is investigated in Sec. 6.5.1 as Access Tracking. For the security
case, we focus on distributed data processing, in particular federated learning.
In this use case, data transfer needs to be repeated multiple times. Therefore,
the compute container keeps the connection open and asks for data whenever
it is needed within the same session. In this type of connection, there will be
an active_time where the packets are being transferred and an idle_time where

90 Chapter 6. Tracking container network connections in a DDM

no packet is being transferred, but the connection is open. We observe it as a
traffic pattern. The real network traffic is compared with this pattern to detect
the possible anomalies in data transfer. It is investigated in Sec. 6.5.2 as Pattern
Tracking.

6.5.1 Access tracking

This case allows us to track the access behavior of the domains in a DDM to
a specific data asset. This information can help in enhancing the performance
by scaling the number of containers. When the load on the system is high, new
containers are generated, and the load is distributed between these containers.
In such a case, the containers that have the most effect on the load have to be
selected to be duplicated and moved toanother server. After duplication, part of
the load should be rerouted to these new containers.

We look at two values to select which containers have to be duplicated and
run on another server when the network is under high load. The first is the
number of access to each asset, and the second is the number of access from each
domain. We calculate these numbers by identifying the client-side’s domain, the
client-side’s compute container, and the server-side’s data container using the
connection ID.

Accordingly, there are two scenarios for tracking access. 1) asset access; 2)
domain access; which are explained in the following. In addition, we explain a
method for detecting the high load on the system at the end of this section.

1. Tracking based on asset access: In this case, we count the number of
access to different data assets on the server-side to determine which asset
or assets have the most access. To count the number of access to each data
asset, we save the number of connections to data containers in the switch
indexing by the connection ID. We then calculate the number of connections
to the data containers from different domains. If the number of connections
of a data container is more than a certain threshold, we select that data
container for duplication. To illustrate with an example how this would
work, we simulated a scenario of running sharing requests by considering
10 different client-side domains accessing 20 data assets in a server-side
domain (Fig. 6.4). We set the average access to assets as the threshold. We
counted the number of access to each asset by relating the connection ID to
its asset (Fig. 6.4a). According to Fig. 6.4a, the average number of access
from different domains to all data assets is 7. The number of access to asset
15 is more than the average. Therefore, it will be selected for duplication.
We then have to select which domain’s requests have to be rerouted to the
new container. This can be done by looking at the number of access of
each domain to the selected asset as shown in Fig. 6.4b. We divide the load
related to asset 15 between two containers by sorting the domains based on

6.5. Tracking Scenarios 91

10

Number of access to domain 0

919101220 7 1611 6 2 18 3 15 1 1713 4 5 8 14 2
Asset name

a

(a) Number of access to the data assets (b) Number of access to asset15

Figure 6.4: Asset access tracking in a DDM using connection ID

their number of access and then assigning each domain to one of the two
containers from the beginning of the sorted list.

2. Tracking based on domain access: Another reason for a high load on
the system can be lots of connections from client-side domain to server-side
domain but not necessarily to one individual data container. A client-side
domain may make connections to different data containers of the server-side
domain so that the number of connections to a specific container is not high;
however, the total number of connections related to this client-side domain
is high, leading to increased load on the system.

In this case, we simulated a scenario of running the sharing requests from
10 different client-side domains to server-side domain0 (Fig. 6.5).

Number of access to domain 0
Number of access from domain 2
"

s 8 110 s 2 4 7 1 6 3 18 17 9 13 16 2 3 5 4 19 11 12 20
Asset name

(a) Number of access from the other do- (b) Number of access to data assets from
mains to domainQ domain2 to domain0

Figure 6.5: Domain access tracking in a DDM using connection_ID

In Fig. 6.5a, the most number of access is from domain 2. For distributing
the load, by detecting the most referring assets of this domain (Fig. 6.5b),
we can duplicate the containers and reroute the connections of this domain
to the new containers.

92 Chapter 6. Tracking container network connections in a DDM

Detecting high load: To detect the high load on the system, we can consider
the total time of a data transfer and the number of running connections as metrics.
This method works when the connections that are made by the application are
always active. In other words, the packets are being transferred continuously
between SYN and FIN time. The thresholds in this method are application-
specific and have to be set accordingly.

The total time of a sharing request can be measured in a P4 program by
calculating the time difference between the SYN and the FIN flags of a connection.
In P4, whenever an SYN packet of a connection is seen, its ingress time will
be saved in a register with the index of its connection ID. The total time is
then saved in another register when the FIN flag of that connection arrives.
When the total time is calculated, it will be compared with the expected total
time of the connection that is set by the controller. If it is more than what is
expected, it will be counted as the connections that their total time is more than
the threshold. When the number of requests with a total time of more than a
threshold crosses a specific number (that is determined by the controller), the
switch sends a notification to the controller as a situation where the load on the
system is high.

When the controller receives a notification from the switch, it also reads the
register that has the number of running connections. The switch keeps the number
of running connections in the system by counting the connections that their SYN
flag is seen, but their FIN is not. The combination of the high number of running
connections and the long total time is a sign that the system is under a high load.
The P4 code of this implementation is available on GitHub [107].

6.5.2 Pattern tracking

The last illustrative scenario is about detecting a specific pattern in the activities
related to the connection from a compute asset to a data asset. There are lots of
algorithms whose behavior in making the connections and transferring the data
has a specific pattern. By detecting this pattern, the anomalies like system failure
or malicious behaviors can be promptly identified to make the system more secure.
In addition, the state of the system, like the number of incoming requests and
their corresponding load, can be predicted. Our goal is to detect the pattern, and
we perform it by programming the switch using the connection ID.

As an example, we consider federated machine learning algorithms’ behavior.
When the data has to stay in its location and cannot be moved, federated ma-
chine learning algorithms are deployed for performing the computation on data.
Therefore, each part of data is in a location that is different from the other,
and the model will be trained in a location where data resides [82,108]. After
training the model, the model parameters need to be transferred to where all the
information is gathered, and the general model can be built [109]. This process
is repeated multiple times so the training process is complete. In this case, the

6.5. Tracking Scenarios 93

compute container on client-side keeps the connection open for better optimiza-
tion. Therefore, sometimes the connection is active and the data is transferred,
and sometimes it is idle. If this process is run in our setup, what we observe on
the server-side is a pattern of connections from the client-side to a specific data
container. In these connections, the same amount of data is transferred every
time, and they repeat with a specific time interval.

For detecting the pattern, we have to be able to detect the idle_time, the
active_time, and the amount of data that is transferred between containers in
active_time. We use a list of registers in the P4 program for finding these numbers.
We define the registers and index them with the connection ID. The registers are:

1. Last_packet_ingress_time < 48bit >: This register always keeps the arrival
time of the last packet.

2. Start_idle_time < 48bit >: This register keeps the start time of an idle_time.
3. End_idle_time < 48bit >: This register keeps the end time of an idle_time.

4. Total_data < 48bit >: This register keeps the total amount of data that is
being transferred from the first packet to the last packet of the connection.

5. Data_before_max_idle_time < 48bit >: This register keeps the amount of
data that is being transferred before the maximum idle time.

6. Time interval < 48bit >: This register keeps the maximum duration of the
idle_time.

Algorithm 1 Finding the maximum idle_time of a TCP connection in P4
Define Last_time, Current_time, Difference
Last_time = Last_packet_ingress_time[Connection ID]
Current_time = packet.metadata.ingress_time
Difference = Current_time - Last_time
if Difference > Time_interval[Connection ID] then
Update Time_interval[Connection ID] with Difference
Update Start_idle_time[Connection ID] with Last_time
Update End_idle_time[Connection ID] with Current_time
Update Data_before_max_idle_time[ConnectionID]withTotal_data[Connection
D]
end
UpdateLast_packet_ingress_time[ConnectionID]with packet.metadata.ingresstime

The algorithm we implemented in the switch to detect the idle_time is shown
in Algorithm 1. Whenever a packet is coming to the switch, the difference between
the arrival time of the packet and the arrival time of the last packet will be saved

94 Chapter 6. Tracking container network connections in a DDM

in a local variable in the P4 program. If the current difference is more than the
previous difference that has been saved in the time_interval register, then the
time_interval will be updated. The transferred data will be updated accordingly.

The registers are read by the controller repeatedly. However, in this method,
only the maximum idle_time is saved. To avoid that, every time the controller
reads the registers, it sets the time_interval to zero. As a result, different duration
of idle_time can be detected.

We performed an experiment to illustrate the pattern tracking method. In
our experiment, a compute container was running on the client-side in a physical
machine. A data container was running on the server-side in another physical
machine. The physical machines were connected via the internet. We generated
traffic that follows a specific pattern. The same amount of data was transferred
through the network every 5 seconds within an open connection.

le6

1.0 A

0.8

o
o

Load (Bytes)

14
S

0.2

0.0 1 L —O—J—.—-D—Q——Q—. []

T T T T T T T
175 180 185 190 195 200 205
Time (seconds)

Figure 6.6: Pattern Tracking: active and idle_time of a connection from a compute
container to a data container. The points show the time the information is read
by the controller. The numbers of each reading time are shown in Table 6.1.

Table 6.1 shows the content of registers every time the controller reads the
information from the switch. The polling time is when the controller reads the
registers that is in every 3 seconds. Note that the time_interval was set to zero af-
ter the controller read the registers. The times in the table are the switch’s time;
that is, the time from when it started in seconds. According to Table 6.1, for find-
ing the active_time and idle_time after reading the registers, if the Start_idle_time
was equal to the previous one, we ignored that row of information. Among the re-
maining rows, we considered the time between Start_idle_time and End_idle_time
of a row as idle_time and the End_idle_time of a row and Start_idle_time of the

0.6. Related Work 95

Table 6.1: P4 register’s content for finding the pattern of the connection from a
compute container to a data container

Polling number | Polling_time | Start_idle_time | End_idle_time | Time_interval | Last_packet_ingress_time | Data_before_max_idle_time
1 174,59 173,64 173,65 0,01 174,59 60

2 177,94 173,64 173,65 0,00 174,59 60

3 181,25 174,59 179,33 4,74 180,24 1086475

4 184,59 174,59 179,33 0,00 180,24 1086475

5 187,91 180,24 184,88 4,64 185,75 2172751

6 191,22 185,75 190,33 4,57 191,22 3259027

next row as the active_time. Fig. 6.6 shows the pattern based on the numbers in
the table. The blue points in the figure are the polling time.

In the second row of the table, the time_interval is 0.0; that is because after
the previous time that it was set to zero, no packet came, so it has not changed.
This is the second point in Fig. 6.6. In the figure, we show the load that is
transferred each time based on Table 6.1. The load that is shown in the table is
the accumulative load that is read related to each connection ID.

The polling time has to be less than the sum of active_time and idle_time.
Therefore, it has to be justified by the behavior of the compute asset. Polling
time can be set with a small number at the start. After realizing the first active
and idle_time, we update the polling time. We then adjust the pulling time every
time we read the information.

6.6 Related Work

Multiple works have been done in the area of network flow monitoring in pro-
grammable data planes. For example, in [110] the authors design and implement
a bandwidth-efficient in-band network telemetry system that can track the rules
matched by the packets of a flow. They use a traffic reduction scheme in their
INT system to reduce the rate of generated INT reports. They also store INT
reports about the changes in the rule by using global unique IDs for every rule.
Also, in [111] authors use hash tables to maintain the whole information about
elephant flows but summarize records for mice flows, by applying a novel collision
resolution and record promotion strategy to hash tables. We use the connection
ID for saving the information and, in addition, set it as the destination port
number of the connection to reduce the overhead. In our methodology, we show
how using the connection ID as the destination port number of the connections
is possible.

[112] proposes FlowLens. It is a system for traffic classification to support
security in network applications based on machine learning algorithms. The au-
thors propose a novel memory-efficient representation for features of flows called
flow marker. A profiler running in the control plane automatically generates an
application specific flow marker that optimizes the trade-off between resource
consumption and classification accuracy according to a given criterion selected

96 Chapter 6. Tracking container network connections in a DDM

by the operator. The authors in [113] try to design a low overhead system for
monitoring and gathering information by deploying a P4 program. The monitor-
ing phase in their setup includes a proactive phase that keeps the per-flow packet
counter and a reactive phase that runs for large flows only and gathers metrics
of the flow, e.g., packet counts and packet timestamps. Our proposed method
is specifically designed for data sharing applications. It builds a multi-domain
container-based DDM that provides the possibility of tracking the transactions
related to the shared assets in the network layer.

In addition, there are some works that propose methods of monitoring in a
DDM. For example, in [114] the authors propose an architecture to distinguish
programs running inside containers by monitoring system calls. [115] offers an
intrusion detection system based on OC-SVM that monitors and analyzes system
calls of containers. [116] designs an auditor node in containerized DDM that is
a node responsible for authorization through signatures application transactions.
These methods focus on the operation of the containers in system calls and on the
application layer. Our method focuses on monitoring the data exchange behavior
of containers in the network layer through P4 programming. In this way, extra
information like the amount of transferred data or the number of connections that
have been made during a specific time can be extracted to make them available
to the application layer.

6.7 Conclusion

In this chapter, we first showed how the data exchange management system can
cooperate with a P4-based containerized DDM. We improved the architecture
introduced in Chapter 5 by adding the capability of tracking the transactions
related to the shared assets. We specified a unique connection ID for each con-
nection and used this ID for transferring the asset in a sharing request from one
container to the other. The connection ID is used as the destination port of
the connection between containers. We used P4 to program the switch, make
the connections based on the connection ID, and gather traffic information. We
explained each step of setting up the network and presented the required config-
uration. We then demonstrated how we can use the connection ID for tracking
the sharing transactions between containers and, accordingly, the transactions
related to each shared asset. We presented asset access, domain access, and pat-
tern tracking scenarios to show what kinds of information we can extract from the
switch based on our setup and how to use this information to be able to provide
better performance and security in a DDM.

Chapter 7

Conclusion

This Ph.D. thesis presented research on security measurements of the network
infrastructure of containers for data exchange in a DDM. As the demand for
data sharing increases, it becomes critical to make a secure data exchange infras-
tructure in a DDM. Part of this infrastructure is network connections between
containers that make the data transfer from one participating party to the other
one possible. Containers and the technologies that connect them together play
an important role in security in a DDM. The connections between containers are
based on the policies that are established between participating organizations in
a DDM. They have to be described in a generic model in the whole DDM to
make policy management more efficient. More importantly, the technology that
connects containers has to support enforcing the agreed sharing policies. Shar-
ing policies have to be translated to network policies, and then they have to be
set between containers. In addition, for building a secure data sharing network
infrastructure, providing the ability to define different levels of isolation between
containers based on the application’s needs is essential. On the other hand, as the
containers’ configuration and sharing policies may change, programmable network
infrastructure is needed to support the changes in the network.

In this thesis, we studied how container and recent software developments,
especially Kubernetes and P4, allow us to build a network of containers that can
handle the abovementioned requirements. Through the experiences we gained
from setting up such a network in both single and multi-domain environments,
we identified the strong points and the limitations of the technologies used. In
addition, we obtained insights to detect the essential elements to build the network
infrastructure of the DDM using containers and presented different architectures
of container networks, and reasoned how they are secure against different types
of attacks.

The main contributions described in the work are:

e A generic model for describing DDM sharing policies

97

98 Chapter 7. Conclusion

e Different architectural designs with different connectivity levels between
containers using Kubernetes and Docker Swarm

e A programmable framework for building a multi-domain DDM and manag-
ing the containers connections using P4

e Tracking container connections in a DDM using P4

With these contributions and the insights we gathered during the experiments
and the proof of concepts, we will now be able to answer the research questions.

7.1 Answers to the research questions

The aim of this thesis is to investigate the methods for improving the security of
network connections between containers to build the network infrastructure of a
DDM. Our main research question is formulated as:

RQ: How does a container-based infrastructure guarantee secure
and high-performance data sharing among organizations?

To answer this question, we have defined a number of sub-questions that cover
several aspects of our main research question more specifically:

e RQ1: How to describe high-level data sharing policies, and de-
sign a module for accepting or rejecting the sharing requests?

In order to be able to describe the sharing policies in a DDM we selected
Open Digital Rights Language (ODRL). ODRL is a language for modeling
the permissions and prohibitions regarding digital resources, i.e., assets. In
Chapter 2, we defined ODRL policies as a set of rules. A rule includes the
digital asset that is shared, the actions that can be done on the asset, and the
location where the actions can happen. In addition, we defined a matching
module to manage the user’s requests automatically. The matching module
uses SPARQL queries to verify if the user’s requests are allowed or not.
The user has to specify digital resources, the location of execution, and the
location where the results have to be sent after the request execution.

e RQ2:How can overlay network technologies provide the required
policy enforcement and isolation, while maintaining quality in a
sharing environment?

To address RQ2, the following research questions were defined and ad-
dressed:

7.1. Answers to the research questions 99

— RQ2.1: What are the functionalities of the available overlay technolo-
gies for managing container connectivity and enforcing sharing poli-
cies?

The capabilities of various container overlay technologies were exam-
ined in Chapter 3, with a focus on how they establish connections
between containers and enforce sharing policies. Two of the most pop-
ular technologies were selected and compared in terms of their ability
to support the number of containers and policies required in a DDM.

— RQ2.2: Can different configurations of available container overlays
meet the requirements of a DDM?

In Chapter 4, different types of sharing requests were characterized
based on varying isolation levels and mapped to container connectiv-
ity methods, including Overlay per DDM, Overlay per request, and
Overlay per group. Using the results obtained in Chapter 3, each con-
nectivity method was implemented with the appropriate technology
and compared in terms of security and performance. The investigation
revealed that the ”"Overlay per request” method was less susceptible
to cross-container attacks than the other methods, and there was little
difference between the methods in terms of the time taken to complete
sharing requests.

e RQ3: How to build a containerized multi-domain DDM on a
programmable network infrastructure to enforce sharing poli-
cies?

To answer RQ2 we used Kubernetes and Swarm as centralized orchestra-
tors that can manage the connections. However, for building a multi-domain
container-based network in which each domain can orchestrate its own re-
sources, we could not rely on these technologies. To answer RQ3, we pro-
posed using P4 software switches and presented an architecture that sup-
ports multi-domain data exchange in a DDM in Chapter 5. Each domain has
one or more P4 switches to which the containers are connected. The switch
is programmed by its domain administrator. In this way, the connections
between the containers of the domain are managed independently from the
other domains. In addition, the connections are programmable and can be
modified when needed. To provide maximum isolation between containers
and the sharing requests, we introduced the concept of the connection ID
for each connection between two containers. The proposed method led to
a multi-domain programmable network infrastructure that supports policy
enforcement and can benefit from the advantages of the P4 programming
language.

e RQ4: How can P4-based network capabilities assist the data

100

Chapter 7. Conclusion

sharing management system in providing security and maintain-
ing quality?

We improved the proposed architecture in Chapter 5 to answer RQ4. In
Chapter 6, we used the connection ID to relate the traffic passing through
the switch to the assets shared in the DDM. We programmed the switch
to track the behavior of containers in making connections and transferring
data. We demonstrated how tracking could help in two cases: Scalability
and Security. By looking at the tracking information, we realized which
containers needed to be scaled up. By detecting the pattern of connec-
tions between containers, we assisted in detecting the malicious behavior of
containers when there is an anomaly to improve security. In addition, we
introduced a federated data exchange management system (Mahiru) that
manages the execution of the sharing requests after checking them against
DDM policies. We showed where it can be combined with the P4-based
containerized infrastructure to complete the process of executing a sharing
request in a DDM.

7.2 Future work

During our research and explorations, we identified topics for future research:

1. Supporting containerized network functions

In this thesis, we investigated the methods of connectivity between contain-
ers focusing on using the containers as data containers that include shared
data, and compute containers that include shared algorithms. However, the
containers can also be deployed as network functions to improve security
and performance. The method of instantiating, bringing the connectivity,
and the order of running such dynamic containerized network functions is
a challenge that can be investigated further.

Supporting dynamic topology changes

In Chapter 4, we defined different container network typologies based on
application needs. According to such needs of an application, these topolo-
gies may change, e.g., removing a container from a network or adding a new
one. For example, in Chapter 6, we proposed instantiating new containers
according to the results we got from tracking the connections. Creating new
containers leads to changes in the network topology. Moreover, when includ-
ing containerized networking functions, more complicated topologies have
to be supported. We conclude that supporting a dynamic network topology
in a container-based network is essential. Evaluating the performance of
the architectures proposed in this thesis in supporting the dynamicity in
the network is an interesting future work.

7.2. Future work 101

3. Improving tracking scenarios

We presented a pattern tracking method in Chapter 6 to show how P4 can
assist in monitoring the network and improving security. The method can
be improved by considering more metrics like the requests execution time,
connections’ endpoints, and communication protocols. In addition, we used
federated machine learning algorithms’ behavior as a use case. However,
more complicated use cases with different patterns can be defined. In this
case, the capability of P4 in detecting the patterns has to be evaluated.

4. Improving network resource management

The method of allocating network resources to containers is still a chal-
lenge. For example, it is still not possible to limit the bandwidth utilization
of a container in its host. In Chapter 6, we demonstrated how each con-
tainers’ connection has a specific connection ID. This allows us to be able
to determine the resource utilization of each container in P4. We need
to research if P4 can support running an algorithm that manages the uti-
lization of resources like available bandwidth according to the application
considerations.

5. Integrating of Mahiru and Pj-based containerized network in-
frastructure In Chapter 6, we introduced Mahiru, a federated data ex-
change management system in which the owners have complete control over
their shared data and users can submit a wide variety of requests. In design-
ing the network infrastructure of DDM, we considered the characteristics of
Mabhiru to make the containers’ network consistent with Mahiru’s features.
Although the container-based network infrastructure and Mahiru are al-
ready implemented, they are still not fully integrated. It is necessary to
investigate the integration methods of the proposed containerized network
with Mahiru.

1]

[9]

Bibliography

“Fleet and MRO Forecast,” https://www.planestats.com/about, 2023, [On-
line; accessed July 2023].

“DLALD,” https://www.dl4ld.nl, 2023, [Online; accessed April 2023].

“Enabling Personal Intervention,” https://delaat.net/epi/, 2023, [Online;
accessed April 2023].

“What is Data Sharing,” https://www.gensquared.com/
what-is-data-sharing/#gref, 2023, [Online; accessed July 2023].

K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, April 2018, pp. 189-197.

S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues, chal-
lenges, and the road ahead,” IEEE Access, vol. 7, pp. 52976-52 996, 2019.

H. Zeng, B. Wang, W. Deng, and W. Zhang, “Measurement and evalua-
tion for docker container networking,” in 2017 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),
Oct 2017, pp. 105-108.

L. Makowski and P. Grosso, “Evaluation of virtualization and traffic filter-

ing methods for container networks,” Future Generation Computer Systems,
vol. 93, pp. 345 — 357, 2019.

J. Claassen, R. Koning, and P. Grosso, “Linux containers networking: Per-
formance and scalability of kernel modules,” in NOMS 2016 - 2016 IEEE/I-
FIP Network Operations and Management Symposium, April 2016, pp. 713~
717.

103

https://www.planestats.com/about
https://www.dl4ld.nl
https://delaat.net/epi/
https://www.gensquared.com/what-is-data-sharing/#gref
https://www.gensquared.com/what-is-data-sharing/#gref

104

[10]

Bibliography

D. Thilakanathan, S. Chen, S. Nepal, R. Calvo, and L. Alem, “A platform
for secure monitoring and sharing of generic health data in the cloud,”
Future Generation Computer Systems, vol. 35, pp. 102 — 113, 2014, special
Section: Integration of Cloud Computing and Body Sensor Networks; Guest
Editors: Giancarlo Fortino and Mukaddim Pathan.

M. Ali, R. Dhamotharan, E. Khan, S. U. Khan, A. V. Vasilakos, K. Li,
and A.Y. Zomaya, “Sedasc: Secure data sharing in clouds,” IEEE Systems
Journal, vol. 11, no. 2, pp. 395404, June 2017.

D. Harris, L. Khan, R. Paul, and B. Thuraisingham, “Standards for se-
cure data sharing across organizations,” Comput. Stand. Interfaces, vol. 29,
no. 1, pp. 86-96, Jan. 2007.

L. Gommans, J. Vollbrecht, B. G. de Bruijn, and C. de Laat, “The service
provider group framework: A framework for arranging trust and power to
facilitate authorization of network services,” Future Generation Computer
Systems, vol. 45, pp. 176 — 192, 2015.

R. Cushing, R. Koning, L. Zhang, C. d. Laat, and P. Grosso, “Auditable
secure network overlays for multi-domain distributed applications,” in 2020
IFIP Networking Conference (Networking), 2020, pp. 658-660.

“International Data Spaces Association,” https:/ /www.
internationaldataspaces.org, 2022, [Online; accessed July 2022].

“International data spaces reference architecture model version 3.0,” April
2019. [Online]. Available: https://internationaldataspaces.org/download/
16630/

“Smart Connected Supplier Network,” https://smart-connected.nl/en,
2022, [Online; accessed July 2022].

“Green Village Sharing Platform,” https://bit.ly/2HQDUNu, 2022, [On-
line; accessed April 2022].

“NLIP,” https://www.nlip.org, 2019, [Online; accessed April 2019].
“Docker,” https://www.docker.com/, 2019, [Online; accessed June 2019].

“What are namespaces and cgroups?” https://www.nginx.com/blog/
what-are-namespaces-cgroups-how-do-they-work/#:~:text=Namespace,
2023, [Online; accessed July 2023].

“Kubernetes,” https://kubernetes.io/docs/tutorials/kubernetes-basics/,
2019, [Online; accessed June 2019].

https://www.internationaldataspaces.org
https://www.internationaldataspaces.org
https://internationaldataspaces.org/download/16630/
https://internationaldataspaces.org/download/16630/
https://smart-connected.nl/en
https://bit.ly/2HQDUNu
https://www.nlip.org
https://www.docker.com/
https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/#:~:text=Namespace
https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/#:~:text=Namespace
https://kubernetes.io/docs/tutorials/kubernetes-basics/

Bibliography 105

[23]

[24]

[25]

[26]

[27]

C. Boettiger, “An introduction to docker for reproducible research,”
SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71-79, Jan. 2015.

“Software-Defined Networking (SDN) Definition,” https://opennetworking.
org/sdn-definition/, 2022, [Online; accessed July 2022].

“ONF Specifications,” https://opennetworking.org/sdn-resources/
onf-specifications/onf-specifications/, 2022, [Online; accessed July 2022].

“P4: Open Source Programming Language,” https://p4d.org/, 2022, [On-
line; accessed April 2022].

M. Menth, H. Mostafaei, D. Merling, and M. Héberle, “Implementation and
evaluation of activity-based congestion management using p4 (p4-abc),”
Future Internet, vol. 11, p. 159, 07 2019.

S. van den Braak, S. Choenni, R. Meijer, and A. Zuiderwijk, “Trusted third
parties for secure and privacy-preserving data integration and sharing in the
public sector,” in Proc. Conf. on Digital Government Research. New York,
NY, USA: ACM, 2012, pp. 135-144.

L. Gommans, J. Vollbrecht, B. G. de Bruijn, and C. de Laat, “The service
provider group framework: A framework for arranging trust and power to
facilitate authorization of network services,” Future Generation Computer
Systems, vol. 45, pp. 176-192, 2015.

M. M. Mello, J. K. Francer, M. Wilenzick, P. Teden, B. E. Bierer, and
M. Barnes, “Preparing for responsible sharing of clinical trial data,” New
England Journal of Medicine, vol. 369, no. 17, pp. 1651-1658, 2013, pMID:
24144394. [Online]. Available: https://doi.org/10.1056/NEJMhle1309073

R. Cushing, L. Zhang, Y. Demchenko, C. de Laat, and P. Grosso, “Data
harbours: Computing archetypes for digital marketplaces,” in Proc. Conf.
International Conference on High Performance Computing and Simulation
(HPCS 2019), 2018.

A. Uszok, J. M. Bradshaw, and R. Jeffers, “Kaos: A policy and domain ser-
vices framework for grid computing and semantic web services,” in Trust
Management, C. Jensen, S. Poslad, and T. Dimitrakos, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2004, pp. 16-26.

R. Hoekstra, J. Breuker, M. D. Bello, and A. Boer, “The Ikif core ontology
of basic legal concepts,” in In Legal Ontologies and Artificial Intelligence
Techniques. Ceur.org, 2007.

https://opennetworking.org/sdn-definition/
https://opennetworking.org/sdn-definition/
https://opennetworking.org/sdn-resources/onf-specifications/onf-specifications/
https://opennetworking.org/sdn-resources/onf-specifications/onf-specifications/
https://p4.org/
https://doi.org/10.1056/NEJMhle1309073

106

[34]

[35]

[38]

[39]

Bibliography

S. V. Fabien Gandon, Guido Governatori, “Normative requirements as
linked data,” in JURIX 2017 - The 30th international conference on Le-
gal Knowledge and Information Systems, Luxembourg, Luxembourg, 2017,
pp- 1-10.

H.-P. Lam, M. Hashmi, and B. Scofield, “Enabling reasoning with legal-
ruleml,” in Rule Technologies. Research, Tools, and Applications, J. J.
Alferes, L. Bertossi, G. Governatori, P. Fodor, and D. Roman, Eds. Cham:
Springer International Publishing, 2016, pp. 241-257.

D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “Extensible
access control markup language (xacml) and next generation access
control (ngac),” in Proc. ACM Workshop on Attribute Based Access
Control, ser. ABAC ’16. New York, NY, USA: ACM, 2016, pp.
13-24. [Online]. Available: http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/
2875491.2875496

X. Maronas, E. Rodriguez, and J. Delgado, “An architecture for
the interoperability between rights expression languages based on
xacml,” in Proc. Workshop for technical, economic and legal aspects
of business models for wvirtual goods incorporation the 5th international
ODRL workshop, Sep 2009, pp. 29-47. [Ounline]. Available: http:
//www.virtualgoods.org/2009/29_VirtualGoods2009Book.pdf

F. G. Serena Villata, “L4LOD Vocabulary Specification 0.2,” https://ns.
inria.fr/14lod/v2/14lod_v2.html, 2013, [Online; accessed 4-June-2019].

M. Palmirani, M. Martoni, A. Rossi, C. Bartolini, and L. Robaldo, “Pronto:
Privacy ontology for legal reasoning,” in Electronic Government and the
Information Systems Perspective, A. K6 and E. Francesconi, Eds. Cham:
Springer International Publishing, 2018, pp. 139-152.

M. Li and R. Samavi, “Dsap: Data sharing agreement privacy ontology,”
in Proc. Conf. Semantic Web Applications and Tools for Life Sciences
(SWAT4HCLS 2018). CEUR.org, 2018.

“Calico,” https://docs.projectcalico.org/v2.0/introduction/, 2019, [Online;
accessed June 2019)].

“Cilium,” https://docs.cilium.io/en/v1.5/, 2019, [Online; accessed June
2019].

“Weave Net,” https://www.weave.works/oss/net/, 2019, [Online; accessed
May 2019].

http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/2875491.2875496
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/2875491.2875496
http://www.virtualgoods.org/2009/29_VirtualGoods2009Book.pdf
http://www.virtualgoods.org/2009/29_VirtualGoods2009Book.pdf
https://ns.inria.fr/l4lod/v2/l4lod_v2.html
https://ns.inria.fr/l4lod/v2/l4lod_v2.html
https://docs.projectcalico.org/v2.0/introduction/
https://docs.cilium.io/en/v1.5/
https://www.weave.works/oss/net/

Bibliography 107

[44] “Flannel,” https://github.com/coreos/flannel#flannel, 2019, [Online; ac-
cessed June 2019].

[45] D. T. Narten, E. Gray, D. L. Black, L. Fang, L. Kreeger, and M. Napierala,
“Problem Statement: Overlays for Network Virtualization,” RFC 7364,
Oct. 2014. [Online]. Available: https://www.rfc-editor.org/info/rfc7364

[46] M. Lasserre, F. Balus, T. Morin, D. N. N. Bitar, and Y. Rekhter,
“Framework for Data Center (DC) Network Virtualization,” RFC 7365,
Oct. 2014. [Online]. Available: https://www.rfc-editor.org/info/rfc7365

[47] “eted,” https://github.com/coreos/eted, 2019, [Online; accessed June
2019).

[48] “Networking and Cryptography library,” https://nacl.cr.yp.to/, 2022, [On-
line; accessed July 2022].

[49] “The Berkely Packet Filter,” https://www.kernel.org/doc/html/latest/
bpf/index.html, 2019, [Online; accessed June 2019].

[50] “Troubleshooting in Weave,” https://www.weave.works/docs/net/latest/
troubleshooting/, 2022, [Online; accessed July 2022].

[51] “Weave policy profile,” https://docs.gitops.weave.works/docs/policy/
weave-policy-profile/, 2022, [Online; accessed July 2022].

[52] “Policy audit in Cilium,” https://docs.cilium.io/en/v1.8/gettingstarted/
policy-creation/, 2022, [Online; accessed July 2022].

[53] “Cilium Troubleshooting,” https://docs.cilium.io/en/v1.10/operations/
troubleshooting/, 2022, [Online; accessed July 2022].

[54] “Policy monitoring in Calico,” https://projectcalico.docs.tigera.io/
security/calico-enterprise/compliance, 2022, [Online; accessed July 2022].

[55] “Defend against DoS attacks,” https://projectcalico.docs.tigera.io/
security /defend-dos-attack, 2022, [Online; accessed July 2022].

[56] “Troubleshooting in Calico,” https:/ /projectcalico.docs.tigera.io/
maintenance/troubleshoot /troubleshooting, 2022, [Ounline; accessed
July 2022].

[57] “Calico firewall integration,” https://www.tigera.io/features/

firewall-integration/, 2022, [Online; accessed July 2022].

https://github.com/coreos/flannel#flannel
https://www.rfc-editor.org/info/rfc7364
https://www.rfc-editor.org/info/rfc7365
https://github.com/coreos/etcd
https://nacl.cr.yp.to/
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.weave.works/docs/net/latest/troubleshooting/
https://www.weave.works/docs/net/latest/troubleshooting/
https://docs.gitops.weave.works/docs/policy/weave-policy-profile/
https://docs.gitops.weave.works/docs/policy/weave-policy-profile/
https://docs.cilium.io/en/v1.8/gettingstarted/policy-creation/
https://docs.cilium.io/en/v1.8/gettingstarted/policy-creation/
https://docs.cilium.io/en/v1.10/operations/troubleshooting/
https://docs.cilium.io/en/v1.10/operations/troubleshooting/
https://projectcalico.docs.tigera.io/security/calico-enterprise/compliance
https://projectcalico.docs.tigera.io/security/calico-enterprise/compliance
https://projectcalico.docs.tigera.io/security/defend-dos-attack
https://projectcalico.docs.tigera.io/security/defend-dos-attack
https://projectcalico.docs.tigera.io/maintenance/troubleshoot/troubleshooting
https://projectcalico.docs.tigera.io/maintenance/troubleshoot/troubleshooting
https://www.tigera.io/features/firewall-integration/
https://www.tigera.io/features/firewall-integration/

108

[58]

[60]

[61]
[62]

[63]

[64]

[68]

Bibliography

“Container Security by Adding Zero Trust to
Calico Cloud,” https://channelvisionmag.com/
tigera-tightens-container-security-by-adding-zero-trust-to-calico-cloud/,
2022, [Online; accessed July 2022].

“Tigera Releases Container Security Features
on Calico Cloud,” https://www.devopsdigest.com/
tigera-releases-container-security-features-on-calico-cloud, 2022, [On-

line; accessed July 2022].

“Layer 7 Protocol Visibility,” https://docs.cilium.io/en/latest/
observability /visibility /, 2022, [Online; accessed July 2022].

“iPerf,” https://iperf.fr/, 2019, [Online; accessed May 2019].

J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira, and
A. Akella, “Iron: Isolating network-based {CPU} in container environ-
ments,” in 15th { USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), 2018, pp. 313-328.

“ISHARE project,” https://www.ishareworks.org/project, 2019, [Online;
accessed April 2019].

A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio, and M. Vil-
lari, “Towards osmotic computing: Analyzing overlay network solutions to
optimize the deployment of container-based microservices in fog, edge and
iot environments,” in 2018 IEEE 2nd International Conference on Fog and
Edge Computing (ICFEC), May 2018, pp. 1-10.

“AppArmor,” https://wiki.archlinux.org/index.php/AppArmor, 2020, [On-
line; accessed May-2020].

“SecurityEnhancedLinux,” https://en.wikipedia.org/wiki/
Security-Enhanced-Linux, 2020, [Online; accessed May 2020].

S. Hosseinzadeh, S. Laurén, and V. Leppénen, “Security in container-based
virtualization through vtpm,” in 2016 IEEE/ACM 9th International Con-
ference on Utility and Cloud Computing (UCC), 2016, pp. 214-219.

F. Loukidis-Andreou, I. Giannakopoulos, K. Doka, and N. Koziris, “Docker-
sec: A fully automated container security enhancement mechanism,” in
2018 IEEE 38th International Conference on Distributed Computing Sys-
tems (ICDCS), 2018, pp. 1561-1564.

J. Chelladhurai, P. R. Chelliah, and S. A. Kumar, “Securing docker con-
tainers from denial of service (dos) attacks,” in 2016 IEEE International
Conference on Services Computing (SCC), 2016, pp. 856-859.

https://channelvisionmag.com/tigera-tightens-container-security-by-adding-zero-trust-to-calico-cloud/
https://channelvisionmag.com/tigera-tightens-container-security-by-adding-zero-trust-to-calico-cloud/
https://www.devopsdigest.com/tigera-releases-container-security-features-on-calico-cloud
https://www.devopsdigest.com/tigera-releases-container-security-features-on-calico-cloud
https://docs.cilium.io/en/latest/observability/visibility/
https://docs.cilium.io/en/latest/observability/visibility/
https://iperf.fr/
https://www.ishareworks.org/project
https://wiki.archlinux.org/index.php/AppArmor
https://en.wikipedia.org/wiki/Security-Enhanced-Linux
https://en.wikipedia.org/wiki/Security-Enhanced-Linux

Bibliography 109

[70] “Evaluating Container Platforms at Scale,” https://medium.com/
on-docker/evaluating-container-platforms-at-scale-5e7b44d93f2c, 2020,
[Online; accessed May 2020].

[71] “ODRL Information Model 2.2)” https://www.w3.org/TR/odrl-model/,
2019, [Online; accessed April 2019].

[72] “Calico Routing Modes,” https://octetz.com/docs/2020/
2020-10-01-calico-routing-modes/, 2020, [Online; accessed May 2020].

[73] “Docker overlay networks,” https://docs.docker.com/network/overlay/,
2020, [Online; accessed May 2020].

[74] “Prevent DNS (and other) spoofing with Calico,” https://www.tigera.io/
blog/prevent-dns-and-other-spoofing-with-calico/, 2020, [Online; accessed
May 2020].

[75] “OVN,” https://github.com/ovn-org/ovn-kubernetes, 2019, [Online; ac-
cessed June 2019].

[76] S. Shakeri, N. van Noort, and P. Grosso, “Scalability of container overlays
for policy enforcement in digital marketplaces,” in 2019 IEEFE 8th Interna-
tional Conference on Cloud Networking (CloudNet), 2019, pp. 1-4.

[77] E. Bacis, S. Mutti, S. Capelli, and S. Paraboschi, “Dockerpolicymodules:
Mandatory access control for docker containers,” in 2015 IEEE Conference
on Communications and Network Security (CNS), 2015, pp. 749-750.

[78] A. Martin, S. Raponi, T. Combe, and R. D. Pietro], “Docker ecosystem —
vulnerability analysis,” Computer Communications, vol. 122, pp. 30 — 43,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0140366417300956

[79] “priVAcy preserviNg federaTed leArninG infrastructurE for Secure Insight
eXchange,” https://distributedlearning.ai/, 2021, [Online; accessed April
2021].

[80] “A library for computing on data you do not own and cannot see,” https:
//github.com/OpenMined /PySyft, 2021, [Online; accessed April 2021].

[81] “MPyC: Secure Multiparty Computation in Python,” https://www.win.
tue.nl/~berry/mpyc/, 2021, [Online; accessed April 2021].

[82] “IBM Federated Learning,” https://github.com/IBM/
federated-learning-lib, 2022, [Online; accessed July 2022].

https://medium.com/on-docker/evaluating-container-platforms-at-scale-5e7b44d93f2c
https://medium.com/on-docker/evaluating-container-platforms-at-scale-5e7b44d93f2c
https://www.w3.org/TR/odrl-model/
https://octetz.com/docs/2020/2020-10-01-calico-routing-modes/
https://octetz.com/docs/2020/2020-10-01-calico-routing-modes/
https://docs.docker.com/network/overlay/
https://www.tigera.io/blog/prevent-dns-and-other-spoofing-with-calico/
https://www.tigera.io/blog/prevent-dns-and-other-spoofing-with-calico/
https://github.com/ovn-org/ovn-kubernetes
http://www.sciencedirect.com/science/article/pii/S0140366417300956
http://www.sciencedirect.com/science/article/pii/S0140366417300956
https://distributedlearning.ai/
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://www.win.tue.nl/~berry/mpyc/
https://www.win.tue.nl/~berry/mpyc/
https://github.com/IBM/federated-learning-lib
https://github.com/IBM/federated-learning-lib

110 Bibliography

[83] “Default bridge network,” https://docs.docker.com/network/
network-tutorial-standalone/#use-the-default-bridge-network, 2021,
[Online; accessed September 2021].

[84] “User-defined bridge networks,” https://docs.docker.com/network/
network-tutorial-standalone /#use-user-defined-bridge-networks, 2021,
[Online; accessed September 2021].

[85] “Improving Network Monitoring and Management with Programmable
Data Planes,” https://opennetworking.org/news-and-events/blog/
improving-network-monitoring-and-management-with-programmable-data-planes/,
2021, [Online; accessed September 2021].

[86] P. Manzanares-Lopez, J. P. Munoz-Gea, and J. Malgosa-Sanahuja, “Passive
in-band network telemetry systems: The potential of programmable data
plane on network-wide telemetry,” IEEE Access, vol. 9, pp. 20391-20409,
2021.

[87] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading real-time
ddos attack detection to programmable data planes,” in 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), 2019, pp.
19-27.

[88] A. Febro, H. Xiao, and J. Spring, “Distributed sip ddos defense with
p4,” in 2019 IEEE Wireless Communications and Networking Conference
(WCONC), 2019, pp. 1-8.

[89] M. Dimolianis, A. Pavlidis, and V. Maglaris, “A multi-feature ddos detec-
tion schema on p4 network hardware,” in 2020 23rd Conference on Inno-
vation in Clouds, Internet and Networks and Workshops (ICIN), 2020, pp.
1-6.

[90] “About Agilio SmartNICs,” https://www.netronome.com/products/
smartnic/overview/, 2021, [Online; accessed September 2021].

[91] “P4SmartNics,” https://opennetworking.org/wp-content /uploads/2020/
12/p4_d2 2017 nfp_architecture.pdf, 2021, [Online; accessed September
2021].

[92] Y. Qin, W. Quan, F. Song, L. Zhang, G. Liu, M. Liu, and C. Yu, “Flex-
ible encryption for reliable transmission based on the p4 programmable
platform,” in 2020 Information Communication Technologies Conference
(ICTC), 2020, pp. 147-152.

[93] F. Hauser, M. Schmidt, M. Haberle, and M. Menth, “P4-macsec: Dynamic
topology monitoring and data layer protection with macsec in p4-based
sdn,” IEEE Access, vol. 8, pp. 58 845-58 858, 2020.

https://docs.docker.com/network/network-tutorial-standalone/#use-the-default-bridge-network
https://docs.docker.com/network/network-tutorial-standalone/#use-the-default-bridge-network
https://docs.docker.com/network/network-tutorial-standalone/#use-user-defined-bridge-networks
https://docs.docker.com/network/network-tutorial-standalone/#use-user-defined-bridge-networks
https://opennetworking.org/news-and-events/blog/improving-network-monitoring-and-management-with-programmable-data-planes/
https://opennetworking.org/news-and-events/blog/improving-network-monitoring-and-management-with-programmable-data-planes/
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf

Bibliography 111

[94]

[95]

[99]

[100]

[101]

102)

[103]

[104]

[105]

“ARP spoofing,” https://www.veracode.com/security/arp-spoofing, 2021,
[Online; accessed April 2021].

“IP spoofing,” https://www.oreilly.com/library /view/

cena-security-210-260/9781787128873 /78f2bb48-0c68-452b-8edc-eb1482{7dbfc.

xhtml, 2021, [Online; accessed April 2021].

F. Hauser, M. Haberle, M. Schmidt, and M. Menth, “P4-ipsec: Site-to-site
and host-to-site vpn with ipsec in p4-based sdn,” IFEE Access, vol. 8, pp.
139567139 586, 2020.

“BEHAVIORAL MODEL (bmv2),” https://github.com/p4lang/
behavioral-model, 2021, [Online; accessed April 2021].

“RabbitM@Q,” https://www.cloudamqgp.com/blog/
part1l-rabbitmg-for-beginners-what-is-rabbitmq.html, 2021, [Online;
accessed April 2021].

D. Draskovic and G. Saleh, “Datapace,” December 2017. [Online].
Available: https://datapace.io/datapace whitepaper.pdf

O. P. Foundation and B. GmbH, “Ocean protocol: Tools for the
web3 data economy,” December 2020. [Ounline]. Available: https:
/ /oceanprotocol.com/tech-whitepaper.pdf

S. Shakeri, N. van Noort, and P. Grosso, “Scalability of container overlays
for policy enforcement in digital marketplaces,” in 2019 IEEFE 8th Interna-
tional Conference on Cloud Networking (CloudNet), 2019, pp. 1-4.

S. Shakeri, L. Veen, and P. Grosso, “Evaluation of container overlays for
secure data sharing,” in 2020 IEEE 45th LCN Symposium on Emerging
Topics in Networking (LCN Symposium), 2020, pp. 99-108.

X. Zhou, R. Cushing, R. Koning, A. Belloum, P. Grosso, S. Klous, T. van
Engers, and C. de Laat, “Policy enforcement for secure and trustworthy
data sharing in multi-domain infrastructures,” in 2020 IEEE 14th Inter-
national Conference on Big Data Science and Engineering (BigDataSE),
2020, pp. 104-113.

L. E. Veen, S. Shakeri, and P. Grosso, “Mahiru: a federated, policy-
driven data processing and exchange system,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.17155

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM

https://www.veracode.com/security/arp-spoofing
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://datapace.io/datapace_whitepaper.pdf
https://oceanprotocol.com/tech-whitepaper.pdf
https://oceanprotocol.com/tech-whitepaper.pdf
https://arxiv.org/abs/2210.17155

112

[106]

[107]

[108]

[109]

[110]

[111]

112]

[113]

[114]

Bibliography

Comput. Commun. Rev., vol. 44, no. 3, p. 87-95, Jul. 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

L. Veen, S. Shakeri, and P. Grosso, “Secure data sharing and distributed
processing with Mahiru,” 2022, Poster presented at ICT.Open 2022.
[Online]. Available: https://doi.org/10.5281/zenodo.6497704

“Access tracking in P4, https://github.com/sarashakeri/
SecConNet-tracking/, 2022, [Online; accessed April 2022].

K. V. Sarma, S. Harmon, T. Sanford, H. R. Roth, Z. Xu, J. Tetreault,
D. Xu, M. G. Flores, A. G. Raman, R. Kulkarni, B. J. Wood, P. L. Choyke,
A. M. Priester, L. S. Marks, S. S. Raman, D. Enzmann, B. Turkbey,
W. Speier, and C. W. Arnold, “Federated learning improves site
performance in multicenter deep learning without data sharing,” Journal
of the American Medical Informatics Association, vol. 28, no. 6, pp. 1259
1264, 02 2021. [Online]. Available: https://doi.org/10.1093/jamia/ocaa341

A. Durrant, M. Markovic, D. Matthews, D. May, J. A. Enright, and
G. Leontidis, “The role of cross-silo federated learning in facilitating
data sharing in the agri-food sector,” CoRR, vol. abs/2104.07468, 2021.
[Online]. Available: https://arxiv.org/abs/2104.07468

S.-Y. Wang, Y.-R. Chen, J.-Y. Li, H.-W. Hu, J.-A. Tsai, and Y.-B. Lin, “A
bandwidth-efficient int system for tracking the rules matched by the pack-
ets of a flow,” in 2019 IEEE Global Communications Conference (GLOBE-
COM), 2019, pp. 1-6.

Z. Zhao, X. Shi, X. Yin, and Z. Wang, “Hashflow for better flow record
collection,” 2018. [Online]. Available: https://arxiv.org/abs/1812.01846

D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification for ml-
based network security applications,” in Proceedings 2021 Network and Dis-
tributed System Security Symposium. Virtual: Internet Society, 2021.

L. Castanheira, R. Parizotto, and A. E. Schaeffer-Filho, “Flowstalker: Com-
prehensive traffic flow monitoring on the data plane using p4,” in ICC 2019
- 2019 IEEFE International Conference on Communications (ICC), 2019,

pp- 1-6.

L. Zhang, R. Cushing, R. Koning, C. de Laat, and P. Grosso, “Profiling and
discriminating of containerized ml applications in digital data marketplaces
(ddm).” in ICISSP, 2021, pp. 508-515.

https://doi.org/10.1145/2656877.2656890
https://doi.org/10.5281/zenodo.6497704
https://github.com/sarashakeri/SecConNet-tracking/
https://github.com/sarashakeri/SecConNet-tracking/
https://doi.org/10.1093/jamia/ocaa341
https://arxiv.org/abs/2104.07468
https://arxiv.org/abs/1812.01846

Bibliography 113

[115] L. Zhang, R. Cushing, C. d. Laat, and P. Grosso, “A real-time intrusion
detection system based on oc-svm for containerized applications,” in 2021
IEEE 24th International Conference on Computational Science and Engi-
neering (CSE), 2021, pp. 138-145.

[116] R. Cushing, R. Koning, L. Zhang, C. d. Laat, and P. Grosso, “Auditable
secure network overlays for multi-domain distributed applications,” in 2020
IFIP Networking Conference (Networking), 2020, pp. 658-660.

Publications

Shakeri, S., Maccatrozzo, V., Veen, L., Bakhshi, R., Gommans, L., de
Laat, C., and Grosso, P. “Modeling and Matching Digital Data Marketplace
Policies”. In 2019 15th International Conference on eScience (eScience), pp.

570-577.

Shakeri, S., van Noort, N.; and Grosso, P. “Scalability of Container Over-
lays for Policy Enforcement in Digital Marketplaces”. In 2019 IEEE 8th
International Conference on Cloud Networking (CloudNet), pp. 1-4.

Shakeri, S., Veen, L., and Grosso, P. “Evaluation of Container Overlays for
Secure Data Sharing”. In: 2020 IEEE 45th LCN Symposium on Emerging
Topics in Networking (LCN Symposium), pp. 99-108.

Shakeri, S., Veen, L. and Grosso, P. “Multi-domain network infrastructure
based on P4 programmable devices for Digital Data Marketplaces”. Cluster
Computing (2022). https://doi.org/10.1007/s10586-021-03501-2.

Shakeri, S., Veen, L., and Grosso, P. “Tracking container network connec-
tions in a Digital Data Marketplace with P4”. In 2022 International Confer-
ence on Computer, Information and Telecommunication Systems (CITS),
Piraeus, Greece, 2022, pp. 1-8.

Veen, L., Shakeri, S., and Grosso, P. “Mahiru: a federated, policy-driven
data processing and exchange system”. Submitted to arXiv:2210.17155.

115

Source Code

The source code for SecConNet project is published at https://github.com/SecConNet.
Here we highlight the main components:

Applicability of container overlays for data sharing
https://github.com/SecConNet /Container-overlays-applicability

Evaluation of Container Overlays for Secure Data Sharing
https://github.com/SecConNet/Container-overlays-architecture

Multi-domain Network Infrastructure based on P4 Programmable Devices
for DDMs
https://github.com/SecConNet /P4-based-containerized-DDM

Tracking container network connections in a DDM
https://github.com/SecConNet /Tracking-connections-in-a-DDM

Mahiru Data Exchange
https://github.com/SecConNet/mahiru

117

https://github.com/SecConNet
https://github.com/SecConNet/Container-overlays-applicability
https://github.com/SecConNet/Container-overlays-architecture
https://github.com/SecConNet/P4-based-containerized-DDM
https://github.com/SecConNet/Tracking-connections-in-a-DDM
https://github.com/SecConNet/mahiru

Acknowledgement

First and foremost, I would like to show my gratitude to my partner, Morteza,
for believing in me. Your support and patience throughout the ups and downs of
the PhD process have been invaluable.

I extend my thanks to my supervisor, Paola, for always making time for me,
teaching me how to look into the big picture, and directing me to the right
approach. I also had so much fun when we had small chats over different topics
such as our trips and travel plans. I had the privilege to learn many things from
Cees and I am grateful for the invaluable guidance and input he provided during
my research and writing journey. I also want to thank Leon for his valuable input
about digital data marketplaces and the data sharing concepts.

I would like to thank Fernando, Rob, Zoltan, Chrysa, and Andy for their time
and effort in reading my work and participating in my graduation committee.

To perform this research I had the opportunity to work with colleagues from
the eScience Center. Lourens with whom I closely collaborated, taught me valu-
able lessons. I appreciate his input, contribution, and critical point of view to my
work. I extend my thanks to those we work together during eScience meetings,
namely Rena and Valentina.

Special thanks to my colleagues at the MNS lab, who made my Ph.D. truly
memorable. Thanks, Lu, Ruyue, Jamilla, and Zeshun, I had many enjoyable
moments with you. During lunch, coffee breaks, and group events with colleagues
such as Joseph, Ralph, Misha, Ana, Dolly, Giovanni, Giulio, and many others I
had a great time. I enjoyed very much spending my time with them.

I want to thank my long-time friends who provided moments of fun and re-
laxation, including Zeynab, Zahra, Mohammad, Arezoo, Mojdeh, Atie, Ali, and
others. They were a great support during the Covid time and I appreciate it.

During my Ph.D. my family has been there for me in the ups and downs.
I want to express my gratitude to my family, including Afagh, Abbas, Saeideh,
Somayeh, Mohammad, and others.

I have tried to capture everyone who was with me during this journey. If

119

120 Acknowlegement

a name is not mentioned here, please forgive me, as the list is long, but your
support has been appreciated.

Summary

There are many organizations interested in sharing data with others. However,
they can do this only if a secure platform is available. Digital Data Marketplaces
(DDMs) are emerging as a framework for organizations to share their data. To
increase trust among participating organizations, multiple agreements should be
established to determine who has access to what. These sharing policies have
to be described in a general model to be applicable in different DDMs. More
importantly, translating these high-level sharing policies to actionable code and
setting up an infrastructure that implements and enforces the policies is still a
challenge.

In SecConNet, we use containers for building the sharing infrastructure. A
container can operate as a secure, isolated, and individual entity that on behalf of
its owner, manages and processes the data it is given. For exchanging data among
multiple organizations, the containers need to be connected. Overlay networks
connect containers and make a virtual network upon the physical network. The
method of running the overlays plays a critical role in building a secure DDM.

In this thesis, the focus is particularly on the novel container overlay architec-
tures, which utilize programmable infrastructures and virtualization technologies
across multiple administrative domains whilst maintaining security and quality
requirements.

The first part of the thesis presents a semantic model for describing the access
policies by means of semantic web technologies. In particular, we used and ex-
tended the Open Digital Rights Language (ODRL) to describe the pre-established
agreements in a DDM.

In the next part of the thesis, we evaluated the functionality of available
technologies of container overlay networks in making the connection between
containers in DDM and implementing the high level policies. We assessed the
capability of Cilium and Calico, as they have the best support for enforcing
network policies in providing security (policy scalability) and handling the multi-
tenancy requirements (pod scalability) of DDMs. Both Calico and Cilium scaled

121

122 Summary

well in policy scalability, and in terms of pod scalability, Calico performed better.

In the next chapter of the thesis, we aimed our focus on providing the isolation
between sharing requests based on the application needs. We defined three con-
tainer connectivity types: Overlay per DDM, Overlay per request, and Overlay
per group. Using the available technologies, we implemented the overlay setups
and compared their performance and security.

DDM can operate in both single-domain and multi-domain environments. In
the works mentioned above, we considered a DDM as a single-domain environment
in which the overlay orchestrator acts on behalf of all participating parties, and
all the resources and their connections are handled by a centralized controller.
In a multi-domain DDM, each participating party (domain) can manage its own
connectivity while all of the transactions follow the sharing agreements.

To build a multi-domain containerized DDM, we introduced a P4-based plat-
form in which the connections of containers are controlled by the rules set in the
P4 switch and handled by the domain administrator. The proposed method can
handle the communication of multiple domains and guarantee that the opera-
tion of transactions is based on predefined policies. We also studied the network
setup performance by defining a model which we demonstrated follows the real
measurements, and we can use it for decision making.

On top of P4-based containerized networks, we built a distributed data ex-
change management system that handles the collaboration between data owners
automatically based on the agreed policies. It checks if a sharing request from a
specific organization is based on the DDM policies and then sends the required
information to the administrator to connect containers for data sharing.

In the last part of the thesis, we extended the introduced P4-based platform
in order to utilize the capabilities P4 programming language. Considering dis-
tributed machine learning applications as a use case, we measured and collected
information like the number of access to different containers from multiple do-
mains, the amount of data that was exchanged, and the time of data transferred
between containers. In some cases, we reprogrammed the switch based on the
situation of the network for the next references.

Samenvatting

Er zijn veel organisaties die geinteresseerd zijn in het delen van gegeven met
anderen. Dit kunnen ze echter alleen doen als er een veilig platform beschikbaar is.
Digitale data marktplaatsen (DDMs) ontstaan als een raamwerk voor organisaties
om hun gegeven te delen. Om het vertrouwen tussen deelnemende organisaties te
vergroten, moeten er meerdere overeenkomsten worden gesloten om te bepalen wie
toegang heeft tot wat. Deze deelovereenkomsten moeten worden beschreven in
een algemeen model om toepasbaar te zijn in verschillende DDM’s. Belangrijker
nog, het vertalen van deze hoog-niveau deelovereenkomsten naar uitvoerbare code
en het opzetten van een infrastructuur die de overeenkomsten implementeert en
handhaaft, blijft een uitdaging.

In SecConNet gebruiken we containers voor het opbouwen van de deel infras-
tructuur. Een container kan optreden als een veilige, geisoleerde en individuele
entiteit die namens zijn eigenaar de gegeven beheert en verwerkt die aan hem zijn
gegeven. Voor het uitwisselen van gegeven tussen meerdere organisaties moeten
de containers met elkaar worden verbonden. Overlay-netwerken verbinden con-
tainers en creéren een virtueel netwerk bovenop het fysicke netwerk. De methode
om de overlays uit te voeren, speelt een cruciale rol bij het opbouwen van een
veilige DDM.

In deze scriptie ligt de focus met name op de nieuwe container-overlay ar-
chitecturen, die gebruikmaken van programmeerbare infrastructuren en virtual-
isatie technologieén over meerdere administratieve domeinen, met behoud van
beveiligings- en kwaliteitseisen.

Het eerste deel van de scriptie presenteert een semantisch model voor het
beschrijven van de toegang beleidsregels met behulp van semantische webtech-
nologieén. In het bijzonder hebben we de Open Digital Rights Language (ODRL)
gebruikt en uitgebreid om de vooraf vastgestelde overeenkomsten in een DDM te
beschrijven.

In het volgende deel van de scriptie hebben we de functionaliteit geevalueerd
van beschikbare technologieen van container-overlay netwerken om de verbinding

123

124 Samevatting

tussen containers in DDM te maken en de hoog-niveau beleidsregels te imple-
menteren. We hebben de capaciteit van Cilium en Calico beoordeeld, omdat ze
de beste ondersteuning bieden voor het afdwingen van netwerkbeleid met be-
trekking tot beveiliging (beleid- schaalbaarheid) en het omgaan met de vereisten
voor multi-tenancy (pod-schaalbaarheid) van DDM’s. Zowel Calico als Cilium
presteerden goed op het gebied van beleid- schaalbaarheid, en wat betreft pod-
schaalbaarheid presteerde Calico beter.

In het volgende hoofdstuk van de scriptie richtten we ons op het bieden van
isolatie tussen deelverzoeken op basis van de behoeften van de toepassing. We
hebben drie soorten container connectiviteit gedefinieerd: Overlay per DDM,
Overlay per verzoek en Overlay per groep. Met behulp van de beschikbare tech-
nologieén hebben we de overlay-configuraties geimplementeerd en hun prestaties
en beveiliging vergeleken.

DDM kan zowel in single-domain als multi-domain omgevingen opereren. In
de hierboven genoemde werken beschouwden we een DDM als een single-domain
omgeving waarin de overlay-orchestrator namens alle deelnemende partijen op-
treedt, en alle middelen en hun verbindingen worden beheerd door een gecen-
traliseerde controller. In een multi-domain DDM kan elke deelnemende partij
(domein) zijn eigen connectiviteit beheren, terwijl alle transacties de deelovereenkom-
sten volgen.

Om een multi-domain containerized DDM op te bouwen, introduceerden we
een op P4 gebaseerd platform waarin de verbindingen van containers worden
gecontroleerd door de regels die zijn ingesteld in de P4-switch en worden be-
handeld door de domeinbeheerder. De voorgestelde methode kan de commu-
nicatie van meerdere domeinen afhandelen en garanderen dat de werking van
transacties gebaseerd is op vooraf gedefinieerde beleidsregels. We hebben ook de
prestaties van de netwerk configuratie bestudeerd door een model te definiéren dat
we hebben gedemonstreerd aan de hand van echte metingen, en dat we kunnen
gebruiken voor besluitvorming.

Bovenop P4-gebaseerde containerized netwerken hebben we een gedistribueerd
gegeven uitwisseling beheersysteem gebouwd dat de samen werking tussen gegeven
eigenaren automatisch afhandelt op basis van de overeengekomen beleidsregels.
Het controleert of een verzoek tot delen van een specifiecke organisatie wordt
gebaseerd op het DDM-beleid en verzendt vervolgens de vereiste informatie aan
de beheerder om containers aan te sluiten voor het delen van gegevens.

In het laatste deel van het proefschrift hebben we het geintroduceerde op
P4 gebaseerde platform uitgebreid om de mogelijkheden van de programmeer-
taal P4 tebenutten. Door gedistribueerde machine learning-toepassingen als ge-
bruiksscenario te beschouwen, hebben we informatie gemeten en verzameld, zoals
het aantal toegangen tot verschillende containers vanuit meerdere domeinen, de
hoeveelheid gegevens die werd uitgewisseld en het tijdstip waarop de gegevens
werden overgedragen tussen containers.

