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1
I N T R O D U C T I O N

Radio astronomy is the study of celestial objects’ radio frequency emis-
sions. The analysis of the radio spectrum has allowed astronomers to peer
further back in the universe than ever before and study previously unseen
phenomena like hydrogen line emissions [1], the Cosmic Microwave Back-
ground [2], pulsars [3] and many more. As astronomers’ goals become more
ambitious so do their requirements for sensitivity and resolution of their in-
struments. Research indicates that the sensitivity of radio telescopes has
been increasing at a rate of tenfold per decade [4], this increase in sensitiv-
ity and resolution directly affects instrument size and complexity and this
is only expected to continue growing.

Telescope resolution is directly proportional to aperture size and wave-
length [5]. To reach the angular resolution required for modern science
use-cases, such as the recently publicised black hole image [6], single "dish"
telescope would need a diameter of approximately 13000 km (i.e. greater
than the diameter of earth) [7]. For reasons of practicality and cost, arrays
of smaller telescopes are used as cheaper and more practical alternatives.
Through aperture synthesis and beamforming it has been shown that it is
possible and highly effective to use large arrays of smaller antennas to re-
solve celestial objects with extremely small angular resolutions. Figure 1.1
shows an illustration of the LOw Frequency ARray (LOFAR) [8] and the
Square Kilometre Array (SKA) [9], where LOFAR has an 0.21 arcsecond
resolution at its highest observable frequency [8]. Whereas the SKA, once
completed, will offer a 0.002 arcsecond angular resolution [10]. Where an
arcsecond angular resolution is equivalent to resolving an 18mm coin at a
distance of 4 km away.

Modern radio telescopes such as LOFAR and the SKA combine thou-
sands of receivers across thousands of kilometres to offer the required sen-
sitivity, resolution and the myriad of receiving modes for many different
science cases. These telescope systems are composed of a multitude of inter-
connected components, including antennas, digital signal processors, corre-
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(a) A part of the LOw Frequency ARray
(LOFAR) [8]

(b) Artist’s impression of the Square Kilome-
tre Array (SKA) [9]

Figure 1.1: Illustration of two different radio telescopes

lators, data storage systems, and an extensive network infrastructure [11].
These elements work in synergy to capture, process, and analyse radio sig-
nals from celestial sources. The large-scale and distributed nature of the
these telescopes necessitates meticulous management and monitoring to
ensure seamless operation and maximise scientific output.

Monitoring of radio telescopes is not only necessary to ensure nominal
system operations but also to manage external events. There has been sig-
nificant progress in the field of Radio Frequency Interference (RFI) mitiga-
tion in the context of radio astronomy. This is partially a consequence of
radio telescopes’ extreme sensitivity (several orders of magnitude higher
than conventional communications systems [4]), but also due to the unpre-
dictability of both the terrestrial and astronomical radio frequency spec-
trum [12]. In effect terrestrial RFI can in some cases saturate the receiver
front-end electronics, cause unstable amplification modes or, more com-
monly, leave strong high power artefacts in observing bands. While some
system-specific monitoring in scientific computing pipelines has been in-
tegrated as indicated by Broekema et al. [13], the current monitoring sys-
tems do not suffice, and do not detect all artefacts. These corrupt the data,
which are then less useful to astronomers. The corruption may also be de-
tected much later, making computing pipelines inefficient and expensive.
This study aims to rectify this problem, by addressing interruptions to the
science data processing at a system-wide level, treating all potential inter-
ruptions equally.

Furthermore, it is expected that the sensitivity, resolution and by exten-
sion data-rates of radio telescopes will grow dramatically, we therefore an-
ticipate the demand of real-time system-wide anomaly detection and mon-
itoring to increase. This demand stems from the impossibility of storing
the vast volumes of data generated by new scientific instruments. As such,
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system health reporting and error localisation needs to be completed in
lockstep with the other processing systems to limit buffering and potential
data loss. Moreover, owing to the scale of modern radio telescopes, which
consume substantial computational, networking, and signal processing re-
sources, even small improvements in overall reliability can yield substantial
gains in system efficiency. For this reason, this thesis concerns the study of
System Heath Management (SHM) in radio telescopes to maintain nominal
telescope operations.

1.1 system health management in radio telescopes

System health management is a strategy for diagnosing and prognosing the
cause and effect of system-based phenomena to maintain system uptime
and ensure correct functioning. Radio telescopes offer a uniquely challeng-
ing environment for monitoring system behaviour due to their distributed
scale and the variety of data processing systems. Furthermore, different
science-cases require different modes of operation, such that the resolu-
tion and appearance of similar system critical-events can be vastly different
across observation modes. Additionally, antennas in distant locations can
experience problems simultaneously, thus resulting in potentially combina-
torial effects in the data products.

At LOFAR, system health is managed by operators at the observatory
who manually inspect intermediate data products and event reporting streams
from each observation to detect and diagnose any potential problems. In
this case, lower resolution plots are produced for each LOFAR telescope
station for an observation to determine whether any potentially problem-
atic events have occurred. Not only is expert-domain-specific knowledge
necessary, but also understanding of the particularities of certain system
health-threatening events. For example, events such as lightning storms and
high-noise impulses can look fairly similar, especially in the low-resolution
context. Lightning storms are geographically localised and impact all sta-
tions within a specific region. Moreover, lightning exhibits a high degree of
temporal correlation across stations, with minimal delay between recorded
events at each station. In contrast, high-noise events typically affect only
one antenna at a time, with no temporal interdependence between anten-
nas and stations

By this logic, if multiple stations in the same geographic location experi-
ence broadband high-power events across all polarisations that are tempo-
rally correlated, they are categorised as being impacted by lightning storms.
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(a) Spectrogram with a lightning storm (b) Spectrogram with a high noise event

Figure 1.2: Illustration of two different system wide anomalies from the LOFAR
low band stations that appear visually similar without additional infor-
mation.

Conversely, stations affected individually are typically experiencing high-
noise events. The differences between the two events can be seen in Fig-
ure 1.2, for information on how these plots are generated see Chapter 2.1.

Not only does this process require significant amounts of time from do-
main experts, but it is fundamentally offline, with no way of ensuring the
nominal system health throughout an observation. This is a key distinction;
if failures can be detected in real-time, actions may be taken to correct, or
at least mark the data as invalid. This way, the observation is not contam-
inated, and can still be used. Without real-time anomaly detection, (a part
of) the dataset can be lost, and may need to be re-observed.

Additionally, the increasing data-rates results in operator based data in-
spection becoming infeasible for next generation telescopes such as the
SKA. Therefore, this work develops both tools for analysis of system health
data, as well as a tool that can potentially automate the whole process. This
is done by creating models of normal telescope behaviour and trying to
identify outliers using anomaly detection techniques. As such the first re-
search question of this thesis is given by:

Research Question 1: How can machine learning-based anomaly detection
techniques be harnessed to improve system health management in radio tele-
scopes?



1.2 machine learning-based anomaly detection 5

To validate our models for SHM we produced a dataset containing ten
different classes comprising of system-based anomalies in radio telescopes.
Here, we categorised the events into four different groups, these being as-
tronomical anomalies, environmental effects, issues in the electronics and
data processing system-based anomalies. This data was collected using ob-
servations from a variety of science cases to capture different feature mor-
phologies and noise.

1.2 machine learning-based anomaly detection

Anomaly detection refers to the process of identifying patterns or instances
that deviate significantly from the norm or expected behaviour within a
given dataset or system. Anomaly detection, novelty detection and out
of distribution detection are closely related topics, with many overlaps in
the literature. For simplicity sake, we refer to this category of methods
as anomaly detection. Anomaly detection is typically a two step process.
First a model is created of normal system behaviour and then some mea-
sure of deviation from the norm is defined [14]. Approaches for both mod-
elling normality and discriminating between normal and anomalous data
points have become increasingly dominated by machine learning based ap-
proaches [15].

Machine learning anomaly detection has emerged as the preferred ap-
proach over traditional methods due to its ability to generalise to a vari-
ety of complex datasets and problem types without significant modifica-
tion [14]. Typical machine learning-based approaches for learning the in-
lying distribution are autoencoders [16–24], flow-based models [25], diffu-
sion processes [26], generative adversarial networks [27–29] and many more.
Furthermore, machine learning based discriminative approaches for sepa-
rating normal from anomalous samples have been based on density [30],
reconstruction [27] and statistical [31] approaches.

In this thesis, we limit our focus to only machine learning-based meth-
ods for anomaly detection. There has been consequential research in sig-
nal processing approaches for radio astronomy feature classification in sub-
domains such as RFI detection, spectral line classification, transient charac-
terisation and many more [4, 32–36]. We would expect that with sufficient
effort, alternative signal-processing based approaches could be utilised to
achieve similar goals of this thesis, however due to time limitations we fo-
cus exclusively on machine learning approaches for anomaly detection in
radio telescopes.
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Radio telescope system health management is a challenging environ-
ment for existing anomaly detection techniques for several reasons. Firstly,
the variability of operating conditions of radio telescopes results in some
anomalies occurring significantly more frequently than others. This means
that anomaly detection models both need to be capable of detecting known,
commonly occurring anomalies as well as rare, potentially unseen events.
This is in contrast with typical anomaly detection which is normally posed
as one-class-classification problem.

This thesis focuses on how machine learning based anomaly detection
can be leveraged for detecting system health threatening events in radio
observatories. As such our second research question is given by:

Research Question 2: What is the most effective to way learn robust represen-
tations of normal data from radio telescopes?

To answer the second research question we look at several different la-
tent variable models as well as self-supervised learning approaches to find
meaningful representations of the visibility spectrograms. This is challeng-
ing as the spectrograms from radio telescopes are noisy, have extremely a
high-dynamic range, they combine thousands of stations for a single obser-
vation with complex-valued data that have multiple polarisations. We eval-
uate the learnt representations in two different scenarios. The first is the
general SHM problem and the second considers RFI mitigation and how
representation learning can yield improved performance over the state-of-
the-art. In doing so we then evaluate the third research question:

Research Question 3: Which are the most appropriate ways to discriminate
between normal and anomalous samples using the learnt representations of nor-
mal data?

We find that existing anomaly detection problem definitions are not well
suited to the radio observatory use-case. Typical methods rely on the as-
sumption that there is a single outlying class, whereas we want to clas-
sify both commonly occurring anomalies as well as detect those that are
rare. Using this modified problem definition, we will answer the second
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question by considering density, reconstruction and supervised methods
for anomaly detection. We also investigate combining supervised and un-
supervised approaches to detect both known and unknown events.

1.3 real time scientific data processing

In the context of low-frequency radio astronomy, scientific data processing
has been successfully automated by running complex workflows that per-
form signal processing, calibration and imaging of interferometric data [37–
40], RFI mitigation [41] and de-dispersion [42, 43] of time-domain data
among many more. Additionally, continuous effort is being made to create
high-performance real-time algorithms, to improve the quality and reliabil-
ity of the scientific data [13, 44–47]. However, as of yet, there have been no
attempts to fully automate the System Health Management (SHM) pipeline,
and by virtue of the lack of work on this topic, no real-time implementa-
tions exist. This is in part due to the complexity of the challenge as well as
the unavailability of SHM-specific datasets.

To demonstrate the practicality of our approach within the context of ra-
dio observatories, we assess the computational performance and through-
put of the proposed system, additional details can be found in Chapter 2.1.
As such we formulate the final research question:

Research Question 4: To what extent is it possible to make system health
monitoring techniques efficient enough to be real-time in the context of LOFAR?

We demonstrate that our system is real-time in the context of the LOFAR
data processing pipeline, requiring less than 1ms to process a single spectro-
gram. This is demonstrated using our open-source hand-labelled datasets
that have been published in conjunction with these results.

1.4 thesis structure

The thesis is organised into several chapters, each addressing a specific as-
pect of system health management for radio telescopes. Chapter 2 provides
an in-depth overview of the LOFAR telescope, its architecture, and the lit-
erature relating to machine learning based anomaly detection. Chapter 3
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explores how representation learning methods can be used to create a di-
agnostic framework of system health management in radio telescopes. In
Chapter 4, we explore the application of nearest neighbour reconstructions
within representation learning methods for anomaly detection. This is done
using both general machine learning datasets as well as simulated radio
telescope data. In Chapter 5 we investigate how the previously introduced
anomaly detection methods can be incorporated into RFI detection schemes.
In the penultimate chapter, we propose the radio observatory anomaly de-
tector, a supervised and self-supervised hybrid model that is capable of
detecting a variety of different anomalies in the LOFAR telescope. In Chap-
ter 7, we provide the thesis conclusion, addressing each research question
and suggesting directions for future research. Through this comprehensive
examination of system health management for the LOFAR telescope, this
thesis aims to contribute to the advancement of radio astronomy and facili-
tate the continued exploration of the universe using low-frequency observa-
tions. Although we use LOFAR as the instrument to validate the approach,
the methodology we propose in this thesis is generic, and can be applied to
other telescopes as well.

1.5 author publications related to this thesis

1.5.1 Peer reviewed journal publications

[J1] Michael Mesarcik, Albert-Jan Boonstra, Christiaan Meijer, Walter Jansen,
Elena Ranguelova, and Rob V. van Nieuwpoort. “Deep learning as-
sisted data inspection for radio astronomy.” In: Monthly Notices of the
Royal Astronomical Society 496.2 (May 2020), pp. 1517–1529. issn: 0035-
8711. doi: 10.1093/mnras/staa1412. eprint: https://academic.oup.
com/mnras/article-pdf/496/2/1517/33483423/staa1412.pdf. url:
https://doi.org/10.1093/mnras/staa1412.

[J2] Michael Mesarcik, Elena Ranguelova, Albert-Jan Boonstra, and Rob
V. van Nieuwpoort. “Improving novelty detection using the recon-
structions of nearest neighbours.” In: Array 14 (2022), p. 100182. issn:
2590-0056. doi: https://doi.org/10.1016/j.array.2022.100182.
url: https : / / www . sciencedirect . com / science / article / pii /

S2590005622000388.

[J3] Michael Mesarcik, Albert-Jan Boonstra, Elena Ranguelova, and Rob
V. van Nieuwpoort. “Learning to detect radio frequency interference
in radio astronomy without seeing it.” In: Monthly Notices of the Royal

https://doi.org/10.1093/mnras/staa1412
https://academic.oup.com/mnras/article-pdf/496/2/1517/33483423/staa1412.pdf
https://academic.oup.com/mnras/article-pdf/496/2/1517/33483423/staa1412.pdf
https://doi.org/10.1093/mnras/staa1412
https://doi.org/https://doi.org/10.1016/j.array.2022.100182
https://www.sciencedirect.com/science/article/pii/S2590005622000388
https://www.sciencedirect.com/science/article/pii/S2590005622000388
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2
B A C K G R O U N D

Radio telescopes are complex instruments. They comprise of a variety of
hardware and software systems which require different processing pipelines
to run an assortment of signal- and data-processing algorithms so to pro-
duce data for astronomers. The hardware systems are made up of receiver
front ends, electronics, station processing units and the central processor,
whereas the software systems run a multitude of different workflows to
effectively process the digitised signals. The data is transported across the
telescope subsystems by dedicated high-speed links over several thousands
of kilometres. The distributed system aggregates the data in a central pro-
cessing cluster, where many online and offline processing algorithms are
run. As a result of the distributed nature of radio telescopes and the amount
of data- and signal-processing algorithms required to produce a single ra-
dio image, system complexity, data rates and system uptime are a huge con-
cern. Therefore, this thesis focuses on machine learning driven data analysis
and anomaly detection algorithms for the purpose of maintaining system
uptime in radio telescopes.

Recent works that apply machine learning-based anomaly detection and
diagnosis to radio astronomy have so far focused on only scientific discov-
ery, using galaxy images, transient signals or light curves. In this work we
apply machine learning methods to visibilities obtained from radio tele-
scopes.

This chapter elaborates further on the LOFAR telescope architecture and
unpacks the current landscape of machine learning-based anomaly detec-
tion and the recent developments in applying it to astronomy-related fields.

2.1 the low frequency array

The Low Frequency Array (LOFAR) [8] is a telescope comprising of 52 sta-
tions across Europe. Each LOFAR station is an array of 96 dual polarisation

11
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low-band antennas (LBA) in the range 10–90 MHz and 48 or 96 dual po-
larisation high band antenna antennas (HBA) in the range 110–250 MHz.
The signals received by each antenna are coherently added in the station-
level processor, resulting in each sub-band (subdivision of frequency bands)
being approximately 200 kHz wide. These signals are then transported to
the central processor for further processing. An illustration of the system
topology can be seen in Figure 2.1.

Central Processor

Station level processor

High Band Antennas (HBA)

Low Band Antennas (LBA)

Station 0

Station level processor

High Band Antennas (HBA)

Low Band Antennas (LBA)

Station 1

...

Station level processor

High Band Antennas (HBA)

Low Band Antennas (LBA)

Station N

Figure 2.1: The LOFAR telescope topology and data processing chain

To obtain the radio-spectrum images and various other data formats
used by astronomers, several signal- and data-processing algorithms need
to be applied. The different data processing stages are illustrated in Fig-
ure 2.2. Analogue to digital conversion and filtering are first performed at
the station-level processor. Then the digitised signal is beamformed to pro-
duce multiple independent observations of smaller regions of the sky. This
signal is then transported over a dedicated network to the central processor,
where several real-time signal and data processing algorithms are applied.
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2.1.1 The LOFAR central data processor

Upon entering the central processor, delay compensation is applied to the
signals. As radio waves travel at a finite speed, antennas located in different
geographical locations do not receive the same signal coherently. Therefore,
to correlate the same components of the received signals (which happens
further down the processing chain), the signals from each station need to be
compensated by the delay caused by difference in arrival time. This delay
is related to the distance between the stations, as well as the direction in
which they observe (and is complicated by the rotation of the earth) [48].

Online science processing Offline science processing

StorageStation level processor

ADC conversion

Beamforming

Bandpass filtering

Signal Processing

Central processor

Delay compensation

Channelisation

Correlation

RFI flagging

Signal Processing

Dedispersion

Transient detection

System health management

Calibration

Imaging

EoR processing

Figure 2.2: LOFAR data processing and signal processing chain

For purposes of downstream algorithms, the incoming data packets are
grouped together as a set of sub-bands per station, and a poly-phase filter is
applied to re-sample the data. The filter bank splits each subband into 256

frequency channels, Nf. At this point the correlator computes the cross- and
auto-correlations between all pairs of stations for each channel and polari-
sation Npol. With Nst telescope stations, there exist Nst autocorrelations and
0.5Nst(Nst − 1) cross-correlations for each polarisation. The polarisations
here refer to the Stokes parameters of the data given by (XX,XY, YX, YY).
This correlated data product is then integrated in time (Nt) with the inte-
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gration interval dependant on the science-case. This time-frequency data
product is used for the remainder of the work and is referred to as a spec-
trogram. An illustration of a spectrogram from LOFAR can be seen in Fig-
ure 2.3.

Figure 2.3: High-band autocorrelation spectrograms with four Stokes polarisations
from a Swedish LOFAR station.

To obtain the data formats required by astronomers, several other pro-
cessing steps need to be applied. These entirely depend on the application
and dictate whether these processes need to be executed in real time or
not. For example for imaging-based applications [49], multiple iterations of
calibration and 2D Fourier transforms need to be applied to determine the
best parameters for imaging of the celestial object [50]. This process is inher-
ently offline and can take hours if not days to complete and validate. For
other extreme use-cases, such as the Event Horizon Telescope (EHT) this
imaging process took weeks complete [6]. Similarly, Epoch of Reionosation
(EoR) studies integrate 100’s of petabytes of data to increase the Signal-to-
Noise-Ratio (SNR) thereby enforcing its offline nature [47].

The different science cases result in different observing setups, which dic-
tate the array configuration (i.e., the number of stations used), the number
of frequency channels, the time sampling as well as the overall integration
time of the observing session. As already mentioned, the required resolu-
tion of modern instruments cause the data products to be relatively large.
The data size of an observation is given by
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Nobs = NtNf(Nst +
1

2
Nst(Nst − 1))NpolNbitres (1)

where Nbitres is the resolution of a sample in bits. This means that a 10

hour observation with a 1 second integration time, a 1KHz channel resolu-
tion with a 50MHz bandwidth and a 32-bit resolution of complex data can
result in observations sizes in the order of 100s of terabytes.

2.1.2 Online scientific data processing

To cope with the increasing data-rates from modern scientific instruments [8,
47, 51, 52] real-time algorithms have been developed for scientific data
pipelines. Real-time methods for RFI detection [44, 45, 53], calibration [54],
Fast Radio Burst (FRB) detection [55] and correlation [46, 48] have been
essential to modern radio telescope operations. This thesis aims offer an au-
tomated system health management workflow for the online science data
processing system as shown by the dashed block in Figure 2.2.

LOFAR’s correlator is IO-bound, as documented in Broekema et al. [13]
and Romein et al. [48]. It handles an input bandwidth of 192Gbp/s (when
considering all 64 antenna fields in parallel over 3Gbp/s links) while pro-
ducing data at a bandwidth of 80Gbp/s. Where, antenna fields refer to core
stations that are split, enabling two HBA groupings to be treated as smaller
stations. Furthermore, the correlator outputs complex visibilities ranging
from 32 to 4 bits in resolution, with up to 488 subbands approximately with
a 1 s time resolution, encompassing both cross and autocorrelations. To en-
sure our system health management methodology is real time, it needs to
guarantee an output bandwidth greater or equal to 80Gbp/s without sig-
nificant buffering.

Very few machine learning techniques have been shown to be effective
in real-time for astronomy. In seminal work by George and Huerta [56] ma-
chine learning gravitational wave detection algorithms were implemented
in real time. Furthermore Muthukrishna et al. [57] shows that Temporal
Convolutional Networks (TCNs) can be implemented to detect transient
anomalies in real time. To demonstrate the effectiveness of our work in the
context of radio observatories we investigate the computation performance
and throughput of the proposed system.
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2.1.3 System monitoring and control

The Monitoring and Control (MAC) system controls all operations and re-
porting of the LOFAR telescope. It consists of the WinCC-OA [58], which
is a Supervisory Control and Data Acquisition (SCADA) system that dis-
tributes and designates the appropriate signals across the LOFAR stations
and central processor to control the operations during an observation. Us-
ing the WinCC-OA system collection and monitoring of system states and
health is performed. This is done in a hierarchical manner such that mul-
tiple resolutions and categorisations of operations can be reported to the
telescope operators [59].

As different observations require different hardware and software work-
flow setups, the MAC system orchestrates the telescope configuration. This
is essential as observation setups can be quite dynamic. Further, the MAC
system offers a Graphical User Interface (GUI) to telescope operators that
enables hierarchical inspection of both the data produced during an obser-
vation as well as diagnostic tools. For example, an operator can select spe-
cific stations and analyse the details from the station processor temperature
and set particular alert levels during an observation [59].

In Chapter 3 we design and implement a machine learning based data
inspection tool. It enables analysis of observation parameters in a single
low dimensional prescriptive space.

2.2 machine learning in astronomy

Machine learning has successfully been applied to astronomy in several
areas ranging from galaxy morphology classification [60–63], exoplanet dis-
covery [64, 65], detection of new and unusual celestial objections [66, 67], au-
tomatic telescope calibration [68], Radio Frequency Interference (RFI) miti-
gation [69–71] among many more. Machine learning has found particular
successes in astronomy as the amount of data generated by modern instru-
ments is large and seemingly ever increasing.

However, one application domain in astronomy where machine learning
has been limited is in automated system health management for radio tele-
scopes. For this reason, this thesis focuses on applying weakly-supervised
methods to SHM in radio telescopes. We focus on three sub-fields; (i) repre-
sentation learning for radio astronomy spectrograms, (ii) machine learning-
based anomaly detection and (iii) machine learning data inspection for tele-
scope operators.
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2.2.1 Representation learning in astronomy

Representation learning refers to the process of modelling features of data
in a meaningful and compact way. It involves extracting high-level struc-
tures that capture the underlying patterns and relationships within the data,
enabling downstream tasks such as classification, clustering and anomaly
detection. Learning informative representations helps to reduce dimension-
ality, enhance data understanding, improve generalisation, and facilitates
more effective and efficient data analysis and decision-making processes in
various domains, including computer vision, natural language processing,
and signal processing [72].

Learning representations of high-dimensional data is essential to anomaly
detection. For this reason, among many others, effort has been made to
find methods that learn robust projections of high-dimensional data [73–
76]. These successes have materialised in the astronomical community with
results mostly in the galaxy classification domain. Walmsley et al. [77] show
that by pretraining on the Galaxy Zoo DECaLS [78] dramatically improves
model performance for several downstream tasks. Furthermore, Hayat et
al. [79] show how contrastive learning can be applied to galaxy photome-
try from the Sloan Digital Sky Survey (SDSS) [80]. The authors show that
with novel data augmentations, they can achieve state of the art results
on several downstream tasks. Furthermore, several additions and modifi-
cations have been made to the reconstruction error-based loss functions of
autoencoders. In work by Mesarcik et al. [81] it is shown that using both
magnitude and phase information in VAEs improves performance of find-
ing representations of astronomical data, whereas Villar et al. [82] use a
recurrent adaption of a VAE to make training more suitable to light-curve
data. Similarly, Melchior et al. [83] shows how the inclusion of self-attention
mechanisms and redshift-priors into the latent projection of autoencoders,
can improve the learnt representations of galaxy spectra.

2.2.2 Machine learning-based anomaly detection

Machine learning-based anomaly detection relies on modelling normal data
and then classifying abnormality by using a discriminative distance mea-
sure between the normal training data and anomalous samples [14]. Au-
toencoding models are a popular approach for learning latent distribu-
tions of normal data [18, 20, 23, 84]. Anomaly detection using autoen-
coders can be performed either in the latent space using techniques such as
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One-Class Support Vector Machines (OC-SVM) [85], K-Nearest-Neighbours
(KNN) [30], Isolation Forest (IF) [31] or using the reconstruction error [86].
The use of pretrained networks to obtain latent representations of normal
data have also been successful in anomaly detection [30, 87, 88]. By first
training these models on an objective such as ImageNet classification [89],
they are able to generalise to other tasks such as anomaly detection. Addi-
tionally, Self-Supervised Learning (SSL) has been shown to be invaluable
for finding meaning representations of normal data [90–92]. Here pretext
tasks allow the model to learn useful representations of training data in a
self-supervised-manner that can then be used for other downstream tasks.
In both the SSL and pretrained cases, KNN-based measures can be used to
distinguish anomalous samples from the normal training data [30, 90].

In most machine learning-based anomaly detection performance is eval-
uated according to the Single-Inlier-Multiple-Outlier (SIMO) or Multiple-
Inlier-Single-Outlier (MISO) [93] settings on natural image datasets such
as MVTecAD-[23]. With this paradigm in mind, we find that anomaly de-
tection in the system health management in radio telescope context is a
Multiple-Inlier-Multiple-Outlier (MIMO) problem. In effect, anomaly detec-
tion formulations that make a strong assumption about the number of in-
liers or outliers are not directly applicable to the radio observatory setting
due to the increased problem complexity. Furthermore, we find methods
that rely on pretraining with natural images to be ill-suited to the spectro-
grams used in this work, due to differences in dynamic range and SNR as
shown by [94].

Efforts have been made for detecting anomalies in light-curves and spec-
tra in works such as Astronomaly [95] and transients in Malanchev et al.
[96]. Astronomaly is an active learning framework developed for the clas-
sification of unusual events in imaged data or light curves at observatories
to aid with scientific discovery. Nevertheless, it follows closely with generic
anomaly detection methods, where normal data is first projected to a latent
representation and metrics such as IF are used to distinguish normal train-
ing samples from anomalous testing samples at inference time. Although
Astronomaly assumes a MIMO context, it is still only able to detect un-
known anomalies (or at least says all anomalies belong the same class).
This is in contrast with our work described in Chapter 6, where we can
both distinguish between all known anomaly classes with a high precision
and detect unknown or rare anomalies.

Deep generative neural networks are also used for anomaly detection.
Works by Mesarcik et al. [81], Villar et al. [82], and Ma et al. [97] have
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shown that the Variational Autoencoders (VAEs) can be used for anomaly
detection with astronomical data. Whereas Margalef-Bentabol et al. [98]
and Storey-Fisher et al. [99] show that Generative Adversarial Networks
(GANs) are effective in learning representations of normal images of galax-
ies thereby enabling reconstruction-error based anomaly detection. In work
by Zhang et al. [100], GANs have also been shown to be effective in the
Search for Extraterrestrial Intelligence (SETI) anomaly detection context.
However due to problems in training stability we do not make use of such
architectures.

2.2.3 Radio frequency interference detection in the deep learning era

Machine learning for RFI detection is an actively researched field. Numer-
ous works offer a variety of radio astronomy-specific modifications to im-
prove accuracy of detection. Semantic segmentation is at the heart of the
deep learning-based RFI detection, with U-Net [101] and derivatives acting
as the architectural backbone of recent research. The purpose of semantic
segmentation is to determine the pixel-precise regions where a specific class
exists – in this case RFI. Architecturally, U-Net is a Convolutional Neural
Network (CNN), with an encoder-decoder pair that share activations be-
tween the two stages. It is trained in a supervised manner, requiring pixel-
level Boolean masks per spectrogram.

The first application of U-Net to radio astronomy-based RFI detection is
reported in seminal work by Akeret et al. [69]. The network is trained and
evaluated on the magnitude of spectrograms obtained from both simulated
data and real data from a signal antenna from the Bleien Observatory [102].
Interestingly, the models are trained using masks obtained from a classi-
cal flagging approach. We show later show in Chapter 5 that this is not
suitable, as supervised methods tend to over-fit to the weak-label based
ground-truth. Additionally, work by Akeret et al. [69] makes use of the
HIDE & SEEK radio astronomical data simulator [103]. We find the use
of this simulator problematic because the ground truth needs to be deter-
mined by user-defined thresholds of the residual RFI maps as described by
Sadr et al. [70]. Due to this, other works such as [71] do not describe the
threshold used for evaluation making comparison extremely difficult.

To counter-act the issue of over-fitting to the potentially incorrect labels
we focus on the inverse problem. We train a model to represent all non-RFI
signals, such that any deviation from the learnt representations is flagged
as RFI. It must be noted that this approach depends on the assumption that
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the number of false positives of classical RFI detectors is higher than the
number of false negatives. In other words, most RFI is flagged as RFI, but
other features may be incorrectly flagged.

Generative models have also been used for RFI detection in the context
of radio astronomy. Work by Vinsen, Foster, and Dodson [104] shows that
Generative Adversarial Networks (GANs) can be used for RFI detection.
However this research is limited in its evaluation and does not offer a prac-
tical way to obtain pixel-precise predictions of RFI. Finally, Vos et al. [105]
offer a significantly different paradigm for RFI detection using GANs. Here,
the authors propose a source-separation approach that uses 2 separate gen-
erators to distinguish astronomical signals from RFI. However, this method
requires significant supervision, as the model needs access to the mixture
as well as the separated RFI and astronomical sources during training. We
find this requirement prohibitive, as to obtain these source separations for
real data is extremely costly. In Chapter 5, we show that generative models
can be used without the cost of supervision, by treating novelty detection
as a downstream task.
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L E A R N I N G R E P R E S E N TAT I O N S O F

R A D I O A S T R O N O M Y
S P E C T R O G R A M S

This chapter focuses on how representation learning methods can be used to create
low dimensional projections of radio astronomy spectrograms. In doing so, we pro-
vide an operator-in the loop tool for data inspection, for managing data quality in
radio telescopes. We propose an autoencoding architecture that separately processes
both the magnitude and phase components of the radio astronomy spectrograms. In
this chapter we also introduce the feature compounding problem in radio astron-
omy based spectrograms as well as a simple method to evaluate performance using
synthesised data. Overall this chapter aims to answer research questions 1 and 2.

This Chapter is based on:

• Michael Mesarcik, Albert-Jan Boonstra, Christiaan Meijer, Walter Jansen,
Elena Ranguelova, and Rob V. van Nieuwpoort, "Deep learning assisted data
inspection for radio astronomy" [106], in In: Monthly Notices of the Royal Astro-
nomical Society 496.2 (May 2020)

• Michael Mesarcik, Albert-Jan Boonstra, Christiaan Meijer, Walter Jansen,
Elena Ranguelova, and Rob V. van Nieuwpoort, "LOFAR dataset for deep
learning assisted data Inspection for radio astronomy" [107], in Dataset on Zenodo

3.1 introduction

Modern radio telescopes generate an ever growing amount of data. To im-
prove spatial resolution, sensitivity, and field of view, larger telescope ar-
rays are being constructed [8, 51, 108]. The increased size and capabilities
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of the instruments lead to more data, a higher system complexity, and ever-
growing error rates due to malfunction.

System Health Management (SHM) is the process of detecting, diagnos-
ing and remedying system failures to maximise system uptime. SHM and
pinpointing error sources in radio telescopes today still rely on manual
inspection and human interpretation of the data. This is error-prone, and
large-scale spatially distributed radio telescopes such as LOFAR [8] face
reliability and up-time issues. These issues stem from the scale and com-
plexity of the systems and processing chains involved [13]. In LOFAR for
example, we expect that, due its scale and its somewhat harsh operating
conditions, at any given time several components in the systems will not
operate correctly. The LOFAR stations in the Netherlands are exposed to
high moisture levels which may result in failure of components such as an-
tennas and amplifiers [8]. Other reasons for failures include normal wear of
components, network packets being dropped, and hardware and software
errors among many others.

For the next generation exascale SKA radio telescope [9] this will be an
even bigger issue. The complexity of the instruments, the myriad of obser-
vational modes, and the scale of the data transport and compute platform
[11] make accurate error detection [109] and complete fault localisation very
difficult. Therefore, intelligent automated SHM approaches would signif-
icantly improve the quality and availability of the observational systems.
This is not only beneficial for (predictive) maintenance, operations, and
cost, but it is also crucial for the science results, as accurate knowledge of
the state of the telescope is essential for calibrating the system [40].

The variability and amount of features found in data obtained from radio
telescopes makes applying classic signal processing techniques for SHM
difficult, as these techniques depend on specific feature morphologies [110,
111]. Therefore, the scale, complexity and variability of features have made
machine learning approaches candidate solutions to this problem.

This chapter discusses the data formats, preprocessing as well as sys-
tem design required to learn representation of radio astronomical data. In
Section 3.2 we discuss and analyse the preprocessing techniques that we
apply to the spectrograms obtained from LOFAR and the data obtained
from the HERA simulator. Section 3.3 documents the deep learning archi-
tecture used, while Section 3.4 establishes performance evaluation metrics.
Finally, in Section 3.5 we present results and in Section 3.6 the conclusions
are given.
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Figure 3.1: Block diagram showing the data extraction and preprocessing pipelines
applied to the observations before training.

3.2 data preparation

In this section, we discuss and analyse the preprocessing techniques that
we apply to the spectrograms obtained from LOFAR. This step is often
under-emphasised or even omitted in papers describing the application of
machine learning to radio astronomy based applications. This is unfortu-
nate, since we found this is far from trivial, as it has significant impact on
the quality of the end results and is important for the reproducibility of the
research.

Preprocessing is particularly challenging for radio astronomy compared
to other fields. Examples of some of the preprocessing challenges faced in
the field are the high dimensional data cubes; the complications of having
amplitude and phase information, which must be treated separately; and
the extremely noisy data with a very high dynamic range due to interfer-
ence.

As described in Chapter 2.1 the LOFAR telescope produces large amounts
of data that can be processed in a variety of different ways. As the amount
of data produced from a LOFAR observation is rather high, data inspection
is usually performed using a lower spectral resolution, and/or time averag-
ing, and/or sub-sampling. The so-called inspection plots are based on either
low spectral resolution auto-correlation spectra created at the stations, or on
compressed spectrograms. For each LOFAR aperture synthesis observation,
an additional compressed .hdf5 dataset is produced in parallel to the full
measurement set. The compression parameters are tunable, but a 100 TB
observation is typically reduced to the order of gigabytes.
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The data compression stages can be seen in the top half of Figure 3.1.
First, the the dataset is sub-sampled in time, using a regular grid. The next
step is aimed at reducing the dynamic range of the data so that it fits in
fewer bits. This includes taking the logarithm of the absolute value of vis-
ibilities, and normalisation by a scaling factor computed as the maximum
value for each baseline, sub-band, and polarisation. The normalisation fac-
tor is stored in the .hdf5 file so that the original data can be reconstructed
albeit with reduced resolution. The compressed data are stored as 8 bit
integers for the real and imaginary parts of the complex visibilities.

3.2.1 Data-set preprocessing
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Figure 3.2: The processing stages ap-
plied to a randomly se-
lected baseline from the
LOFAR training set.

The main considerations for the pre-
processing of the time-frequency spec-
trograms are the data type, the nor-
malisation method, the correct scaling
of features and size of each spectro-
gram. The preprocessing scheme used
in this work can be seen in the bottom
section of Figure 3.1.

As shown in work by Kerrigan et
al. [112], the use of both amplitude
and phase components of the complex
visibilities yield an increase in per-
formance in the classification of RFI.
For this reason, we deem it critical to
make use of both components of the
complex visibilities. The model eval-
uation shown in Section 3.4 demon-
strates the differences in performance
when changing the domain of the
training data.

Due to the GPU memory constraints for training and inference, all com-
plex spectrograms need to be constrained in size. As the extracted .hdf5

could consist of different observation durations each with a different num-
ber of sub-bands, it was necessary to resize the visibility matrices. The re-
sizing was performed by down-sampling all dynamic spectra greater than
128x32 and interpolating all spectrograms smaller than 128x32 in frequency
and time.
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To increase the dynamic range of the astronomical features present in
the magnitude component of the complex visibilities, we perform naive
radio frequency interference suppression. We achieve this through the use
of a median based thresholding mechanism which we only apply to the
magnitude component of the spectrograms. We do not apply the scheme
to the phase components of the visibilities, as they are bounded between
−π ⩽ ϕ ⩽ π.

The median-threshold was calculated on a per-spectrogram basis. In ef-
fect every different baseline had a unique threshold defined by its own
power spectrum such that

|V ′
i,j(τ,ν)| =

σ, if |Vi,j(τ,ν)| ⩾ σ

|Vi,j(τ,ν)|, otherwise
(2)

where σ is the first standard deviation of the visibility of antennas i and
j given by Vi,j(τ,ν) where τ and ν correspond to the time and frequency
dimensions respectively.

As a consequence of the magnitude being unbounded, we normalised
the magnitude between 0 and 1 on a per baseline basis after the naive
RFI suppression. Additionally, to ensure that the phase component was
weighted equally in training, we normalise the phase component to the
same scale as the magnitude. An illustration of the intermediate outputs of
the preprocessing pipeline can be seen in Figure 3.2.

3.3 variational autoencoder architecture

In this section we describe the design and constraints of the proposed Vari-
ational Autoencoder (VAE) based architecture, as shown by Figure 3.3.

An autoencoder is a machine learning model used to generate compressed
representations of data in an unsupervised manner. The model can be con-
sidered in two parts, the encoder network, h = f(X), that generates an
intermediate representation of the input data, z, and a decoder network,
r = g(z), that regenerates the input data from the encoded representation.

VAEs are a generative branch of autoencoding models. Unlike traditional
autoencoders that use purely reconstruction-based loss functions, varia-
tional autoencoders are probabilistic models. This means that they consider
the input, output and latent representations as distributions rather than
discrete values. This is achieved by minimising the KL-divergence between
the input distribution, q(X), and the output distribution, p(X), given an
intermediate representation z, as given by



26 learning representations of radio astronomy spectrograms

DKL(q(z|X)||p(z|X)) =
∑
z

q(z|x) log
(q(z|X)
p(z|X)

)
. (3)

As the posterior distribution is not tractable, the Evidence Lower Bound
(ELBO) [113] of log(P(X)) is maximised as an approximation to the distri-
bution, given by

max log(P(X)) ⩾ Eq(z|X)

[
log(p(X|z)

]
−DKL(q(z|X)||p(z)). (4)

When we parameterise p(z) by θ and q(z|X) by ϕ the loss function of the
VAE can be stated as

LELBO(θ,ϕ,X) = −DKL(qϕ(z|X)||pθ(z))

+ Eqϕ(z|X)

[
log(pθ(X|z)

]
.

(5)

In the case of the autoencoder-based structure, the qϕ(z|X) term may be
considered as the encoder, mapping the input distribution qϕ(X) to the
latent projection given pθ(z), whereas the pθ(X|z) term may be considered
the decoder, mapping the output distribution pθ(X) given z [114].

Typically, the prior distribution, pθ(z), is obtained by sampling it from
a Gaussian. However, as the sampling operation is not differentiable, a
reparameterisation trick is used. The reparameterisation removes the non-
differentiable sampling operations from the network and replaces them
with differentiable operations.

The encoder and decoders are convolutional neural networks (CNNs).
Structurally each convolutional layer in the encoder is followed by a max-
pooling layer and batch normalisation, this is done to minimise the recep-
tive field of the each subsequent convolution. The decoder uses an upsam-
pling layer after each convolutional layer to restore the correct dimensional-
ity of the output. In the case of the architecture used, the number of filters
was decreased by a factor of 2 for each sequential convolutional layer in the
encoder, and is up-sampled by a factor of 2 in each consecutive convolu-
tional layer in the decoder.
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3.3.1 Architectural motivation and constraints

The major consideration that was made regarding the VAE architecture was
the structural separation between the magnitude and phase components of
the complex visibilities. We deem it critical to make use of both compo-
nents as they contribute differing representations of particular astronomi-
cal and terrestrial phenomena. In section 3.5.1, we discuss a performance
comparison of network architectures that use different combinations of real,
imaginary, magnitude and phase components.

A result of using the magnitude and phase components for training the
VAE-based model is that the learnt representations from both the phase and
magnitude encoders need to be joined together. As features appear differ-
ently in each domain, we determined that normalisation after each convolu-
tional layer was necessary. The normalisation ensured that the independent
magnitude and phase activations are maintained between 0 and 1, so that
no higher magnitude activations, such as RFI, may take precedence over the
learnt representations. They can be seen in mauve in Figure 3.3. Similarly
to Kerrigan et al. [112], we found that the concatenation of the learnt nor-
malised magnitude and phase activations yields increased performance. In
the case of the VAE architecture, we concatenate the magnitude and phase
components after the last convolutional layer of the encoder such that their
joint-embedding could be determined.

As the objective of this work is a data inspection and visualisation tool,
it was necessary to reduce the dimensions of the input spectrograms to 2

dimensions. This is critical, as visualisation and navigation of a two dimen-
sional space is intuitive for the end users of this system at observatories.
The impact of this is that the 2-dimensional embedding of the 128x32 sized
spectrograms results in a 97% reduction in dimensionality which limits the
VAE’s reconstruction abilities. In other literature that use autoencoders for
dimensionality reduction [115, 116] and representation learning [62], higher
dimensional latent spaces are often used to encode high-order features such
as affine transformations. However, in our work, the latent representation is
limited to 2-dimensions. The effect of this is that some higher-order features
are lost and cannot be regenerated by the decoder network.

A benefit of the architecture we use is the ability of the VAE to generate
new samples from the learnt distribution of the complex radio astronom-
ical spectrograms. The ability of VAEs to generate new labelled data is
described in more detail in Pu et al. [117]. Although the generative aspect
of these networks are not used in this work, it is an interesting considera-
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tion as this model can be used to generate new labelled training data given
that the latent projection can be labelled. We intend to investigate if we can
exploit this feature to automatically classify anomalies in future work as
described in Akcay, Atapour-Abarghouei, and Breckon [16].

For training we used the Adam optimiser with a learning rate of 1e-4
when used cross entropy for reconstruction term of the VAE loss. Further-
more we experimentally selected a batch size of 256 and 200 epochs for
training.

3.4 model evaluation

In representation learning for radio astronomy, challenges arise from the
combinatorial effects from multiple features possibly being present in a
spectrogram. For example, a given spectrogram from LOFAR may contain
several features such as narrow band RFI, point sources, solar storms, Cas-
siopeia in the antenna side-lobes and many more in a particular spectro-
gram. This means that for a single observation the total number of combi-
nations of features is given by

nc =

n∑
k=1

n!
(n− k!)k!

+ 1 (6)

where n is the total number of possible features, and nc designates the
number of different clusters, each with a particular combination of astro-
nomical features. In the case of 10 features, the number of combinations of
features will yield 1024 different classes, given that the ∅-set is included.

To create a controlled environment to evaluate the projection, we use a ra-
dio astronomy simulator so that the number of features present in a partic-
ular spectrogram could be designed in a predictable manner. Additionally,
the simulator allows feature labels to be generated with each spectrogram,
such that the accuracy of the separation of the features can be measured,
allowing a quantitative analysis. We later perform a manual qualitative anal-
ysis with real LOFAR data.

3.4.1 Quantitative evaluation using simulated data

We use the HERA [118] radio astronomical data simulator for quantitatively
evaluating the magnitude and phase-based VAE, as it is capable of gener-
ating various astronomical and terrestrial events. Features such as point
sources, pseudo-sky models and various forms of RFI can be generated.
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Through the use of the simulator, we generated 20,000 training spectro-
grams with multiple baselines of a pseudo-sky model. We added random com-
binations of different features to this. These features were: point sources,
narrow and broadband RFI, gain fluctuations and antenna cross talk. The
features and their parameters that we used can be seen in Table 3.1 and the
exact model specifications of these features are described in work by Kerri-
gan et al. [112].

The data obtained from the HERA simulator has far fewer features and
significantly smaller variability of parameters of those features compared
to the real-world LOFAR data. Therefore, the results from the simulated
data do not guarantee performance in geometric-separability when apply-
ing the same model to the LOFAR data. However, by evaluating the model
performance both prescriptively on the HERA data and descriptively on
the LOFAR data, it is possible to ensure a degree of confidence regarding
the obtained results. In addition to this, the use of both synthesised HERA
data and real-world LOFAR data prove the generalisability of the model for
different astronomical instruments and data sets.

We use a linear Support Vector Machine (SVM) to measure the separabil-
ity of features in the latent space of the model. Linear SVMs are a super-
vised machine learning technique that classifies labelled data by segment-
ing the N-dimensional mappings using hyper-planes. The classification out-
put generated from the SVM is used as an evaluation metric of the VAE’s
representation learning performance, because the classification accuracy in-
creases proportionally to the euclidean separation of spectrograms with the
same multi-feature labels in two dimensional space [119].

Since the focus of this work is on visualisation of high dimensional spec-
trograms, and not on classification, we chose a naïve classifier. Naturally,
the choice of a more sophisticated classification technique would yield im-
proved performance in many cases. However, by illustrating the effective-
ness of the naïve classifier, we prove that the VAE is clearly capable of
separation of features in the low dimensional embedding.

3.4.2 Qualitative evaluation using LOFAR data

To demonstrate the real-world efficacy of the model, we evaluate the learnt
representations descriptively using data obtained from the LOFAR tele-
scope. A prescriptive evaluation was not possible on the LOFAR data pro-
jection as there exist a multitude of features that can be simultaneously
present in a given spectrogram. Moreover, these features can vary signif-
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Table 3.1: Parameters of the HERA simulator used to synthesise training data.

Feature Type Value

Baseline geometric delays 5 ns, 10 ns, 20 ns, 100 ns, 500 ns

Number of frequency channels 64

Number of time samples 128

Number of uncorrelated sources 200

Synthesised noise type Gaussian

icantly across different baselines. The variability of features is a result of
the geometric localisation of the terrestrial or astrophysical phenomena to
a particular station. The effect of this is that localised sources will appear
significantly different in geographically distant stations. Consequentially,
different labels would have to be given to the same feature for different
baselines which presents a problem when trying to evaluate separability
of features in a prescriptive evaluation of results. Additionally, the effort
of manually labelling enough data with many combinations of features is
prohibitive. These limitations are addressed in later chapters of this thesis,
where expertly labelled data sets have been produced for both anomaly
detection and radio frequency interference mitigation.

For this reason and the compounding of features shown in Equation 6,
traditional clustering evaluation methods such as accuracy and normalised
mutual information (NMI) [114] are not suitable metrics in this context. We
aim to perform further analysis regarding anomaly and outlier detection in
future work.

We evaluate the LOFAR results through visual inspection of the embed-
ding plots, scatter plots with the magnitude spectrograms superimposed on
the points, as well as considering the difference in the generative abilities
of the input and output spectrograms.

To evaluate the LOFAR-based results, we trained the VAE-based model
using 327 unique observations, each consisting of between 600 and 3000

baselines from both the LBA and HBA stations. From these observations,
256 baselines were randomly sampled from each file. We preprocessed the
data using the preprocessing pipeline described in Section 3.2. The result
of this was that we trained the model using 60672 32x128-sized complex
spectrograms.

Finally, we integrated the embedding plots into a data inspection envi-
ronment used by the data commissioning astronomers at the ASTRON ob-
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servatory 1. With the use of experts in the loop, the system was iteratively
evaluated whilst in the development phases.

3.5 results

In this section, the effectiveness of the designed variational autoencoder
is shown. This is done by evaluating the model’s ability to give meaning-
ful low dimensional projections for telescope operators diagnosing system
health. In all cases the test-train split ratio of the training data was 80:20.
For the quantitative evaluation of the HERA data, the model’s classifica-
tion accuracy is used as the primary performance metric unless otherwise
specified. The LOFAR-based training data can be found online 2.

3.5.1 Simulated data

To evaluate how best to represent the input data to the VAE-based model
we consider six different formats. Here we train a VAE on the real com-
ponent only, the imaginary component only, both the real and imaginary
components, on the magnitude only, the phase only and on both the mag-
nitude and phase components of the complex data. From this, we evaluated
the classification performance for each of the different architectures.

It is clear from the results shown in Figure 3.4 that using both the mag-
nitude and phase components of the complex visibilities yields the best
classification accuracy. Albeit a small performance increase, in comparison
to using the magnitude component only, it is comparable to those results
reported by [112]. Furthermore, even though the real and imaginary repre-
sentation contains the same information as the magnitude and phase rep-
resentation, using the latter shows a significant performance gain. This can
be explained by the complex time-frequency data being represented in a
more interpretable manner for the convolutional layers of the VAE. For this
reason, the magnitude and phase-based network architecture is used from
this point onward in the experiments of this chapter.

To draw performance comparisons between the models trained on HERA
and LOFAR data, we ran experiments to determine the HERA-trained model’s
classification accuracy as the number of features increases. We did this by
varying the number of features, n, in a given HERA data training set from
3 to 7 and calculating the classification accuracy of the model. In Figure 3.5

1 https://www.astron.nl/
2 https://zenodo.org/record/3702430
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Figure 3.4: Classification accuracy of the SVM classifier applied to the learnt repre-
sentations when the VAE was trained on data with 5 different features
presented in different domains.

we can see that as the number features increases, the classification accuracy
of the network decreases significantly.

There is a significant classification performance loss from 5 features on-
ward, however the use of only classification accuracy as an evaluation method
does not perfectly capture the performance of the model. The linear SVM-
based classifier’s performance requires the embedded spectrograms to be
linearly separable in their latent projection, however it shows that as the
number of features increases the linear separability decreases. This is due
to the fact that pronounced features such as persistent narrow band RFI
tend to take precedence over lower power features such as astronomical
sources such that when compounded, features consisting of a weak and
strong feature are localised to the same embedding location.

This being said, when visually inspecting the embeddings obtained from
models trained on data with a high number of features it is clear that certain
features are well separated. Figure 3.6 (a) shows the 2 dimensional embed-
ding of of the input spectrograms with six features, namely narrow-band
radio station-based and digital television broadcasting signals (RFI), broad-
band impulsive RFI, gain fluctuations, source structure and Gaussian noise.
In this experiment the labels associated with each compounded feature are
coloured differently. In Figure 3.6 (b) the same embedding is shown, ex-
cept rather than colouring each point by its respective label, the magnitude
component of the input spectrogram is overlaid onto each of the embed-
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Figure 3.5: Classification accuracy of the SVM classifier applied to the learnt repre-
sentations while varying the number of features in the HERA simulator.

ding points associated with that input. It can be seen that the features of
associated with each input are clearly visually separated, additionally the
segmentation of the label-coloured inputs shown in Figure 3.6 (a) is clearly
reflected in this plot.

Notably, there is a clear separation in the features that contain narrow-
band radio station-based RFI, shown in the top-right half, and those that
do not, shown in the bottom half. Furthermore, within the station based-RFI
contaminated region, there is a clear separation between the spectrograms
that contain source structure, in the top left-most region, and those do not,
shown in the top right-most region. Similar segmentations can be seen in
the bottom-most region that do not contain radio station-based RFI, in that
there is a clear separation between those spectrogram that contain sources
and those that do not.

Furthermore, the 2D histogram shown in Figure 3.6 (c) reflects how the
input spectrograms are evenly distributed within the two dimensional em-
bedding. It can be seen that there is a uniform distribution of data within
the 2 dimensional space, with no feature occupying a single point on the
grid.

Although the designed visualisation system is constrained to two dimen-
sions, it is useful to consider the model’s classification performance (or
higher dimensional geometric separability) for sake of explainability and
generalisability of the system. For this reason experiments were run to mea-
sure the SVM classification accuracy when the dimensionality of latent pro-
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(a) The embedding of the HERA-trained
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(b) The embedding of the HERA-trained VAE
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(c) 2D histogram showing the distribution of data
within in 2D latent embedding.

Figure 3.6: The hierarchical feature separation for the magnitude and phase-based
VAE trained on simulated HERA data with 6 features.
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Figure 3.7: Classification accuracy of the SVM classifier when increasing the dimen-
sionality of the latent projection and the number of features is fixed to
6.

jection is varied between 2 and 1000 while the number of features is fixed
to 6. Six features were chosen as it reflects the point where the classification
accuracy when using a two-dimensional embedding deteriorates. For this
reason it is of interest to see the behaviour of classifier as the dimension-
ality of the latent projection increases. The result of this may be seen in
Figure 3.7.

It can be seen that as the dimensionality of the embedding vector in-
creases so does the model’s ability to classify compounded features, how-
ever the high dimensional latent space does not enable easy visualisation
of data. This being said, using higher dimensional embeddings may enable
anomaly detection and aid the generative abilities of the VAE in future
work. Additionally, this result further confirms the limitation of the model
ability to learn more complex compounded features.

3.5.2 LOFAR data

Here we describe the qualitative results of the model trained and evaluated
on LOFAR data. This subsection uses descriptive methods to show the gen-
eralisability of the model to LOFAR data where the number of features and
their compounding become more apparent.

As shown in Section 3.5.1 the inclusion of both magnitude and phase
information yields improved performance. This being said, if we were to
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train the LOFAR-data based model on magnitude components only, then
it would be expected that the embedding would appear significantly differ-
ent. It is expected that the geometric separability of features such as auto-
correlation will be worse, as auto-correlations in phase appear as zeros in
their corresponding spectrograms, which is an easily represented feature in
the phase based embedding.

The evaluation of the LOFAR-trained VAE was performed using 100 ran-
domly selected .hdf5 files, that were not in the training set, with 256 base-
lines sampled from each file. Each spectrogram used for testing contained
a number of features compounded in different ways. The projection of the
test data is shown in Figure 3.8, where the magnitude and phase compo-
nents of the input spectrograms are superimposed on each of the points
that they are projected to in the 2D latent space.

It can be seen that the generated embedding is clearly capable of group-
ing together visually similar features as well as geometrically separating
distant features. Admittedly, the interplay between the magnitude and phase
components do make interpretability of results challenging, however it is
clear that the spectrograms from the test data lie on a low dimensional
projection, or a manifold, with multiple vertices.

In Figure 3.8, it can be seen that spectrograms of the auto-correlations are
embedded to the bottom half of the latent space. This is shown by the nor-
malised phase component of 0 in Figure 3.8 (b), whereas spectrograms with
high normalised phase components and block-like RFI are placed toward the
top of the embedding. Similarly, when considering the bottom-right region
of Figure 3.8 (a) it can be seen that particular source structures with a high
magnitude component in high frequency bands are grouped together. It
can be observed that spectrograms that contain zero magnitude and phase
information are geometrically separated from the manifold. This is shown
in both Figures 3.8 (b) and 3.8 (a) approximately at coordinates (−4.2,−2.5).

More generally, Figure 3.9 shows the decoded output of each point in
the latent space superimposed onto its corresponding 2D coordinate when
each spectrogram is separated into magnitude and phase components. This
plot shows the geometric separability of each feature in its latent projection,
which clearly reflects the results shown in Figure 3.8.

This being said, the plots in Figure 3.9 reflect the learnt representations
of the input spectrograms rather than ground-truth of these inputs. This
aspect of the generative abilities of the model is discussed in Section 3.5.3.
Figure 3.9 (a) shows clear geometric separation between various features in
the latent space. It can be seen that sparse RFI-based features are grouped
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(a) Magnitude representation

(b) Phase representation

Figure 3.8: The embeddings of the VAE-based model for preprocessed testing data
obtained from LOFAR sampled from 100 random observations. Where
the magnitude and phase components are overlaid onto each point in
the 2D latent space. It is shown that the model can effectively separate
various source structures with an even distribution of data.
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toward the origin of the embedding, whereas toward the top-region of the
plot higher magnitude representations are learnt.

The corresponding learnt phase-representations of the complex spectro-
grams are reflected in Figure 3.9 (b). It can be observed that the bottom
region of the embedding corresponds to auto-correlations which have a
constant 0-phase. Furthermore, it is shown that the VAE learns that spec-
trograms projected around the point (−1.7,−0.4) contain particular low-
frequency source structure.

This result gives insight into the magnitude and phase based perfor-
mance gains that were previously discussed. In this case, the lack of detail
in the learnt representations are attributable to the VAE under-performing
in its ability to learn phase representations of the data. However the lack
of detail in the learnt phase representations is to be investigated in future
work.

3.5.3 Generative abilities of the LOFAR-based VAE

Figures 3.9 (c) and 3.9 (d) show the differences between input spectro-
grams separated into their respective magnitude and phase components
and the learnt magnitude and phase representations of the VAE. These fig-
ures clearly show the limitations of the network to accurately learn the
correct representations of the LOFAR data. It can be observed that the net-
work has learned more refined representations of the phase component of
the spectrograms as seen in Figure 3.9 (d).

The top-most plot of Figure 3.9 (d) illustrates that the model learns a
general structure of the input. This is reflected in the correct dynamic range
scaling, however finer detail features in the input spectrogram located at
time-samples 60 and 80 are not regenerated. Furthermore, it can be seen in
the bottom-most plot that the network seems to learn a blurred sinusoidal
representation of the input.

An easy way to improve the performance of this model would be to
increase the number of dimensions in the latent vector, however this would
defeat the purpose of this work.

Interestingly, Figure 3.9 (c) shows how the VAE learns the intensity of
the magnitude component of the spectrograms, however fails to learn more
chaotic features such as spurious RFI. In contrast, the phase representation,
shown in Figure 3.9 (d), the model seems to learn the narrow band RFI in
the input spectrogram from the 33rd baseline.
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(b) Phase embedding plot, where each
point in the embedding corresponds
to the learnt phase representations of

the VAE

(c) The learnt magnitude representations,
where the left column corresponds to
the input spectrogram and the right
column corresponds to the represen-

tation learnt by the VAE.

(d) The learnt phase representations,
where the left column corresponds to
the input spectrogram and the right
column corresponds to the represen-

tation learnt by the VAE.

Figure 3.9: The learnt magnitude and phase representations of the VAE that are
superimposed onto each point of the latent space and the difference in
magnitude and phase components of the input spectrograms relative
to the representations that the VAE has learnt.
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As already mentioned, the learnt source representations are clearly incor-
rect, yet they show convincing uses for the generative abilities of the VAE
to correctly embed the spectrograms obtained from LOFAR.

3.5.3.1 Prototype data inspection environment

We integrated the VAE into a flask-based 3 web-application to make the
model accessible to astronomers. A screen-shot of the interface is shown
in Figure 3.10. The web-interface displays the embedding of a selected ob-
servation. Moreover, it enables the filtering of displayed results based on
various criteria such as correlation-type, station location and others.

The interface enables operators to use the embedding as a diagnostic tool.
They can detect outliers in the embedding and trace the errors back to a
particular station. The system is currently being evaluated at the ASTRON
observatory.

3 https://flask.palletsprojects.com/en/1.1.x/
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3.6 conclusions and discussion

In this chapter we have shown how VAEs are effective in learning represen-
tations of radio astronomy spectrograms. We proved that, through the use
of a simple preprocessing pipeline and a relatively small amount of data
(compared to the amounts being generated on a daily basis by LOFAR),
our VAE is capable of learning low dimensional embeddings of the high di-
mensional features from both simulated HERA data as well as real LOFAR
data. We showed that a convolutional VAE that uses both magnitude and
phase components of the complex visibilities is capable of producing low
dimensional embeddings to aid astronomers with data quality analysis and
system health management.

We quantitatively proved how the various parameters of these models
effect the performance in geometric separability of data obtained from a
simulation from of the HERA telescope. We showed the limits of the model
by considering the dimensionality of the projections and the accuracy of
a SVM classification algorithm. Through this experimentation, we showed
that this model is capable of generalising to the unlabelled real data from
LOFAR. The VAE and SVM combination scores between 65% and 90% accu-
racy, and the geometric separability of features in two dimensions follows
a hierarchical compounding scheme. This combination is proven a useful
method for assisting human operators to diagnose failure. We showed the
integration of the model into a diagnostic web-framework enables telescope
operators to pinpoint system failures.

We do recognise that the model is limited by its generative abilities to
learn the complex compounded features obtained from the LOFAR tele-
scope. We show that there is a trade-off when trying to project the data to
a two dimensional latent space and maintain the high fidelity generative
abilities of the VAE. Additionally, a more sophisticated generative model
could be used to overcome the short-comings of the VAE as they have been
shown to be more effective in their abilities to generate new samples from
a learnt distribution of data [16]. In the upcoming chapters we illustrate
the anomaly detection abilities of the VAE-based method. We plan to in-
tegrate this visualisation tool into the LOFAR observatory pipeline, which
may grant the opportunity to investigate active learning in the context of
LOFAR.





4
N E A R E S T N E I G H B O U R - B A S E D

A N O M A LY D E T E C T I O N

This chapter focuses on how the representation learning methods in the previous
chapter can be harnessed for anomaly detection. It does this by considering the
anomaly detection general problem proposed by the machine learning community
and evaluates performance using both natural images and simulated astronomical
spectrograms. In this manner, all complexity and unknowns associated with col-
lection and preprocessing of astronomical data can be avoided when selecting the
appropriate anomaly detection method to be used in the system health management
context. In this chapter we illustrate a simple, yet effective method, of improving
anomaly detection performance of existing autoencoders and generative adversarial
networks. This chapter tackles research question 3.

This Chapter is based on:

• Michael Mesarcik, Albert-Jan Boonstra, Elena Ranguelova, and Rob V. van
Nieuwpoort, "Improving anomaly detection using the reconstructions of nearest
neighbours" [120], in In: Array 14 (2022)

4.1 introduction

Anomaly detection is an important field of research as identifying previ-
ously unknown behaviours in systems is critical for their maintenance and
smooth operation. It is the procedure in which a model is able to identify
new classes of data that it has not been exposed to before. Anomaly detec-
tion is a far-reaching topic having been applied extensively in fields such
as manufacturing [121], cyber-security [122], biomedical analysis [27, 123],
astronomy [98] and many more [124].

45
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Novelty, anomaly, outlier, abnormality and out-of-distribution (OOD) de-
tection are closely related topics [125]. The distinction between them is
vague across variety of literature studies [16, 19, 20, 27, 126]. For clarity
purposes, we consider anomaly detection to be the overarching paradigm,
and this terminology will be used throughout the rest of this work.

Approaches for anomaly detection can be divided into a number of cate-
gories [14, 124, 127, 128]. In this work we exclusively focus on autoencoder-
based anomaly detection. As it offers a data agnostic method that does not
rely on significant data augmentation [91], finding negative samples [129,
130] or pretraining on large labelled datasets [30] such as ImageNet [89].

Autoencoders (AEs) are widely used as anomaly detectors [16–24]. The
underlying mechanism that governs the AE’s anomaly detection abilities is
that they are first trained on data without abnormal, anomalous or outly-
ing samples. Then, during inference, the AE is exposed to anomalous sam-
ples which result in higher errors thus enabling anomaly detection. Meth-
ods such as mean-square-error (MSE) [21], residual error [27], structural-
similarity (SSIM) [84] or feature consistency [131] are used to calculate the
pixel-wise difference.

A common problem with using autoencoding methods for anomaly de-
tection is that AEs can generalise to unseen classes thereby performing
poorly as anomaly detectors [132]. In Perera, Nallapati, and Xiang [19],
this issue is addressed by placing a classifier in the training path of a
multi-discriminator based autoencoder, which results in a fairly compli-
cated and costly training procedure. Alternatively, we propose the Nearest-
Latent-Neighbours (NLN) algorithm which uses the reconstructions of the
nearest-neighbours in the latent space of autoencoders in-order to combat
the aforementioned generalisation problem.

Unlike existing nearest neighbours methods [133], our NLN algorithm
uses both the reconstruction error between a given sample and it’s neigh-
bours in the latent space as well as the average latent-distance to its neigh-
bours. Figure 4.1 illustrates how a vanilla autoencoder generalises to recon-
struct unseen samples whereas the reconstructions of an input’s nearest-
latent-neighbours more closely resemble the non-anomalous training set
thereby offering improved anomaly detection.

We evaluate the proposed method using the anomaly detection frame-
work described in Burlina, Joshi, and Wang [93] and prove it’s effectiveness
in a two-stage testing strategy. Firstly by comparing different architecture’s
performance with and without the use of our NLN algorithm. Secondly
we compare our best performing model with the current state-of-the-art
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AEs. We show that NLN is competitive with the state-of-the-art methods
across a number of datasets. Furthermore, we consider the radio astron-
omy anomaly detection use-case through experimentation on the simulated
HERA dataset described in the previous chapter.

In summary, the main contributions of this chapter are: (1) a novel nearest-
neighbour based algorithm that harnesses the reconstruction error of a
given sample’s nearest-latent-neighbours and their latent-neighbour dis-
tances. (2) The formulation of the NLN algorithm applied to a variety of
autoencoding architectures using several different error calculation meth-
ods. (3) Improved performance to the state-of-the-art autoencoders using
NLN, a fairly simple, cheap and intuitive method, across a number of stan-
dard datasets.

4.2 nln : nearest latent neighbours

Here we present our anomaly detection framework for autoencoders. We
show that using a simple addition to existing autoencoding architectures
we can significantly increase their anomaly detection performance.

4.2.1 Motivation

In Perera, Nallapati, and Xiang [19] and Hong and Choe [132] the gener-
alisation problem of autoencoders when used for one-class anomaly detec-
tion is described. They show that when an AE is trained on the relatively
complex 8-class from the MNIST dataset [134], the AE is able to implicitly
learn the representations of digit classes such as the 1, 3, 6 and 7. In ef-
fect, reconstruction-based anomaly detectors are prone to misidentify these
implicitly learnt classes.

In order to solve this problem, Perera, Nallapati, and Xiang [19] propose
placing a classifier in the training path of a multi-discriminator-based AE
to decrease the training signal for the reconstructions of implicitly learnt
anomalous classes. Conversely, we show that if we consider both the dis-
tance to, and the reconstruction of, a given sample’s nearest latent neigh-
bours we can effectively mitigate this issue, as demonstrated in Figure 4.1.
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In addition to the improved performance over Perera, Nallapati, and Xi-
ang [19] and Hong and Choe [132] shown in Table 4.4 we find that the
AE-backbones of our NLN algorithm have significantly better training sta-
bility and are less prone to mode-collapse [135]. Furthermore, we motivate
our focus on AEs for anomaly detection as they are applicable to a va-
riety of datasets without significant augmentation [91, 130], do not need
pretraining on large labelled datasets [30, 136] and require far fewer net-
work parameters [137]. Additionally, their structure provides segmentation
maps for free without the need of many small patches [90] that result in
a significantly more expensive KNN search or additional networks for seg-
mentation [91]. For example, Yi and Yoon [90] perform 2 KNN searches are
on patches sizes of 32 and 64, whereas we only need a single lookup for
patches of size 128.

4.2.2 Problem formulation and approach

Considering an autoencoding model with encoder, fθf
, and decoder, gθf

,
then

fθf
(x) = z, fθf

(x) : Rn×m → Rl (7)

where x is the input, z is the input’s latent representation and θf are the
parameters of the encoder. Additionally, Rn×m is the n×m-dimensional
image-space and Rl is the l-dimensional latent-space. Now consider the
decoder with an input, z, and a reconstructed output x̂ such that

gθg
(z) = x̂, gθg

(z) : Rl → Rn×m (8)

where θg are the decoder’s parameters, such that the decoder maps from
the l-dimensional latent space to the n×m-dimensional image space. The
encoder and decoder pair is trained in an end-to-end manner using a loss
function such as Mean-Square-Error (MSE) or Binary-Cross-Entropy(BCE).
Once trained, the AE’s novelty score (η) is computed for the ith sample
using

η =
1

NM

N∑ M∑
(xi[n,m] − x̂i[n,m])2 (9)

where n and m are the pixel-indexes for an image of size N×M. This
score is typically thresholded in order to determine whether a sample is
anomalous and the threshold is calculated using AUROC-based methods
that are explained in more detail in Section 4.3.
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In order to motivate our use of nearest-neighbours to solve the generalisa-
tion problem of AEs, we assume that the high-dimensional training data is
concentrated on a low-dimensional data manifold in Rl that we attempt to
learn using an autoencoder [113]. The learnt manifold is illustrated in Fig-
ure 4.2. Here we demonstrate that closely-connected regions on the learnt
manifold contain points similar to non-anomalous inputs and dissimilar to
those which are anomalous. We exploit this fact to improve the anomaly
score robustness by including the nearest-latent neighbours into the recon-
struction error.

Figure 4.2: Illustration of the learnt MNIST data manifold trained without the class
of 1’s (the class of 1’s are anomalous). The closely-connected regions of
the anomalous class of 1’s contain dissimilar digits resembling 7 and 9
whereas the non-anomalous classes consisting of 0 and 7 do not.

This is done by including the neighbours of the ith test sample in the
latent space Rl in the calculation of the novelty score (ηnln). Such that

ηnln =
α

KNM

K∑ N∑ M∑
|xi[n,m] − gθg

(zki )[n,m]|

+
1−α

K

K∑
|zi − zki |

(10)

where k is the neighbour index such that zki is zi’s nearest neighbours in
the latent space. K is the maximum number of latent neighbours and α is
the hyper-parameter (∈ [0, 1]) used to tune the contribution of latent-space
and image-space based distances respectively.

It must be noted that Equation 10 shows the critical difference between [30,
133] and our work. We propose using the reconstruction error in the image
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space, Rn×m, whereas earlier work only use the difference of extracted fea-
ture vectors in Rl. We find that there is additional information that can be
leveraged for anomaly detection in the image space of autoencoding meth-
ods, this is shown experimentally by the results in Tables 4.3 and 4.4. Fur-
thermore, for purposes of anomaly segmentation as in done in the MVTec-
AD dataset [30] the latent space error cannot give pixel-level segmentation
maps whereas the NLN-algorithm can.

4.2.2.1 Discriminative Considerations

Discriminative autoencoding models use discriminators in the training of
autoencoders. This is done to either improve the realism of the AE’s outputs
or to regularise the latent space to a prior distribution. In this work we
focus on the former case. Given a discriminator dθd

, trained on inputs x
and x̂ = gθg

(z) then

dθd
(x) : Rd → [0, 1]. (11)

Where the discriminator on x maps between the image space and a value
on the interval between 0 and 1. It returns 0 or 1 based on whether the
sample x is taken from the training set or if it is generated by the decoder,
gθg

. The discriminator’s training objective is stated as [138]

Ldisc = E[log(dθd
(x))] + E[log(1− dθd

(x̂))] (12)

In addition to improving the regularisation, discriminators can also be used
for anomaly detection. Novelty is calculated through the difference between
the representations of a sample xi, and its respective decoded output x̂i,
from an intermediate layer, q, of dx. This is also referred to as the residual
error [27] and we include the nearest-latent-neighbours by

ηres =
α

HK

H∑ K∑
|qθd

(xi)[h] − qθd
(gθg

(zki ))[h]|

+
1−α

K

K∑
|zi − zki |

(13)

where h in an index of the output from an intermediate layer q with size
H.
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4.2.2.2 Feature Consistency

It has been shown in Akcay, Atapour-Abarghouei, and Breckon [16] that
adding an additional encoder in the training path of the autoencoder im-
proves performance. This paradigm is referred to as feature consistency [131]
and can be integrated in our nearest-latent-neighbours method by

ηcon =
α

LK

L∑ K∑
(fθf

(xi)[l] − fcon(x̂ki )[l])
2

+
1−α

K

K∑
(zi − zki )

2.

(14)

Where fcon is the additional encoder that takes x̂ as an input, with parame-
ters, θfcon . Furthermore, L is the latent space dimensionality, which is main-
tained between the first encoder, f, and the second encoder, fcon and is
indexed by l. The encoder is trained jointly with the rest of the discrimina-
tive autoencoder as described in Akcay, Atapour-Abarghouei, and Breckon
[16].

4.2.3 The NLN algorithm

Our work concerns the integration of the NLN technique into existing au-
toencoding models. For this reason we explain three different modes of
operation for three different novelty scores. In the first case, a vanilla au-
toencoding model is used with a standard reconstruction error, as shown
in Equation 10. The second uses the autoencoding architecture in [16] and
the feature consistency error in Equation 14. Finally, the third makes use of
a discriminative autoencoding architecture and use of the residual error in
Equation 13.

In all cases, an autoencoding model is first trained on a dataset with some
anomalous class(es) removed. During testing, a sample is randomly chosen
(which may be anomalous or not) and is input into the encoder. Then the
nearest neighbours of the encoded sample are found in the latent space
generated by the training data. This process is represented by the left-most
half of Figure 4.3.

In the first mode of operation, the error is computed between the test
sample and both the decodings and positions of its latent-neighbours in
the non-anomalous latent space. Whereas when discriminative methods are
used, the error is computed between the intermediate representation from
the discriminator dx of the test sample and all its decoded latent neighbours
in the training data.
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In the feature-consistent case, the error is computed between the encod-
ing via fcon of the given sample and all its nearest-latent-neighbours in the
training data. In Figure 4.3 these three operations are represented by the ⋆

operator.
When performing anomaly detection, one of the three methods’ errors

are aggregated over all neighbours and normalised after which they are
added to the aggregated and normalised latent-neighbour distance vector.
Then they are thresholded to result in an anomaly score and a segmentation
map. The threshold is determined by the AUROC method described in
Section 4.3. This methodology is illustrated in the right half of Figure 4.3.

4.3 experiments

We evaluate our method experimentally in both multi-class and single-class
anomaly detection contexts as outlined in [93]. Furthermore, we compare
our best performing NLN-enabled autoencoder using both pixel-level and
image-level anomaly detection metrics on the MVTec-AD dataset with state-
of-the-art autoencoders.

4.3.1 Evaluation methodology

To measure the performance of the NLN-enabled models, they are trained
multiple times on a specific dataset, each time removing a different class or
classes from the training set, thereby testing the anomaly detection perfor-
mance on every class present in a given dataset. We do this according to
Burlina, Joshi, and Wang [93], such that both the single-class or Single-Inlier-
Multiple-Outlier (SIMO) and the multi-class or Multiple-Inliers-Single-Outlier
(MISO) performance are evaluated.

We use the Area Under the Receiver Operating Characteristic (AUROC)
score to evaluate and compare the performance of the NLN-algorithm. The
AUROC metric measures the area under the ROC curve of true positive
rates and false positive rates for different threshold values. Furthermore, we
evaluate the per-pixel detection performance of our NLN-enabled models
using Intersection over Union (IoU) score. The IoU metric is a measure of
the overlap between the predicted regions and their corresponding ground-
truth.

We limit our evaluation to only autoencoders as we find comparison with
methods that rely on SSL [90, 129, 139], pretrained feature extractors [92,
129, 139, 140] or computationally expensive inference [90] are not easily
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comparable on AUCROC alone across multiple datasets. It has been well
documented that using pretrained feature extractors and SSL losses result
in improved performance. However, they typically require orders of magni-
tude more parameters [137], and are not easily applicable across datasets or
evaluation strategies. Furthermore, we regard the simplicity of AEs a cru-
cial attribute. This is in contrast with the significant augmentation found
in Li et al. [91] and the challenge of applying patch-dependant methods Yi
and Yoon [90] to different datasets of varying resolutions and anomaly
types.

4.3.2 Datasets

We evaluate our work on five different datasets, namely MNIST [134], CIFAR-
10 [141], Fashion-MNIST [142], MVTec-AD [23] and the HERA dataset [143].
MNIST is a dataset consisting of 28× 28× 1 handwritten digits between
0 and 9. The complexity of the dataset is low and therefore our method
performs best on it. Similarly, Fashion-MNIST is composed of 28× 28× 1

images of different types of articles of clothing. This dataset is used as an in-
termediary difficulty, between MNIST and CIFAR-10. CIFAR-10 is an object
recognition dataset consisting of 32× 32× 3 images of 10 different classes. It
is the most challenging dataset for anomaly detection as each of the seman-
tic classes may appear at different scales, viewing angles and have changing
backgrounds [125].

The MVTec-AD dataset is an industrial anomaly detection dataset con-
sisting of 15 different classes in 2 categories - objects and textures. The 10

object classes contain regularly positioned objects photographed in high
resolution from the same viewing angle and the 5 texture classes contain
repetitive patterns. For training on the MVTec-AD dataset we follow the
augmentation scheme proposed in Bergmann et al. [23], where random ro-
tations and crops are applied to the dataset that is broken into 128× 128

patches. For more details about the dataset’s composition and the augmen-
tation performed see Bergmann et al. [23].

Finally, we extend the evaluation to the simulated astronomical dataset
used in Chapter 3. It consists of 5 different non-compounded classes corre-
sponding to several types of radio frequency interference (RFI), astronomi-
cal sources as well as instrumentation effects. This dataset acts as a prelim-
inary evaluation of the NLN algorithm in the radio astronomical context.
Here, all samples contain diffuse background sources, noise and bandpass
effects on both cross- and autocorrelation based spectrograms. The spectro-
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grams are 512× 512 in time and frequency and we only use the magnitude
component of the XX polarisation, and perform the preprocessing accord-
ing to Chapter 3. For more information on the dataset see Kerrigan et al.
[112]. We evaluate the models only in the MISO setting as this is a more
realistic setting for radio telescope operations.

(a) Carpet (b) Grid

(c) Hazelnut (d) Toothbrush

Figure 4.4: Pixel-level anomaly detection using NLN for four different MVTec-AD
classes in the textures (top) and objects (bottom) categories.

4.3.3 Model and parameter selection

In order to evaluate our work across a number of different datasets we
adapt our models accordingly. We adopt autoencoding the architecture
specified in [23] for the evaluation of the NLN algorithm on the MVTec-AD
dataset. For MNIST, CIFAR-10, F-MNIST and HERA we modify a LeNet
[144] based autoencoding architecture. The encoder consists of 3 convolu-
tional layers and the decoder has 3 transposed-convolutional layers. A base
number of filters of 32 is used for the AE and is increased or decreased
on each subsequent layer by a factor of 2. We use ReLU activations for
all models and they are trained for 50 epochs using ADAM [145] with a
learning rate of 1× 10−4. The image-based discriminators dx use the same
architecture as the encoder, except the final layer, which is a dense layer
with a sigmoid activation. The latent discriminator for the AAE consists of
3 dense layers with Leaky ReLU activations and a dropout rate of 0.3. The
base layer size is 64 and is increased by a factor of 2 for each subsequent
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AE AAE VAE AE-res AE-con

MNIST 9.80% 17.65% 11.65% 10.13% 14.18%

CIFAR-10 6.92% 7.41% 1.29% 7.30% 6.68%

F-MNIST 11.52% 9.53% 10.31% 11.95% 11.52%

Table 4.1: Mean MISO AUROC percentage increase using NLN

AE AAE VAE AE-res AE-con

MNIST 3.45% 4.92% 3.99% 3.47% 4.21%

CIFAR-10 7.65% 8.81% 6.36% 6.89% 8.02%

F-MNIST 5.66% 5.12% 5.31% 5.65% 3.49%

Table 4.2: Mean SIMO AUROC percentage increase using NLN

layer. Furthermore, we treat the maximum number of neighbours, K, the
latent dimensionality, L, and the NLN contribution, α, as hyper-parameters
of our algorithm.

4.3.4 Results

We evaluate the performance increase of the NLN algorithm for a variety
of autoencoding models across a number of different datasets in both the
MISO-context in Table 4.1 and SIMO-context in Table 4.2. Here the best
performing reconstruction error-based AUROC is compared with the best
performing NLN-enabled model for each architecture. The NLN-based AEs
achieve a performance increase between 17% and 1% across the three MISO-
datasets and 8% and 3% for the SIMO-case. We suspect the low perfor-
mance gains in the SIMO-case of the NLN-enabled AEs are due there being
fewer latent neighbours to select from, thereby reducing performance.

In Table 4.3 we present the MISO-based class-averaged AUROC compar-
ison of autoencoding models. For MNIST, the optimal configuration is a
feature consistent AE with K = 2, L = 32 and α = 1.0, for CIFAR-10 we
use the discriminative AE when K = 1, L = 32 and α = 0.5. Finally for F-
MNIST, we use a discriminative AE when K = 1, LD = 64 and α = 0.9. Here
we see that the NLN-algorithm gives significant performance increases for
MNIST and F-MNIST, even above the pretrained ResNet-50 proposed by
Bergman, Cohen, and Hoshen [30]. Furthermore, we see that OCGAN Per-
era, Nallapati, and Xiang [19] is not performant in a MISO context, this
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Model MNIST CIFAR-10 F-MNIST

GANomaly [16] 0.753 0.532 0.679

Skip-GAN [17] 0.492 0.629 0.515

OC-GAN [19] 0.683 0.510 0.678

VAE [18] 0.515 0.497 0.521

AnoGAN [27] 0.632 0.434 0.510

EGBAD [28] 0.656 0.496 0.500

DKNN [30] 0.791 0.714 0.746

Ours 0.921 0.560 0.763

Table 4.3: Mean MISO anomaly detection AUROC, bold is best.

indicates that our NLN algorithm may offer a more robust solution to the
generalisability problem in AEs. We show that AEs do not perform partic-
ularly well on CIFAR-10. This is expected, as images from the same class
in contain substantially different pixel-level information. For example the
aeroplane class contains images of both the cockpit of a grounded Boeing
747 as well a fighter-jet photographed from the side-view in mid-flight. In
effect, the MSE between non-anomalous images in the same class, can be
greater than anomalous images thereby reducing the efficacy of MSE based
anomaly detectors on CIFAR-10.

We present the class-averaged AUROC scores for the SIMO-based evalu-
ation in Table 4.4. Here the optimal method for MNIST is a discriminative
AE, with LD = 128, K = 3 and α = 1.0 and for CIFAR-10 we find the
optimal method to be a vanilla AE with LD = 256, K = 1 and α = 0.75.
Furthermore, we find the best performing method on F-MNIST to be a
VAE with LD = 32, K = 3 and α = 0.9. For the MVTec-AD dataset we
use a discriminative AE with LD = 128, K = 1 and α = 0.8. It is clear
that the attention guided VAE (CAVAGA) [146] method performs best on
MNIST whereas DKNN [30] on CIFAR-10. However, it is evident that the
NLN-enabled autoencoding models offer increased performance over ex-
isting autoencoding and ResNet-based architectures for both the F-MNIST
and MVTec-AD datasets in the SIMO context.

In Figure 4.5 we show the effect of varying L and K on AUROC scores
for vanilla AE in the SIMO context when α = 0.8. For F-MNIST and MNIST
a maximum AUROC score is found for L = 128 and K > 3, whereas for
CIFAR-10 the optimal is found when L = 256 and K = 1. Finally it is shown
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Model MNIST CIFAR-10 F-MNIST MVTec-AD

GANomaly [16] 0.965 0.695 0.906 0.762

OC-GAN [19] 0.975 0.657 0.924 0.756

AnoGAN [27] 0.912 0.618 0.817 0.600

LFD [132] 0.977 - 0.927 0.777

CBiGAN [29] - - - 0.770

CAVGA-Du [146] 0.986 0.737 0.885 -

DKNN1 [30] 0.917 0.890 0.938 0.750

Ours 0.974 0.658 0.941 0.783

Table 4.4: Mean SIMO anomaly detection AUROC, bold is best.

that the vanilla AE offers best image-based AUROC performance when
L = 256 and K = 3.

Figure 4.5: Vanilla Autoencoder AUROC sensitivity to number of neighbours and
latent dimensions in SIMO-context for α = 0.8.

We evaluate the pixel-level anomaly detection performance in Table 4.5,
and illustrate the model outputs in Figure 4.4 of both texture and object
classes. In all cases we use a vanilla AE with K = 1, L = 128 and α = 0.6.
It is clear that the NLN-enabled AE demonstrates performance increases in

1 We use the authors implementation for all datasets other than MVTec-AD, here we use our
own Tensorflow-based implementation
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Class AE-L2 [23] AE-SSIM [23] SMAI L2 [22] VE-VAE[24] Ours

Te
xt

ur
es

carpet 0.59 0.87 0.88 0.78 0.82

grid 0.90 0.94 0.97 0.73 0.86

leather 0.75 0.78 0.86 0.95 0.85

tile 0.51 0.59 0.62 0.80 0.51

wood 0.73 0.73 0.80 0.77 0.72

mean 0.70 0.78 0.83 0.81 0.75

O
bj

ec
ts

bottle 0.86 0.93 0.86 0.87 0.95

cable 0.86 0.82 0.92 0.90 0.90

capsule 0.88 0.94 0.93 0.74 0.94

hazelnut 0.95 0.97 0.97 0.98 0.98

metal nut 0.86 0.89 0.92 0.94 0.88

pill 0.85 0.91 0.92 0.83 0.92

screw 0.96 0.96 0.96 0.97 0.97

toothbrush 0.93 0.92 0.96 0.94 0.97

transistor 0.86 0.90 0.85 0.93 0.85

zipper 0.77 0.88 0.9 0.78 0.96

mean 0.88 0.91 0.92 0.89 0.93

Table 4.5: Pixel-based anomaly detection (Segmentation) AUROC score for autoen-
coding models, where bold is best.

the object classes of MVTec-AD. However, this is not the case for the texture
classes. We suspect that this is due to our NLN-enabled AE not being able
to distinguish between different texture-patches. This behaviour is similarly
demonstrated in [23], and we believe that this is an inherent weakness of
standard autoencoding architectures.

In Figure 4.7 we illustrate the effect on varying alpha for the NLN-enabled
autoencoding models used for the MVTec-AD dataset. Here it is demon-
strated, that the NLN-based model obtain optimal AUROC segmentation-
performance when 0.25 < α < 0.8, whereas to optimal AUROC detection-
performance occurs when α > 0.6. Finally we illustrate that the optimal IoU
value is obtained at α = 0.8, thus demonstrating the benefit of including
the reconstructions of nearest-neighbours in the calculation of the anomaly
score.

We evaluate the MISO AUROC performance of the autoencoder models
on the HERA dataset as shown by Table 4.6. Here we find that the AAE
performs best in this context when using a patch size of 64× 64, a latent
dimensionality of 32 and α = 0.1. We note that the performance of the
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Model Point
Source

Narrow
band RFI

Broadband tran-
sient RFI

Broadband con-
tinuous RFI

Blips RFI Mean

AE 0.604 0.727 0.711 0.654 0.672 0.674

AE-res 0.486 0.728 0.661 0.676 0.726 0.656

AE-con 0.612 0.776 0.713 0.846 0.799 0.749

VAE 0.612 0.74 0.782 0.772 0.909 0.763

AAE 0.592 0.69 0.805 0.838 1.0 0.785

Table 4.6: MISO AUROC of the autoencoder models evaluated on the HERA
dataset, bold is best

model is slightly less than the machine learning specific datasets, especially
for the point source feature. We attribute this loss in performance to the
point source having significantly lower power than the other features in
spectrograms. We present the associated hyper-parameter search over α

and patch size in Figure 4.6.

Figure 4.6: AAE AUROC sensitivity when varying the patch size and α on the
HERA dataset when latent dimensionality is fixed at 32.

4.3.5 Time and memory efficiency

Figure 4.7: AUROC and IoU sensitivity to varying α of the NLN-enabled autoen-
coding models applied to the MVTec-AD dataset.
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The NLN-algorithm requires a forward pass through an encoder, a KNN
search of the latent-space generated by the training samples, and a forward
pass of a given point’s nearest neighbours through a decoder. We evaluate
the models on a Nvidia T4, where a forward pass of a single image from
the MVTec-AD dataset takes 7.41 ms for the encoder and 9.63 ms for the
decoder. In comparison, a ResNet50 used in [30, 147, 148] requires 43.3ms
for a forward pass of a single image. This means that our method is be-
tween 1.3× and 2.5× more efficient for a forward pass, depending on the
architecture used.

For the KNN search we use a k-d tree implementation of the KNN search,
which has a inference time complexity of O(KL logN). Where K is the num-
ber of neighbours, L is the latent dimensionality and N is the number of
points in the training set. In the case of the NLN-enabled models presented
in this work, we find a latent dimensionality of 128 sufficient, whereas the
ResNet50 in [30] uses 2048 dimensional latent space. This means that our
work offers a 16× reduction in KNN search inference time in comparison
with [30].

Finally, our method has comparable storage requirements as other AE
based models [137] in terms of number of trainable parameters. For com-
parison, the AE-con model used for MVTec-AD has 1.79 million parameters,
whereas the ResNet-50 from [30] has 25.58 million parameters. The only
storage-based overhead of the NLN-algorithm is the requirement of amor-
tising the embeddings of the training set as suggested in [30]. In the case
of the bottle-class of the MVTec-AD dataset, there is an additional storage
requirement of 6.85 MB2

4.4 ablation study

The AUROC performance of the NLN-algorithm is demonstrated in Ta-
ble 4.7 when the loss function varied. The term in the first column, Lrecon,
represents the standard reconstruction error given by Equation 9 and LNLN

shows the NLN-based reconstruction loss given in the first half of Equa-
tion 10. Lcon represents the feature consistent adaption given by the first
half of Equation 14 and Ltotal is equivalent to the score obtained from Equa-
tion 14. It can be seen that through the utilisation of all terms in NLN-loss
formulation we obtain optimal performance.

2 209 images × 16× 4 augmented patches × 128 latent dimensions × 32 bits = 6.85MB of ad-
ditional memory
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Dataset Lrecon LNLN Lcon Ltotal

MNIST 0.778 0.822 0.913 0.921

FMNIST 0.669 0.702 0.719 0.738

CIFAR-10 0.511 0.513 0.551 0.553

Table 4.7: MISO AUROC performance of AE-con for different losses terms when
K = 2, L = 32 and α = 0.9

4.5 discussion and conclusions

Autoencoders learn to generalise to unseen classes which is a problem
when they are used for anomaly detection. In this work, we demonstrate
that when the reconstructions of a model’s nearest-latent-neighbours are
harnessed we can more effectively and efficiently mitigate this problem in
comparison with the state-of-the-art. This is achieved through a fairly sim-
ple algorithm that is agnostic to both the AE’s architecture and its error
method. We experimentally demonstrate that the addition of the NLN algo-
rithm consistently yields performance increases for various autoencoding
architectures and various datasets and is competitive with the state-of-the-
art autoencoding models. This is achieved without complex augmentation,
using pretrained networks or computationally expensive inference. We note
that the complexity of CIFAR-10 and the texture classes of MVTec-AD result
in modest performance, but we expect this can be solved using more robust
error functions or using SSL to obtain even better latent representations.

Furthermore we illustrate the NLN algorithm’s potential in the radio ob-
servatory anomaly detection setting. We find that the data agnostic ap-
proach offers performance in line with other machine learning specific
datasets. We note however that due to similar feature morphologies, high
dynamic range and potential feature compounding, autoencoders need ra-
dio astronomy specific refinements to make them suitable in the observa-
tory setting.
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R A D I O F R E Q U E N C Y

I N T E R F E R E N C E D E T E C T I O N

In this chapter we apply the Nearest Latent Neighbours algorithm to Radio Fre-
quency Interference (RFI) detection. We consider RFI detection one of the many
aspects of system health management at the radio observatories. This chapter illus-
trates one of the many places where an anomaly detection approach can be benefi-
cial to telescope operations. We describe the current state-of-the-art techniques in
machine learning applied to RFI detection and show how our approach has sev-
eral benefits over them. This chapter clarifies research questions two and three by
showing a novel application of machine learning based anomaly detection to RFI
detection at radio telescopes.

This Chapter is based on:

• Michael Mesarcik, Albert-Jan Boonstra, Elena Ranguelova, and Rob V. van
Nieuwpoort, "Learning to detect radio frequency interference in radio astronomy
without seeing " [149], in In: Monthly Notices of the Royal Astronomical Society
516.4 (September 2022)

• Michael Mesarcik, Albert-Jan Boonstra, Elena Ranguelova, and Rob V. van
Nieuwpoort, "Dataset for Learning to detect RFI in radio astronomy without
seeing it." [150], in Dataset on Zenodo

5.1 introduction

Radio Frequency Interference (RFI) is a growing concern for radio astron-
omy due to the proliferation of electronic equipment that depends on elec-
tromagnetic emissions. Radio frequency radiation from astronomical sources
is extremely faint relative to emissions from man-made systems such as
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radars, telecommunication devices, large satellite constellations [151] and
more. Despite international regulation to ensure radio-quiet zones and limit
transmission power of emitters, there are still concerns about RFI hamper-
ing radio astronomy.

For this reason, approaches for RFI detection and mitigation have be-
come a necessity in modern radio observatories. RFI pipelines are com-
monly deployed at telescopes performing RFI detection and mitigation in
a post correlation setting. Traditionally, algorithms such as CUMSUM [152],
Singular Value Decomposition (SVD) [41], Wavelet-based methods [153]
and AOFlagger [154] have been used. These RFI detection algorithms are
widely implemented for real-time RFI detection at observatories around
the world [8, 108, 155, 156]. In effect all archived data from these instru-
ments contain automatically generated RFI-masks which can be accessed
with no additional cost.

Recent advances in machine learning have made data-driven approaches
unprecedentedly suitable for RFI-detection. Most machine learning meth-
ods for RFI detection have been based on supervised learning using U-
net [101] and its derivatives [69–71, 112]. Research has shown that these are
promising methods, significantly outperforming classical approaches. How-
ever, in reality supervised methods require significant amounts of expertly
labelled time/frequency data, that is not available in practice due to the
related cost.

As a result, recent models are trained and evaluated using simulators or
flags generated by classical methods, with limited experimentation on real
expertly labelled datasets. This is problematic as the effectiveness of these
methods on unseen data is difficult to measure and predict. Furthermore,
recent machine learning-based methods have not been well integrated into
telescope-pipelines as the cost of labelling is prohibitive to many instrument
operators.

To solve these problems we propose an unsupervised learning method
based on the Nearest Latent Neighbours (NLN) algorithm [86]. This ap-
proach leverages anomaly detection to perform RFI detection. This is achieved
using a generative model trained on uncontaminated (RFI free) data to
detect novel RFI contaminated emissions. Interestingly, this formulation is
effectively the inverse of how existing deep learning-based methods are
trained.

In this work, RFI is detected by measuring the difference between small
sub-regions (patches) of spectrograms that are known to not contain RFI
and the patches being evaluated. To select RFI-free data we break each
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spectrogram into a number of equally sized patches and use their associ-
ated AOFlagger-based flags to locate the instances which contain RFI. In
doing so we do not have to incur the cost of extensive labelling as the
AOFlagger masks are readily available. It must be noted that NLN can tol-
erate high false positive rates in the training masks due to the use of the
inverse problem. However, under-flagging can cause undesired effects.

We show that our method outperforms existing supervised models on
several benchmarks, using less data for training. Furthermore, we demon-
strate that if supervised state-of-the-art methods are trained with weak-
labels they typically over-fit to the training data and do not generalise to
unseen examples. Our approach does not suffer from these problems.

Additionally, as the landscape of RFI emissions changes over time we
expect supervised methods to be continually retrained as future emitters
occupy newer frequency bands. Conversely, the emissions from celestial
bodies will remain fairly consistent over the same time-scale, effectively
meaning that that our method will not have to undergo retraining.

We make the following contributions in this chapter: (1) a novel unsuper-
vised learning-based approach to RFI detection in radio astronomy; (2) an
evaluation of the effectiveness of using AOFlagger generated ground-truth
for training of machine learning-based RFI detection algorithms, and (3) an
expert labelled dataset that can be used for comparison and development
of novel RFI detection algorithms.

This chapter begins with describing the NLN-method in Section 5.2 and
explains how the NLN algorithm was adapted to work for RFI detection.
In Section 5.3 we explain our data selection strategy and outline the expert-
labelled dataset used for evaluation of this work. Finally, we present our
results and conclusions in Section 5.4 and Section 5.5.

5.2 method

In this work we use NLN for RFI detection. This is motivated by several
factors: (1) obtaining sufficient labels for supervised segmentation of RFI
has a significant overhead; (2) existing supervised techniques over-fit to
flags from classical methods such as AOFlagger, leading to sub-optimal per-
formance on unseen data; (3) the ever-changing landscape of RFI requires
continual labelling and training efforts to enable supervised approaches to
capture new temporal and spectral RFI structures.

We show that if the traditional RFI detection problem is inverted, we can
effectively address the supervised RFI detection issues.
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5.2.1 Model definition and training

For some complex visibility V(υ, τ,b) and the corresponding ground truth
mask for the interference G(υ, τ,b), the training objective for supervised
RFI detection can be formulated as follows

Lsup = min
θm

H(mθm
(V(υ, τ,b)), G(υ, τ,b)). (15)

Here m is a function with learnable parameters θm and H is the entropy-
based similarity between the model prediction and the ground truth. This
problem is well-posed and has been used across multiple domains to ef-
fectively train classifiers. However it relies on learning a model of the RFI
using ground truth labels, which are in practice hard to obtain.

In this work, we train a model of everything other than the interference,
so that we can perform RFI detection as a downstream task. This is done by
first training a discriminative autoencoder, on n×n-sized uncontaminated
regions (also known as patches) of the visibility, Vn×n(υ, τ,b). We select
these regions using the weak-labels generated by a classical method such as
AOFlagger.

First we define the encoder f that maps from the visibility space R2 to a
latent space L, such that

z = fθf
(Vn×n(υ, τ,b)), f : R2 → L. (16)

Here z is a low-dimensional projection of the an n× n patch that contains
no interference and θf are the learnable parameters of the encoder. Further-
more, we define the decoder g that maps back from the low-dimensional
projection to the visibility space, such that

V̂n×n(υ, τ,b) = gθg
(z), g : L → R2 (17)

where θg are the parameters of the decoder. We simultaneously train the
encoder and decoder using the reconstruction loss,

Lrecon = min
θf,θg

H(Vn×n(υ, τ,b), V̂n×n(υ, τ,b)). (18)

We use Mean-Square-Error (MSE) to train a standard autoencoder. Typi-
cally, MSE-based reconstruction losses produce blurry outputs, which may
affect the quality of the predicted RFI masks. The blurriness is a result
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Figure 5.1: Block diagram of the training and inference procedures of NLN-
based RFI detector. Here, we use a discriminative autoencoder as the
backbone of the architecture. The top half of the figure shows the
training procedure whereas the bottom illustrates how NLN is used
for inference. The recombination of latent distances zk and nearest-
reconstructions V̂k(υ, τ,b) is performed according to Equation 20.

of back-propagating the gradient from the average pixel-wise error, which
prohibits the autoencoder from producing high-frequency details for given
inputs. In order to counteract this problem, we define a discriminator, d,
that acts as a regulariser on the decoder’s output. This discriminative loss
is back-propagated through the decoder, such that it learns to produce not
only low frequency details but also the discriminative features [157]. Fur-
thermore, the discriminator enables the autoencoder to be used as a gen-
erative model [21]. The discriminator maps from R2 to a classification on
the interval [0, 1], effectively trying to determine if the input is generated or
sampled from the original dataset. In this case, the original dataset is the
uncontaminated patches selected using the weak-labels. The discriminative
loss is given by

Ldisc = min
θd

E[log(dθd
((Vn×n(υ, τ,b)))]+E[log(1−dθd

(V̂n×n(υ, τ,b)))].

(19)

We train the discriminator simultaneously with the decoder, such that the
total loss is Lunsup = αLrecon + (1− α)Ldisc, where α is a hyper-parameter
between 0 and 1 that determines how much of an effect the discriminative
and reconstruction losses have on the training respectively. An illustration
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of the training procedure for the discriminative autoencoder is shown in
the top half of Figure 5.1.

5.2.2 Nearest-Latent-Neighbours for RFI detection

Given some trained latent-variable-model such as the discriminative au-
toencoder, g(f(V)), we need to formulate a measure of similarity or differ-
ence between the learnt distribution of RFI-free patches and those which are
unseen. In practice several options exist such as pixel-level difference [16],
structured-similarity measure [84], residual measures [27], purely latent
measures [30] and many more. The most important factor when selecting
a measure for RFI detection is the resolution of the output. For example,
using a purely latent-measure would result in the resolution of the out-
put RFI-masks to be fixed by the resolution of each patch, as shown in
Figure 5.2 (e). However using a pixel-level difference, may cause the predic-
tions to be sensitive to noise.

To counter-act this problem we propose using a distance function that
utilises both latent and pixel-wise measures of difference, namely NLN.
NLN is an anomaly detection technique that works by performing a nearest-
neighbour lookup in the latent space of generative models. At training time,
it operates as a standard discriminative autoencoder, training on the afore-
mentioned loss. During inference, a test-sample is given to the model, with
the objective to determine which parts (if any) of the input sample are
anomalous. A combination of two metrics is used, the first measures the
latent distance from the given test-sample to its nearest neighbours from
the distribution of in-lying data, illustrated in Figure 5.2 (e). The other is
the reconstruction error between the given sample and the reconstructions
of all its neighbours found in the latent space. Figures 5.2 (b) and 5.2 (c)
demonstrate that when the autoencoder is trained on only RFI-free data
it is capable of only reconstructing the non-novel astronomical signals and
cannot generate RFI found in the input. In effect, the reconstruction error
shown in Figure 5.2 (d) has a higher dynamic range than the input. For
more details and analysis of the method see [86].

We modify the original NLN-distance function such that the latent dis-
tances are used as a coarse selection for the higher resolution pixel-based
error. An illustration of this selection mechanism is shown in Figure 5.2 (f).
The modified NLN measure is the reconstruction error of a test-sample’s
nearest neighbours multiplied by its latent-distance vector, as given by
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DNLN =
( 1
K

K∑
|Vi,n×n(υ, τ,b) − gθg

(zki )|
)
×Dlatent (20)

where k is the nearest-neighbour of the ith sample in the latent space
given by z. The nearest-neighbours are selected through the K-Nearest-
Neighbours (KNN) algorithm using the default implementation of FAISS [158].
Furthermore, Dlatent is the thresholded mean latent-distance vector of the
ith query patch and its k RFI-free neighbours, as given by

Dlatent =

1,
1

K

∑K
|zi − zki | ⩾ T

0, otherwise
(21)

We treat both K and T as hyper-parameters of our algorithm and determine
them experimentally across our datasets. In effect, the latent distance func-
tion offers a coarse resolution view of the RFI, and the reconstruction error
offers a finer grained resolution. It must be noted, that the only additional
overhead of NLN is that it requires the representations of the training set
to be stored. An illustration of the inference mode of the NLN algorithm is
shown in the bottom half of Figure 5.1.

5.2.3 Architectural considerations

We use a strided convolutional architecture for the encoder, decoder and
discriminator. Both the encoder and decoder have the same architecture
except that the decoder uses transposed convolutions in place of the en-
coder’s convolutional layers. Furthermore, the discriminator uses the same
architecture as the encoder, except for the final layer, which is a linear layer
with a sigmoid activation for the discriminator.

Several parameters of the architecture are constrained by the chosen
patch size and stride width. We find that a patch size of 32 × 32 gener-
ally exhibits the best performance, as shown in Figure 5.8, this limits both
the depth and latent dimensionality of our networks. For this reason, the
three networks have 2 convolutional layers with 3× 3 filters and a stride
of 2. Each convolutional layer is followed by a batch normalisation layer,
and a dropout layer with a rate of 5% to regularise the network. Lastly, the
convolutional output is projected to a specified latent dimensionality by a
linear layer.
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(a) Input: V(υ, τ,b) (b) 1
th Nearest-Neighbour: V̂1(υ, τ,b)

(c) 10
th Nearest-Neighbour: V̂10(υ, τ,b) (d) Error:

1

K

∑K |V(υ, τ,b) − V̂k(υ, τ,b)|

(e) Latent Distances: zk (f) NLN Output: DNLN

Figure 5.2: Stages of NLN-based RFI detection on the 30th sample of the LOFAR
dataset. The white grid illustrates the re-composition of the 32 × 32

patches to their corresponding locations in the original spectrogram.
Each subplot reflects a part of the modified NLN algorithm from Equa-
tion 20.
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A base number of filters of 32 is used for the AE and is increased or de-
creased on each subsequent layer by a factor of 2. We use ReLU activations
for all models and they are trained for 100 epochs using ADAM [145] with
a learning rate of 1× 10−4.

5.3 data selection and preprocessing

Existing machine learning based approaches rely on significant amounts
of labelled data for training and evaluating the models. By inverting the
RFI detection problem, we do not need explicit training labels, but rather
rely on the weak labels that typically come without additional cost from
data archives such as the LOFAR Long Term Archive (LTA) [8]. This means
that we only need very few expert-labelled examples for evaluation of our
model while training on a large dataset as shown in Table 5.1.

We use two different datasets from two different telescopes to evaluate
our work: simulated data from HERA [118] and calibration data from the
LOFAR LTA. We use AOFlagger-based weak-labels for training all models
shown in this work on both the HERA and LOFAR datasets. For evaluation
with HERA we use the ground truth supplied by the simulator, whereas
for the LOFAR we hand-annotate a selection of baselines obtained from the
archive.

5.3.1 Simulated HERA dataset

The HERA simulator 1 generates complex spectrograms from a simulated
radio telescope. It uses models of diffuse sources, point sources, multiple
types of RFI emissions and systematic models of the HERA telescope for
parameters such as antenna cross-coupling, band-pass effects and more. Im-
portantly for this work, the simulator gives operators a fine-grained control
over the generated RFI types as well as their pixel-precise ground truth
maps. Thanks to these properties, we can use the HERA data for the vali-
dation of our approach.

In this work, we simulate a hexagonal array with 14.6 m between each
station, as specified by the 19 element array [118]. To synthesise our dataset,
we create a 30 minute observation with an integration time of 3.52 s and
bandwidth of 90 MHz from 105 MHz to 195 MHz (with 512 frequency chan-
nels). The specific integration interval is used to ensure that the resulting
spectrograms are square, this is done to simplify the arithmetic of creating

1 https://github.com/HERA-Team/hera_sim
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Dataset # Baselines # Training samples # Test Samples % RFI

HERA 28 420 140 2.76

LOFAR 2775 7500 109 1.26

Table 5.1: Attributes of each dataset used for training and evaluation. The low test-
train-ratio is due to the use of weak-labels generated from classical meth-
ods, that are not directly used in the NLN training.

and reconstructing the spectrograms from patches. Furthermore, we use
the default number of diffuse galactic emissions and 10 point sources as
specified in [112] for the H1C observation season from 2017 to 2018. Finally,
we include additive thermal noise 180 K at 180 MHz.

In the generation of our training set we individually synthesise multiple
RFI emissions based on the models specified in [112]. These being narrow-
band continuous emissions modelled satellite communication such as ORB-
COM, broad-band transient emissions that imitate events such as lightning,
as well as narrow-band burst RFI based on ground communication. Addi-
tionally, we include random single time-frequency blips.

Using the hexagonal array we simulate 28 baselines of both auto and
cross correlations. We repeat this 20 times to obtain 560 complex spectro-
grams to train and evaluate our models with. This approach was deemed
more appropriate than simulating a single long observation as performed
in [112], as there is more diversity in the RFI landscape from multiple ini-
tialisations of the simulator. The simulated data has an RFI occupancy rate
of 2.76% and is split into 75% for training and 25% for testing as reported
in Table 5.1.

The simulated data is preprocessed before training and evaluation. For
simplicity purposes, we only use the magnitude of the complex visibilities.
To deal with the high dynamic range, we first clip the data between the
following range [|µ − σ|, µ + 4σ] and take the natural log of the clipped
spectrograms. Finally before training we standardise our data between 0

and 1 to ensure the gradients while training do not explode or vanish.

5.3.2 LOFAR

As previously mentioned we use publicly available data from the LOFAR
Long Term Archive (LTA) [8]. Five measurements were randomly selected
from 2017 to 2018 for evaluation our model. We select calibration measure-
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ments that point at strong radio sources, using 51 stations in the band 120-
190 MHz for 600s. The precise details of the observations are available at
[94].

A common challenge in applying machine learning to radio astronomy is
the amount of data generated by observations. This is especially problem-
atic when training models with limited GPU memory. For example the 5

raw Measurement Sets (MS) used in this work are 1.7 TB in size. Therefore,
in order to decrease the data-size, we use only the magnitude of the first
stokes parameter and randomly sample 1500 baselines of each observation.
This effectively reduces the dataset size to ∼10 GB.

For purposes of further reducing the training memory footprint of the
data and simplifying the arithmetic of reconstructing the spectrograms
from their respective patches, we first create approximately square spec-
trograms. As there are 599 time-samples per observation and 16 subbands
per channel, we concatenate each 44 consecutive subbands together to form
spectrograms size of 599× 616. Additionally, we discard the first and last
channel of each subband due to bandpass-effects. Finally we randomly crop
the resulting spectrograms to 512× 512. This is done, as cropping gives an
equal representation of all frequency bands.

For the evaluation of the models on the LOFAR dataset, we randomly
select 109 baselines for expert labelling. This is in line with the number of
baselines used for evaluation in the simulator-based setting. As noted in [70,
112, 159], there are often discrepancies between the AOFlagger masks and
those given by an expert, this is highlighted in Figure 5.3. For validation
and evaluation of this work we treat the hand-annotated examples as the
ground truth, as described in Section 5.4. Furthermore, we use the AOFlag-
ger masks associated with the measurement sets from the LTA for training
our models.

In Table 5.1 we report the percentage of RFI contamination and the dataset
sizes. We ensured that the contamination is in line with what is reported
in [8]. Furthermore, as our method does not rely on human-labelled exam-
ples to train, we only require a small number of expert-labelled examples
to evaluate the performance of our models.

We pre-process the LOFAR data in a similar manner to the simulated
data. We first clip the data between [|µ− σ|, µ+ 20σ] and followed by the
natural logarithm. We finally standardise the data between 0 and 1 to en-
sure the gradients while training do not explode or vanish.
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(a) 18th Sample (b) 47th Sample

(c) Expert-labelled annotation (d) Expert-labelled annotation

(e) AOFlagger annotation (f) AOFlagger annotation

Figure 5.3: Spectrograms and their masks from the LOFAR dataset with the high-
est overlap between AOFlagger and expert-labelled annotations (left
column) and the lowest overlap (right column), where similarity is mea-
sured using the F1-score.
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5.4 results

We evaluate the performance of NLN applied to RFI detection experimen-
tally on both simulated and real data from HERA and LOFAR respectively.
Unlike previous works, we perform our evaluation in a two-step process,
first by finding an appropriate AOFlagger threshold to generate the train-
ing annotations and then calculating the respective performance of each
model on the real ground truth. To ensure the correctness of the evalua-
tion we use the ground-truth masks from the simulator in the test-set for
the HERA models and human-generated annotations for the testing of the
LOFAR models.

5.4.1 Evaluation Methodology

Following previous efforts to evaluate the performance of RFI detection [5,
69, 70, 112], we use the three most common metrics: the Area Under the
Receiver Operating Characteristic (AUROC) score, Area Under Precision
Recall Curve (AUPRC) and F1-Score. The AUROC metric evaluates the ra-
tio of True Positive Rate (TPR) and False Positive Rate (FPR) across several
thresholds. In this case, the TPR is the fraction of RFI that is correctly classi-
fied as RFI and the FPR is the fraction of misclassified signals. The AUPRC
metric gives the ratio of precision and recall when the model’s output is
evaluated across several thresholds. In this case precision refers to the frac-
tion of correctly classified RFI across all RFI predictions, and the recall is
simply the TPR. Finally, the F1 score is the harmonic mean of the precision
and recall for a given threshold. For all evaluations across all models in this
work the threshold is fixed to the maximum obtainable F1 score.

In the class-imbalanced scenario of RFI detection, high AUROC scores
imply that a model is effective in classifying the majority class. This means
that all non-RFI signals are detected as not RFI. Conversely, the AUPRC and
F1 scores focus on the minority class, meaning that when AUPRC is high,
the model is better at detecting RFI with a low RFI misdetection rate. There-
fore, in order to maintain consistency with previous works’ evaluations and
to give insight into a model’s performance on the both the majority and mi-
nority classes, we evaluate using both AUPRC and AUROC.

We use the AOFlagger masks to train all models in this work. In the case
of LOFAR, we use the flags provided by the FLAG field of the measurement
sets obtained from the LTA. For the HERA dataset, the optimal flagging
strategy is determined experimentally, where each strategy is specific to
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Figure 5.4: Performance of NLN, UNET and AOFlagger on the HERA data. Both
U-Net and NLN are trained on the AOFlagger masks at for given start-
ing threshold and evaluated on the simulator-ground truth. AOFlagger
results are shown as only a line as a single threshold is used to evaluate
the area-under-curve scores.

a particular radio telescope. As there is no pre-specified strategy for the
HERA telescope, we test the HERA dataset on all available strategies for
several different base-thresholds. We find that the bighorns-telescope strat-
egy with a starting threshold of 10 to be optimal with respect to the joint-
maximum of AOFlagger across AUROC, AUPRC and F1-score as shown in
Figure 5.4.

For comparison with existing work we select the state-of-the-art RFI de-
tection models. As described in Section 2, we evaluate with supervised-
segmentation algorithms, based off the U-Net [101] architecture. These be-
ing, the magnitude-only U-Net for RFI detection [69, 112] as well as its
residual adaptions, R-Net [70] and RFI-Net [71]. Additionally, we measure
the AOFlagger on both datasets and report its performance. Furthermore
to see the effect of adding some supervision to the NLN-based method, we
fine tune a 2 layer CNN after the unsupervised training. This fine tuning
uses the the RFI flags from the training set in the same manner as the su-
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pervised architectures. We refer to this model in the subsequent sections
as NLN-ft. We train and evaluate every model 3 times with a randomly
initialised seed and report the mean and standard deviation for each evalu-
ation.

For both datasets, we perform an independent coarse grid search across
the hyper-parameters of NLN. These being patch size (n), the number of la-
tent space dimensions (L), number of neighbours (K), maximum latent dis-
tance threshold (T ) and discriminative training weight (α). We determine
the optimal hyper-parameters based on the average maximum of AUROC
and AUPRC. For LOFAR and HERA we use 16 and 20 neighbours respec-
tively and find a patch size of 32× 32 to be optimal for both. Furthermore,
the latent dimension size of 8 is used for HERA whereas we find 32 dimen-
sions to be optimal for LOFAR. We threshold the latent distance vector at
its 66th percentile for LOFAR and the 10th percentile for HERA. Finally, we
find that the optimal discriminative hyper-parameter α is 0.6 for both the
HERA and LOFAR datasets. For all other models, we use all parameters
specified by the authors other than patch size, which we fix to 32× 32 in
order to keep comparison consistent.

The difference in the hyper-parameters between the datasets is due to
the increased complexity of the real LOFAR data relative to the simulated
HERA data. This complexity is due to stochastic instrumentation effects,
ionospheric artefacts, increased dynamic range and many more. Therefore,
the autoencoder requires a larger latent dimensionality to better represent
this increased complexity. Similarly, an increased latent distance threshold
is used to mitigate the elevated reconstruction error-based noise.

Finally, to validate the suitability of the NLN algorithm for anomaly
detection-based RFI detection we compare it against three commonly used
anomaly detection techniques. In this case we consider Deep K-Nearest
Neighbours (DKNN) [30], autoencoding models with an L2 loss [23] and
SSIM-based loss [84].

5.4.2 HERA Results

In Figure 5.4 we illustrate the performance sensitivity of the magnitude-
based U-Net and NLN when modifying the AOFlagger starting thresh-
old for the bighorns-telescope strategy. It is clear NLN is less sensitive
to changes in the validity of the training data, exhibiting little variation
relative to the AOFlagger-based masks. This is because the model is not
directly trained on the AOFlagger-based masks. However UNET’s perfor-
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Model AUROC AUPRC F1-Score

AOFlagger [154] 0.9692 0.8946 0.8899

U-Net [159] 0.9544 ± 0.0097 0.9088 ± 0.0109 0.9269 ± 0.0058

RFI-Net [71] 0.9486 ± 0.0054 0.8908 ± 0.0100 0.9231 ± 0.0045

RNet [70] 0.9614 ± 0.0061 0.8541 ± 0.0282 0.7870 ± 0.0635

NLN (ours) 0.9682 ± 0.0018 0.9308 ± 0.0024 0.9350 ± 0.0017

Table 5.2: Performance of RFI detection models on the simulated HERA dataset
when trained using the AOFlagger annotation at a threshold of 10 and
evaluated on the ground truth from the simulator. We do not report
standard deviation of AOFlagger as it is deterministic. Best scores in
bold.

mance is shown to be more dependent on the accuracy of the AOFlagger
masks, indicating that it indeed is over-fitting to the training labels.

For low thresholds (> 5) the training data is over-flagged, meaning that
all RFI is flagged but large percentage of the astronomical data is as well.
Conversely, for high thresholds (< 10) the data is under-flagged, meaning
that some RFI is not flagged. From this intuition, it is clear that the NLN
algorithm is less sensitive to over-flagging, but its performance deteriorates
when the training data is under-flagged. For the experiments using the sim-
ulated HERA dataset in the remainder of this paper, we fix the AOFlagger
threshold to 10, as it gives optimal flagging performance.

In Table 5.2 we show the performance of NLN for RFI detection relative
to the current state-of-the-art machine learning models. It is clear that the
NLN offers superior performance across all metrics other than AUROC
demonstrating the success of our approach to use clean data for training.
We consider the slight decrease in AUROC (less than 0.001%) acceptable
considering that it is strongly impacted by the class imbalance prevalent in
the RFI data.

In Figure 5.5 we demonstrate an interesting unintended consequence of
our work in the HERA setting. Here, we train each model on the dataset
but excluding a particular type of RFI, then during testing we expose the
model to the unseen RFI type. This paradigm effectively evaluates how
well models generalise to Out-Of-Distribution (OOD) RFI. As the training
process of NLN excludes all RFI (OOD or not) from the training set, it
does not learn explicit models of the RFI, in effect our method significantly
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outperforms both supervised and classical methods across all metrics. This
is also clearly demonstrated by the variance across each experiment.
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Figure 5.5: Out-Of-Distribution (OOD) RFI detection performance of the NLN, U-
NET and the AOFlagger. As the RFI is excluded in the training process
of NLN, the method is unaffected by OOD effects. AOFlagger results
are shown as only a line as a single threshold is used to evaluate the
area-under-curve scores.

5.4.3 LOFAR results

In Table 5.3 we show the performance of NLN relative to the state-of-the-
art on the LOFAR dataset. Here we see a similar trend to the HERA-based
results; NLN offers superior performance in terms of AUPRC. However
in terms of AUROC and F1-score, NLN-ft offers best performance. The
decrease in F1 score is due to the NLN algorithm yielding more false neg-
atives when thresholding all predictions with a single threshold. This is
attributable to the large fluctuations in power of the RFI in the LOFAR
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Model AUROC AUPRC F1-Score

AOFlagger [154] 0.7883 0.5716 0.5698

U-Net [159] 0.8017 ± 0.0058 0.5920 ± 0.0031 0.5876 0.0031

RFI-Net [71] 0.8109 ± 0.0037 0.5991 ± 0.0038 0.5979 ± 0.0012

RNet [70] 0.8301 ± 0.0084 0.5495 ± 0.0145 0.5286 ± 0.0195

AE-L2 [23] 0.8397 ± 0.0019 0.3933 ± 0.0036 0.4491 ± 0.0007

AE-SSIM [84] 0.7748 ± 0.0046 0.3913 ± 0.0186 0.4801 ± 0.0115

DKNN [30] 0.8285 0.0704 0.1528

NLN (ours) 0.8622 ± 0.0006 0.6216 ± 0.0005 0.5114 ± 0.0004

NLN-ft (ours) 0.8833 ± 0.0118 0.5384 ± 0.0121 0.6075 ± 0.0109

Table 5.3: Performance of RFI detection models on the real LOFAR dataset when
trained using the AOFlagger annotations from the LTA and evaluated
on the expert-labelled ground truth. We do not report AOFlagger and
DKNN standard deviations as they are deterministic. Best scores in bold.

dataset in combination with the reconstruction-error term of the NLN RFI
detector. When the RFI power is low, the reconstruction error will be of a
low amplitude and NLN will produce predictions with low power. In effect,
when these low power predictions are thresholded using the same thresh-
old as the high power RFI (in this case one which maximises F1-score),
the outputs have more false negatives. This is in contrast with the HERA
dataset, that has RFI with a consistently higher power level than the astro-
nomical and system-based signals. It can be seen that by adding a small
amount of supervision to the overall method, we can improve the overall
performance. An illustration of these effects and a comparison between the
models is shown in Figure 5.6.

Furthermore, in the bottom half of Table 5.3 we compare NLN with com-
monly used anomaly detection methods. Here we see that NLN signifi-
cantly outperforms these methods on all metrics. We attribute the perfor-
mance improvement to the combination of reconstruction error and latent
error.

Additionally, to test the model’s reliance on dataset size, we evaluate each
model on a percentage of the training data. We show in Figure 5.7 that NLN
is less sensitive to reductions in training data-size, performing almost uni-
formly with even with large decreases in training data-size. Conversely, the
supervised methods’ performance scales asymptotically with dataset size,
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(a) Input (b) Mask

(c) U-Net Prediction (d) RNet Prediction

(e) RFI-Net Prediction (f) NLN Prediction

Figure 5.6: The 95
th sample from the testing set, its corresponding mask and the

predictions of each model.



84 radio frequency interference detection

Figure 5.7: AUPRC performance of each model when training on a percentage of
the original LOFAR dataset and evaluating on the original LOFAR test
dataset.

exhibiting significantly higher variance in their performance with smaller
dataset sizes. We associate the asymptotic-scaling and increased variance
with both the supervised model’s larger capacity (due to residual and skip
connections) as well as the diversity of the RFI landscape.

To determine the sensitivity of the parameters of the NLN-algorithm,
we perform a course grid-search of its hyper-parameters. We search across
the number of latent dimensions, patch size and number of neighbours as
illustrated in Figure 5.8. In order to better visualise the 4-dimensional space,
we plot cross-sections of the high-dimensional landscape. First we fix the
number of neighbours to 16 as shown in Figures 5.8 (a), 5.8 (b) and 5.8 (c).
It can be seen that the optimal number of latent dimensions is 32, with
respect to the average maximum of AUPRC and AUROC. We then set the
optimal number of latent dimensions and plot the effect of varying the
number of neighbours in Figures 5.8 (d), 5.8 (e) and 5.8 (f). Through this,
we determine the optimal number of neighbours to be 16 with respect to
the average maximum AUROC and AUPRC. We conclude that NLN gives
optimal performance when the number of latent dimensions are 32, the
patch size is 32× 32 and the number of neighbours is 16.

Finally, as a consequence of our selection RFI-free selection algorithm, we
find that NLN requires 66% less data in comparison to its supervised coun-
terparts. This amount is naturally dataset dependent, however we expect
that due to the reduced training data there will be less compute time, and
less power consumption while training.
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(a) AUROC Sensitivity; #
Neighbours = 16
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(b) AUPRC Sensitivity; #
Neighbours = 16
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(c) F1 Sensitivity; # Neigh-
bours = 16
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(d) AUROC Sensitivity; La-
tent dimensions = 32
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(e) AUPRC Sensitivity; La-
tent dimensions = 32
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mensions = 32

Figure 5.8: Sensitivity of the hyper-parameters on the LOFAR-based performance
of NLN when varying latent dimensionality, patch size, and number of
neighbours. In order to visualise the four-dimensional space, the num-
ber of neighbours is fixed to 16 in the top row, whereas in the bottom
we fix the number of latent dimensions to 32. The optimal parameters
for the LOFAR dataset are a patch size of 32× 32, 32 latent dimensions
and 16 neighbours.
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5.5 conclusions

RFI detection is an increasingly important research topic for radio astron-
omy. State-of-the-art solutions to the RFI problem have been based on su-
pervised machine learning techniques, which fail to address the prohibitive
cost of labelling astronomical data. In this work we have documented how
inverting the detection problem effectively addresses this issue. We have
shown that NLN provides better than state-of-the-art RFI detection with-
out incurring the cost of labelling.

Furthermore, we have demonstrated that our method better generalises
to unseen RFI, whereas current supervised approaches over-fit to weak-
label-based RFI masks. As a consequence, we hypothesise that our ap-
proach will better generalise to future generations of emitters, whereas ex-
isting supervised methods will have to be regularly retrained. Additionally,
we find that due to our training patch selection process we need less data
for training, hence decreasing both the training time and energy cost.

Overall, there is sufficient evidence in several other domains that sug-
gests supervised segmentation algorithms will outperform unsupervised
approaches given sufficient high-quality labels. However, in the current
state of the RFI detection domain, where there are still few labelled datasets
available and the high cost of obtaining labelled data, we propose the in-
verted approach as the way forward.

We plan to further improve the performance of NLN applied to RFI detec-
tion through additional training priors. Contrastive self-supervised learn-
ing is a candidate solution thanks to its ability to generate more robust
latent representations that can be leveraged in the NLN-algorithm. Further-
more, in order to improve the increased false negative rate of NLN on the
LOFAR dataset we suggest more research to be done into automated pro-
cessing schemes to deal with the high dynamic range of astronomical data
when training unsupervised models. This could be additionally improved
using a hybrid approach through SumThreshold or trying to directly pre-
dict a threshold on a per patch-basis. Finally, we plan to extend this work
to more general anomaly detection based problems within radio astronomy.

Overall we have shown compelling use-case for machine learning anomaly
detection in radio astronomy. We note that RFI detection is not a holistic so-
lution to system health management in radio telescopes. However, it does
offer insight into a singular aspect of it. In subsequent chapters we use the
lessons learnt propose a solution to the complete system health manage-
ment problem for observatories.
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A N O M A LY D E T E C T O R

In this chapter we provide an end-to-end model for anomaly detection in radio ob-
servatories called the Radio Observatory Anomaly Detector (ROAD). We created
this model using the building blocks and principles described in the preceding chap-
ters. Here we also introduce a new dataset specifically created for the validation of
anomaly detection models for system health management in radio telescopes. This
chapter answers all four research questions culminating in a real time system for
system health management for the LOFAR telescope.

This Chapter is based on:

• Michael Mesarcik, Albert-Jan Boonstra, Marco Iacobelli, Elena Ranguelova,
Cees de Laat, and Rob V. van Nieuwpoort, "The ROAD to discovery: machine
learning-driven anomaly detection in radio astronomy spectrograms " [160], Ac-
cepted for publication in Astronomy & Astrophysics

• Michael Mesarcik, Albert-Jan Boonstra, Marco Iacobelli, Elena Ranguelova,
Cees de Laat, and Rob V. van Nieuwpoort [161], "Dataset for The Radio Ob-
servatory Anomaly Detector", in Dataset on Zenodo

6.1 introduction

Radio telescopes are getting bigger and are generating increasing amounts
of data to improve their sensitivity and resolution [8, 51, 52, 108]. The
growing system size and resulting complexity increases the likelihood of
unexpected anomalies occurring thereby resulting in datasets that contain
erroneous data. These anomalies include failures in instrument electronics,
miscalibrated observations, environmental anomalies such as lightning, as-

87
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tronomical effects like solar storms as well as problems in data processing
systems among many others. We consider Radio Frequency Interference
(RFI) unavoidable, therefore do not consider it an anomaly in this context.
Currently, efforts to detect and mitigate these anomalies are performed by
human operators, who manually inspect intermediate data products to de-
termine the success or failure of a given observation. The accelerating data-
rates coupled with the lack of automation, results in operator-based data
quality inspection becoming increasingly infeasible [81].

Telescope operators have successfully automated many scientific data
processing pipelines from calibration [40] to Radio Frequency Interference
(RFI) mitigation [41], imaging [162–164] and de-dispersion [42, 43]. Addi-
tionally, continuous effort is being made to create high-performance real-
time algorithms, to improve the quality and reliability of the scientific data [13,
44–47]. As of yet, there have been no attempts to fully automate the System
Health Management (SHM) pipeline, and by virtue of the lack of work on
this topic, no real-time implementations exist. This is in part due to the
complexity of the challenge as well as the unavailability of SHM specific
datasets. Furthermore, the successes of SHM-based anomaly detection sys-
tems have been extremely impactful in fields ranging from industrial man-
ufacturing [23] to space craft system health [165, 166] thereby motivating
this study.

The exponential growth of data production from modern instruments
have made data-driven techniques and machine learning appealing to as-
tronomers and telescope operators. However efforts in machine learning
based anomaly detection are concentrated in scientific discovery rather than
SHM, with approaches ranging from detecting unusual galaxy morpholo-
gies [98, 99] to identifying new transients [82, 95, 97]. Unfortunately, these
techniques are not directly applicable to the multi-station autocorrelation-
based spectrographic data obtained from radio observatories, due to in-
creased data complexity, high dynamic range due to RFI, varying obser-
vation durations and frequency ranges as well as the feature compounding
problem [81]. It must be noted this work makes use of up-stream data prod-
ucts in the form of spectrograms, that are produced by all radio telescopes
thereby enabling its applicability to other instruments such as the Square
Kilometre Array (SKA) [9].

The SHM anomaly detection problem differs from existing work for sev-
eral reasons. Firstly, the data inspection performed by telescope operators
involves analysing both known and unknown anomalies; where known
anomalies should be classified into their respective classes and unknown
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anomalies should be differentiated from all other existing classes. This is
in contrast with typical anomaly detection which is normally posed as
one-class-classification problem. Furthermore, we find that class imbalance
not only exists between the normal and anomalous classes (which is com-
mon for anomaly detection), but there is also strong imbalance between
the anomalous classes. For these reasons, we propose a new framework for
detecting and classifying SHM-based anomalies, that is capable of distin-
guishing both regularly occurring and rare events.

We find the multi-class classification approach more appropriate as it
gives more flexibility to telescope operators. This is because the anomalous-
ness of particular events entirely depend on the context of the science-goals
of an observation. For example, in observations relating to the Epoch of
Reionisation (EoR) [167], Signal-to-Noise Ratio (SNR) is a huge concern,
as such any high power anomalies such as solar storms should be identi-
fied and removed from the observation. In contrast, for solar physics-based
observations [168] the high-power solar events should implicitly be kept
within the data and should not be flagged as anomalous. Therefore by in-
cluding a classification step within the anomaly detector system we offer
greater flexibility to telescope operators in data quality inspection.

In this chapter we make the following contributions: (1) a new dataset
consisting of 6708 manually labelled autocorrelation based spectrograms
consisting of 10 different feature classes; (2) a self-supervised learning (SSL)
framework that is effective in learning representations of time-frequency
data with a high-dynamic range; (3) an anomaly detection framework that
can classify both commonly occurring known anomalies and detect un-
known anomalies with a high precision, and (4) we show that our imple-
mentation achieves real-time performance for LOFAR.

In the remaining part of the chapter we document our data selection
strategy and outline the labelling process used for evaluation of this work
in Section 6.2. In Section 6.3 we show the proposed SSL and anomaly de-
tection frameworks. Finally, our results and conclusions are documented in
Sections 6.4 and 6.5.

6.2 dataset

We created a new dataset for anomaly detection in radio observatories
and document the data selection, preprocessing and labelling strategy used
in this section. Applying machine learning to radio astronomical datasets
poses a significant challenge, particularly when using time-frequency data.
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Methods for data preprocessing and selection need to be carefully consid-
ered, due to issues such as high-dynamic range (from RFI among other
events), combining thousands of stations for a single observation, having
complex-valued data with multiple polarisations, feature compounding and
many more. An additional challenge with applying machine learning to ra-
dio astronomy is the lack of labelled time-frequency datasets from radio
telescopes as well as the availability of expert knowledge and the cost asso-
ciated with creating a dataset.

6.2.1 Observation selection and preprocessing

The ROAD dataset is made up of observations from the Low Frequency Ar-
ray (LOFAR) telescope [8]. For more information on the LOFAR telescope
and its data processing systems refer to Chapter 2.1.

Deep learning architectures typically require equally-sized inputs, how-
ever LOFAR observations can have a varying number of time samples
and/or frequency bands. Therefore, additional resizing of the intermedi-
ate visibilities is done by resizing all observations to (256, 256) bins in time
and frequency. This means that observations with fewer than 256 time sam-
ples are interpolated and those with more are down-sampled. Furthermore,
as the autocorrelations contain no phase information, we use only the mag-
nitude component of each spectrogram.

It must be noted that this processing does modify the morphologies of
certain features, particularly those present with a low time resolution. How-
ever as this preprocessing step is consistent across all spectrograms, the
overall effects on the anomaly detector and classifier are negligible. In fu-
ture work, we plan to associate the labels with the full resolution LOFAR
data from the Long Term Archive (LTA)1 and apply it to (256, 256) crops of
the full resolution spectrograms.

We selected 110 observations from the LOFAR LTA comprising of a broad
set of science use cases and the corresponding observing setups. Of the
selected observations, we use the autocorrelations from 2431 LBA stations
and 4277 HBA stations from an observation period between 2019 and 2022.

6.2.2 Labelling methodology

The ROAD dataset contains 10 classes which describe various system-wide
phenomena and anomalies from data obtained by the LOFAR telescope.

1 https:/lta.lofar.eu/

https:/lta.lofar.eu/


6.2 dataset 91

C
at

eg
or

y
D

es
cr

ip
ti

on
B

an
d

Po
la

ri
sa

ti
on

O
cc

ur
re

nc
e

ra
te

#
Sa

m
pl

es

N
or

m
al

A
ll

no
n-

ch
ar

ac
te

ri
se

d
ef

fe
ct

s
Bo

th
A

ll
-

4
6

8
7

D
at

a
pr

oc
es

si
ng

Fi
rs

t
or

de
r

da
ta

lo
ss

D
at

a
lo

ss
fr

om
co

ns
ec

ut
iv

e
ti

m
e

an
d/

or
fr

eq
ue

nc
y

ch
an

ne
ls

Bo
th

A
ll

0
.0

2
1

4
6

Se
co

nd
or

de
r

da
ta

lo
ss

D
at

a
lo

ss
fr

om
si

ng
le

fr
eq

ue
nc

y
an

d/
or

si
ng

le
ti

m
e

ch
an

ne
ls

Bo
th

A
ll

0
.0

4
2

8
3

El
ec

tr
on

ic
sy

st
em

s

H
ig

h
no

is
e

el
em

en
t

H
ig

h
po

w
er

di
st

ur
ba

nc
es

ca
us

ed
by

m
is

ce
lla

ne
ou

s
ev

en
ts

Bo
th

A
ll

0
.0

1
8

8

O
sc

ill
at

in
g

ti
le

A
m

pl
ifi

er
go

in
g

in
to

os
ci

lla
ti

on
H

ig
h

A
ll

0
.0

1
5

6

A
st

ro
no

m
ic

al
ev

en
ts

So
ur

ce
in

si
de

-l
ob

es
A

-t
ea

m
so

ur
ce

pa
ss

in
g

th
ro

ug
h

si
de

-l
ob

es
H

ig
h

A
ll

0
.0

6
4

4
6

G
al

ac
ti

c
pl

an
e

G
al

ac
ti

c
pl

an
e

pa
ss

in
g

th
ro

ug
h

th
e

m
ai

n
lo

be
of

th
e

an
te

nn
a

Bo
th

C
ro

ss
0
.0

8
5

5
0

So
la

r
st

or
m

St
ro

ng
em

is
si

on
s

fr
om

th
e

su
n

Lo
w

A
ll

0
.0

2
1

4
7

En
vi

ro
nm

en
ta

l
ef

fe
ct

s

Li
gh

tn
in

g
Li

gh
tn

in
g

st
or

m
Bo

th
A

ll
0
.0

6
3

8
9

Io
no

sp
he

ri
c

R
FI

re
fle

ct
io

ns
R

FI
re

fle
ct

ed
fr

om
th

e
io

no
sp

he
re

Lo
w

A
ll

0
.0

4
2

6
1

Ta
bl

e
6
.1

:C
at

eg
or

is
at

io
n

of
da

ta
pr

oc
es

si
ng

,e
le

ct
ro

ni
c,

as
tr

on
om

ic
al

an
d

en
vi

ro
nm

en
ta

la
no

m
al

ie
s

in
th

e
R

O
A

D
da

ta
se

t.
W

he
re

A
-t

ea
m

so
ur

ce
s

re
fe

r
to

th
e

fo
ur

br
ig

ht
es

t
pe

rs
is

te
nt

ra
di

o
so

ur
ce

s
in

th
e

no
rt

he
rn

sk
y.

N
ot

e
ea

ch
sp

ec
tr

og
ra

m
m

ay
co

nt
ai

n
m

ul
ti

pl
e

an
om

al
ie

s,
he

nc
e

th
e

nu
m

be
r

of
sa

m
pl

es
st

at
ed

is
gr

ea
te

r
th

an
th

e
ov

er
al

ld
at

as
et

si
ze

.



92 the radio observatory anomaly detector

These classes are categorised into 4 groups: data processing system fail-
ures, electronic anomalies, environmental effects, and unwanted astronom-
ical events. Table 6.1 shows the classes used as well as the description of
events, their band and polarisation in which they occur. We note that the
term anomaly is used liberally in this context, while low power effects (that
are only present in the cross polarisations) such as the galactic plane pass-
ing through an observation are somewhat unavoidable. Nonetheless, for
observations with extremely low SNR such as The Epoch of Re-ionisation
of the Universe (EoR) [167], the galactic foreground signals need to be iden-
tified and removed. For this reason, we include such events in the ROAD
dataset. Furthermore, as the ROAD dataset was created using data mainly
from the period around the minimum of the past Solar cycle, the high-band
data are marginally impacted while the low-band data tracks these events
due to the frequency dependence of the related emissions. This also ex-
plains why the dataset does not contain classes consisting of ionospheric
scintillation effects. In future work, we plan to extend the dataset to consist
of classes relating to more ionospheric disturbances.

Our labelling approach took into consideration anomalies which occurred
at both the station- and observation-levels. For example, events such as
lightning storms and high-noise events can look fairly similar, especially in
the down-sampled context. However, lightning storms are geographically-
bound to affect all stations in a certain region therefore only occurring at
the station-level. Additionally, lightning is highly correlated across stations
in time, with minimal delay between the recorded events in each station.
Whereas high-noise events usually affect only a single antenna at a time
with no time dependency between antennas and stations. By this logic, all
stations bound to the same geographic location with broadband high power
events across all polarisations that are correlated in time were considered
to be corrupted by lightning storms, whereas individually affected stations
were labelled as high-noise events.

We make a distinction between first and second order events; for example
the first order data-loss event corresponds to dropped information from
consecutive time samples and/or frequency bands and second order is for
a single time sample/frequency band. We find this a useful distinction as
the root cause of these events is different. In the case of first order data loss
events, the problem can be traced to the correlator pipeline, whereas the
second order events are most-likely from to type conversion overflows due
to strong RFI. Additionally, we note some overlap between class labels, for
example it is common for a high power noise events to trigger instability in
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(a) First order data loss (b) Oscillating amplifier

(c) High noise element (d) Lightning storm

(e) Solar storm with ionospheric effects (f) Galactic plane

(g) Source in the antenna side-lobes (h) Low frequency ionospheric RFI reflection

(i) Second order data loss (j) Normal

Figure 6.1: Illustration of 10 examples from the ROAD dataset.
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an amplifier causing it to oscillate, however the point at which a high noise
event becomes an oscillating tile is often unclear, therefore making it hard
to distinguish these events from each other.

We labelled the dataset using LOFAR observations that were down-sampled
and preprocessed as described in Section 6.2.1. We made multiple train-test
splits during experimentation to ensure consistent performance across mod-
els. Furthermore, the ROAD dataset is publicly available 2. The file is in the
hdf5 format and consists of fields corresponding to the raw data, labels, fre-
quency bands information, station name and source observation. Figure 6.1
illustrates 8 of the 10 classes labelled in the available dataset for brevity.

6.2.3 Class imbalance

Due to the nature of anomaly detection, the number of normal samples
greatly outnumbers anomalous ones. In the case of the ROAD dataset, and
the LOFAR telescope more generally, we find there is not only a class imbal-
ance between normal and anomalous classes but also among the anomalous
classes. For example, commonly occurring astronomical signals, such as the
galactic plane, are far better represented in the observations than unlikely
events like the amplifiers oscillating. Practically, this means that when we
separate the samples into testing and training sets we need to also maintain
the same occurrence rates with respect to the rates in the original dataset.

In effect, we down-sample the testing data such that the occurrence rate
(shown in the second last column of Table 6.1) is maintained for evaluation.
This means that each model needs to be tested multiple times with new
samples taken from the testing pool of anomalous samples to effectively
evaluate its performance. We evaluate each model 10 times with different
random seeds to ensure accurate reporting.

6.2.4 Radio frequency interference considerations

As previously mentioned, we consider Radio Frequency Interference (RFI)
to be unavoidable thus deeming it a normal class. A key problem with using
the RFI-masks associated with the spectrograms from LOFAR (as done in
Mesarcik et al. [94]) is that they are generated using AOFLagger. AOFLagger
is a SumThreshold-based algorithm which indiscriminately flags all high
power events as interference. In the context of this work, such an approach
would result in many of the high power anomalies such as lightning, solar

2 https:/zenodo.org/record/8028045

https:/zenodo.org/record/8028045
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storms, high-noise events and oscillating tiles being flagged as RFI. In effect,
if we were to blank the RFI before training our models, we would likely
remove many of these high-power features, thereby decreasing the efficacy
of the model. In turn making our end goal of mitigating the anomalies
more difficult, since different classes should lead to different actions by the
telescope operators. For this reason, we do not use the RFI masks associated
with the spectrograms.

6.3 the radio observatory anomaly detector

As outlined in preceding sections ROAD is designed to detect both pre-
viously unseen system behaviours as well as to classify known-anomalies
observed by the LOFAR telescope. To accommodate these requirements, we
find it necessary to combine two approaches; supervised classification, as
well as self-supervised anomaly detection. This section outlines the motiva-
tions and design decisions made for the implementation of ROAD.

6.3.1 Problem formulation

Given the ith spectrogram Vi(ν, τ,b,p) from the dataset and model m with
parameters θm; we would like to predict whether an anomaly is present
and which class it belongs to, if it is a known event, such that,

mθm
(Vi(ν, τ,b,p)) =


0 , if normal

[1,N] , if known anomaly

N+ 1 , if unknown anomaly

(22)

where ν, τ, b and p are the indexes corresponding to frequency band,
time sample, baseline and polarisation, respectively and N is the number
of known anomaly classes. Supervised approaches assume that each class
is represented in the training set and try to minimise the following loss
function

Lsup = min
θm

∑
i

H(mθm
(Vi(ν, τ,b,p), li) (23)

where H is an entropy-based measure of similarity and l is the encoded
vector of labels corresponding to the contents of V . During inference, the
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supervised classifier produces estimate of which classes are most probable
in a given spectrogram, and the argmax function selects the most likely clas-
sification as shown in the bottom half of Figure 6.3. However, as illustrated
by the results in Section 6.4, the performance of such a supervised classifier
severely deteriorates when exposed to unseen or out of distribution (OOD)
classes during testing. To remedy this, we disentangle the two model objec-
tives, namely we use a supervised classifier to identify the known classes
present in the training set and a self-supervised anomaly detector to classify
unseen anomalies.

6.3.2 Self supervised representation learning

Self Supervised Learning (SSL) methods learn useful feature representa-
tions by training on secondary objectives called pretext tasks, so that once
trained, the model weights can be utilised for downstream applications.
We define two pretext tasks that allow the model to learn useful repre-
sentations for anomaly detection in astronomical data: context-prediction
and reconstruction error. Context-prediction is a pretext task that makes a
model classify the positional relationship between two patches taken from
the same image. The two patches are projected to some latent representa-
tions z0 and z1 using a backbone network f, while keeping track of their
position label, c, on a 3× 3 grid as proposed by [76]. Then, using g, a 2-layer
Multi-layer Perceptron (MLP), we classify the positional relationship from
the latent representations; as given by

Lcon =
∑
i

∑
j

H(g(zi,j,0, zi,j,1), cj) (24)

where i corresponds the the index of each spectrogram, j is the index of
each context-predition pair in a single spectrogram and cj is the positional
label. Additionally, to ensure the model does not learn positional relation-
ships based purely on the bordering values of each patch, we augment each
neighbour in the training process. In the implementation, we randomly crop
the patches between 100% and 75% of their original size followed by resiz-
ing them to their original dimensions. We illustrate the context prediction
loss and patch selection in Figure 6.2.

Furthermore, to enforce consistency across the representations of similar
looking patches we use reconstruction error. Reconstruction error maintains
consistency by ensuring that two patches which share common features
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Figure 6.2: Illustration of the self-supervised training procedure used in ROAD, we
use random-cropping for augmentation.

in visibility space, should occupy nearby locations in the latent space and,
therefore, should be reconstructed similarly. The reconstruction loss is given
by

Lrecon =
∑
i

∑
j

|Vi,j,0 − d(zi,j,0)|+ |Vi,j,1 − d(zi,j,1)| (25)

where d is a de-convolutional decoder that should have significantly
fewer parameters than the backbone network f. We do this to ensure that
the model has more capacity to learn suitable representations instead of pri-
oritising reconstruction. For completeness we represent the full SSL learn-
ing objective as

LSSL = λLcon + (1− λ)Lrecon + λreg
∑
i

∑
j

(z2i,j,0 + z2i,j,1) (26)

where λ is a hyper-parameter which changes the influence of each com-
ponent of the loss. Additionally, we use regularisation in the form of min-
imising the square size of the latent projections z. Regularisation is used in
order to enforce the most compact representations in z. We experimentally
select λ = 0.5 and λreg = 1× 10−6, and illustrate λ’s impact in Section 6.4.

6.3.3 Distinguishing normal from anomalous samples

Although we have described a method for learning representations of nor-
mal data, the model is incapable of accurately discriminating between nor-
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mal and anomalous samples. Several options exist for anomaly detection
when utilising the learnt representations of normal training data methods.
The simplest involves measuring the distance between a given sample and
the normal training data [30] using a K-Nearest-Neighbour (KNN) lookup.
This assumes that larger distances correspond to more anomalous samples.
However as we already make use of some of the labelled data for the su-
pervised classifier we find it beneficial to fine-tune a shallow MLP on top
of SSL representations to perform anomaly detection. As the SSL-backbone
learns representations on the patch-level and ROAD dataset labels are on
the spectrogram-level, we first need to concatenate the latent representa-
tions of each patch to return to the correct dimensionality before training
the MLP. Notably, we propagate the gradients during fine tuning through
both the MLP and the backbone network f, such that the distance between
normal and anomalous representations at the spectrogram-level are consol-
idated. We show in Section 6.4 that fine-tuning dramatically outperforms
random initialisation and KNN-based anomaly detection. Furthermore, we
find that using the fine-tuned approach dramatically improves the time-
complexity of the system.

Additionally, we need to determine how to threshold the anomaly scores
produced by either the fine-tuned models or the KNN-distance based ap-
proach. Here we utilise the threshold from the Area-Under Precision Recall
Curve (AUPRC) which results in the maximum F-β score. A discussion on
the evaluation metrics used can be found in Section 6.4 as well as the results
pertaining to change of this threshold can be found in Figure 6.10.

6.3.4 Combining classification with anomaly detection

The final consideration when constructing ROAD is how to effectively com-
bine the fully supervised classifier ysup ∈ [0,N] and the fine-tuned anomaly
detector yssl ∈ [0, 1]. Simply, we consider normal predictions from the de-
tector more likely to be correct, and if there is a disagreement between the
two models then we flag the sample as an unknown class of anomalies that
the classifier may have not seen.

The overall method is shown in Figure 6.3 and is summarised by

y =


0 , if yssl = 0

ysup , if yssl = 1 and ysup ̸= 0

N+ 1 , if yssl = 1 and ysup = 0

(27)
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Figure 6.3: Illustration the inference pipeline of ROAD; where we combine both
supervised and self supervised learning to effectively detect radio ob-
servatory based anomalies.

We validate this approach in Section 6.4 by showing that it is optimal
assuming that normality is better defined by the SSL output.

6.4 experiments

We evaluate the performance of ROAD using the dataset described in Sec-
tion 6.2. The evaluation considers both the computation and model perfor-
mance using both the binary anomaly detection as well as the multi-class
classification results. In all cases we use the F-β score to evaluate the model
performance. The F-β score is the harmonic mean between precision and
recall, in the context of this work precision is the anomaly detection per-
formance that is sensitive to the number of false positives and recall is the
detection performance relative to the number of false negatives. Moreover,
in the context of telescope operations it is necessary to minimise the num-
ber of false negatives. In other words, it is more acceptable to classify some
normal samples as anomalous than classifying anomalous samples as nor-
mal. Following this logic and work by Kerrigan et al. [112], we consider
β = 2 to be the most appropriate as it weights recall more heavily than
precision. For all evaluations we use the threshold from the Area Under
Precision Recall Curve (AUPRC) which maximises the F-2 score.

We do not quantify the benefits of ROAD with regard to imaging. The
purpose of ROAD is to provide an efficient preview of large interferometric
data products to telescope operators. Thereby informing scientists how best
to post-process the data in the presence of instrumental and environmental
anomalies. It is anticipated that leveraging the outputs of the model would
facilitate the elimination of samples containing anomalies, thereby enhanc-
ing the overall image fidelity. However, for the sake of brevity and focus of



100 the radio observatory anomaly detector

this chapter, we leave the actual quantification of the improvements to the
imaging as future work.

6.4.1 Model parameters and training

To validate our approach we experiment with several modern machine
learning architectures with various model sizes. In all cases we use the
same backbone architecture for both the supervised-classifier and the SSL
models, furthermore, we utilise the same 2-layer MLP for position classifi-
cation. Additionally, the decoder used for the SSL-reconstruction loss is a
5-layer architecture with strided de-convolution and batch-normalisation.

For every experiment each model is trained 3 times while randomising
input seeds on each run. As already mentioned in Section 6.2.3 the low oc-
currence rates of some anomalous features, means we need to sub-sample
the anomalous classes in the test data to ensure comparable occurrences rel-
ative to normal LOFAR telescope operations. This means we run 10 separate
evaluation loops for the sub-sampled test data. In effect, the results shown
in this section reflect the mean and standard deviations from 30 runs of
each model. The SSL and the supervised models are trained for 100 epochs
(the number of times the model is exposed to the full training set) while
fine-tuning using the 2-layer MLP is done for only 20 epochs to prevent
over-fitting. We use a batch size, patch size and latent dimensionality of 64

across all experiments utilising the Adam optimiser with a learning rate of
1× 10−3 to maintain consistency. In all cases we use the official pytorch
based implementations of the various backbones, with the exception of ViT,
where we utilise an open source implementation.

Furthermore, to ensure no vanishing or exploding gradients while train-
ing we clip each autocorrelation to the 1st and 99th percentiles and take its
natural log. Additionally, we normalise each magnitude-based autocorrela-
tion between 0 and 1.

6.4.2 Anomaly detection and classification

To maximise the model performance relative to the problem specification
shown in Equation 22 we find the best mean performance of several differ-
ent backbones. These being different sized ResNet [169], ConvNeXt [170]
and ViT [171]. Notably our method is agnostic to backbone and could easily
be extended to include architectures/model sizes. In Table 6.2 we present
the per-class results after applying the combination of the supervised classi-
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Class Supervised Random init VAE ImageNet ROAD-KNN ROAD

Normal 0.94 ± 0.00 0.94 ± 0.01 0.94 ± 0.00 0.92 ± 0.05 0.94 ± 0.00 0.94 ± 0.01

First order data loss 0.98 ± 0.05 0.98 ± 0.06 0.99 ± 0.03 0.98 ± 0.04 0.99 ± 0.02 0.99 ± 0.04

Second order data loss 0.77 ± 0.09 0.71 ± 0.12 0.76 ± 0.10 0.78 ± 0.1 0.73 ± 0.14 0.79 ± 0.07

High noise element 0.78 ± 0.14 0.58 ± 0.21 0.50 ± 0.24 0.66 ± 0.26 0.72 ± 0.19 0.81 ± 0.16

Oscillating tile 0.84 ± 0.14 0.71 ± 0.20 0.75 ± 0.17 0.73 ± 0.20 0.84 ± 0.14 0.82 ± 0.17

Source in the side-lobes 0.78 ± 0.03 0.78 ± 0.06 0.74 ± 0.10 0.77 ± 0.08 0.79 ± 0.04 0.79 ± 0.04

Galactic plane 0.80 ± 0.08 0.78 ± 0.04 0.77 ± 0.05 0.84 ± 0.05 0.79 ± 0.08 0.82 ± 0.08

Solar storm 0.99 ± 0.02 0.98 ± 0.02 0.99 ± 0.03 0.99 ± 0.01 0.99 ± 0.02 0.99 ± 0.02

Lightning storm 0.95 ± 0.04 0.900 ± 0.06 0.92 ± 0.06 0.94 ± 0.05 0.95 ± 0.05 0.95 ± 0.04

Ionospheric RFI reflections 0.99 ± 0.01 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.99 ± 0.01 0.99 ± 0.01

Table 6.2: F2-score classification performance on the ROAD dataset, where bold is
the best performance per class and the ResNet34 is used for all relevant
backbones.

fication and the fine tuned anomaly detector specified by Equation 27. Fur-
thermore, we plot the mean performance of each model in Figure 6.4 for
the sake of easy comparison. We note that all evaluated anomaly detection
models utilised fine-tuning in order to ensure they had been exposed to the
same amount of data. Additionally, ROAD-KNN utilises a KNN lookup
to determine the distances in the latent space rather than using the MLP
prediction.

We find that the ResNet34 exhibits overall best average performance on
the classification task, giving an average increase in F-2 score of 1% relative
to the purely supervised model. We note that the performance of ROAD
is directly dependant on the supervised performance. We show that the
SSL-pretraining is highly influential to the overall model performance as
it gives a < 5% increase over the randomly initialised (random init) model
without pretraining. Furthermore we find that our SSL-based approach out-
performs variational autoencoder-based model with fine-tuning (VAE) by
< 5% as well being as < 3% better than KNN-based anomaly detectors
(ROAD-KNN). Finally we show that using pretrained weights from Ima-
geNet classification with fine-tuning (ImageNet) results in a 2% decrease in
performance relative to our SSL pretraining paradigm.

Across all experiments it is clear that the high noise element and oscillat-
ing tile classes have the highest standard deviation. We attribute this to the
small number of examples present in both the testing and training set after
adjusting for occurrence rates. In addition to this, the features represented
in these classes can vary significantly from sample to sample and band to
band.
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Figure 6.4: Per-class mean F-2 score based performance of each model shown in
Table 6.2
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Figure 6.5: One-class anomaly detection performance for a purely supervised
model and the fine-tuned SSL anomaly detector when removing a num-
ber of classes from the training set. The ResNet34 backbone is used for
both training paradigms.

To simulate a real-world setting where many unknown anomalies can be
present in a given observation, we remove several classes from the training
set and test models’ performance on the original test set. We refer these
classes removed as Out-Of-Distribution (OOD). The objective of this experi-
ment is to see how well the model will react to OOD anomalies and whether
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Figure 6.6: One-class anomaly detection performance after fine-tuning of various
backbone networks when varying the number of available parameters.

it can correctly classify them as anomalous. To effectively simulate this sce-
nario, we randomly remove between 1 and 7 classes and do this 10 times
while training a model for each removal step. Figure 6.5 shows the aver-
age model performance from the 10 runs for both the supervised classifier
as well as the fine-tuned SSL anomaly detector when removing a number
of classes from the training set. Here it is clear that the supervised model
suffers much more strongly from the OOD effects than the SSL-pretrained
one, exhibiting a performance drop between 5% and 18%, thereby illustrat-
ing the benefit of using ROAD where both a classifier and detector are in
the loop.

We illustrate the t-distributed stochastic neighbour embedding (t-SNE)
projections of the latent dimensions from each models in Figure 6.7 to
gain an intuition about the model performance. The same random seed
and perplexity parameters are used for all plots shown, here the perplex-
ity estimates the number of neighbours each point should have (for more
information see [172]). In the topmost plot the non-fine tuned SSL-model
is shown, we can see that both normal and anomalous classes are grouped
closely together, with the exception of clusters pertaining to first order data-
loss, ionospheric RFI reflections and solar storms. Furthermore, we find the
normal data is distributed across two clusters, these being LBA and HBA
features. It is interesting that even with no explicit training signals the SSL
model without fine-tuning is still capable of distinguishing a variety of
classes and phenomena. The middle plot shows the effects of fine-tuning
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Figure 6.7: t-SNE projections of test data from the ROAD dataset using the repre-
sentation from the final layer of the SSL-pretrained ResNet-34 with and
without fine-tuning as well as the supervised classifier.
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on the SSL representations. The fine-tuned SSL-model is significantly bet-
ter at distinguishing normal from anomalous samples, with the LBA/HBA
separation in the normal samples completely disappearing. Furthermore,
the clusters corresponding to features that were once well separated such
as solar storm are now better grouped with the anomalous samples. Finally
in the bottom-most plot we can see the learn supervised representations of
the test data. Here it is clear that the supervised model is the most capable
of separating both anomalous and normal classes alike. It must be noted
however that the classes relating to galactic plane, source in the sidelobes and
normal are overlapping. Therefore by combining the boundary related to
the SSL-fine-tuned embedding with the specificity of the supervised model
we are able to better detect anomalies.
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Figure 6.8: Binary anomaly detection performance when changing the amount of
supervision used for training a ResNet-34 backbone for each training
paradigm.

An interesting consequence of the class imbalance and the few number
of samples certain events such as oscillating tile, is that ROAD benefits from
fewer backbone parameters and does not scale with model size, as it over-
fits to the training data. This is illustrated in Figure 6.6, where it is also
shown that ResNets offer the best performance. This being said, we expect
that with more samples from the infrequent classes the model performance
should scale proportionally with its number of parameters. This is further
validated by Figure 6.8, where we plot the model performance relative to
the amount of training data. Here is is clear that the model performance



106 the radio observatory anomaly detector

scales linearly with training data-size. Furthermore, the fine-tuned model
outperforms its purely supervised counterpart for all training set sizes.

6.4.3 Model ablations

To validate the correctness of the SSL-model training objective we perform
several ablations. In Table 6.3 we show the effect of only using only the
reconstruction term, Lrecon, or only the context prediction term, Lcon, or us-
ing the combined loss Lrecon +Lcon. We show that the combination of the
two terms improves both the anomaly detection and the average classifica-
tion performances by 2%, which at the scale of the LOFAR science data
processing pipeline results in a significant improvement.

Performance Lrecon Lcon Lrecon +Lcon

Anomaly detection 0.88 ± 0.03 0.92 ± 0.01 0.93 ± 0.01

Classification 0.85 ± 0.07 0.87 ± 0.05 0.89 ± 0.06

Table 6.3: Model performance (F2 score) after fine-tuning when varying the SSL
loss function for a ResNet34 backbone.

Furthermore, in order to determine the relative contribution of each of
the losses to the overall performance of ROAD we modify the λ hyper-
parameter and measure the overal model performance. Figure 6.9 shows
how with 0.3 ⩽ λ ⩽ 0.7 the SSL anomaly detection obtains optimal perfor-
mance.

In addition to the loss function-based ablations we also consider the ef-
fect of changing the combination function used between the supervised and
SSL model shown in Equation 27. These results are shown in Figure 6.10,
when we vary both the anomaly detection threshold set by the maximum F-
β score as well as the combination function. In the plot, combination function
#1 uses the definition expressed in Equation 27, where the anomaly detec-
tor defines both normality and the unknown anomaly events. We define
combination function #2 as

y =

N+ 1 , if yssl = 1 and ysup = 0

ysup , otherwise
(28)

such that yssl is only used to define unknown anomalous events. In the
leftmost plot we can see that combination function #1 consistently offers
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Figure 6.9: Mean anomaly detection F2-score performance of the ResNet-34 when
varying the relative contribution of Lrecon and Lcon. When λ is mini-
mum the loss favours Lrecon while a for greater losses Lcon dominates.

the best precision, while at the cost of a marginally decreasing the recall
(<0.4%). The effect of this is that combination function #1 results in optimal
F-2 score performance when the β is greater than 1. Futhermore, we eval-
uate the false positive rate using combination function #1 and find that it
results in a false positive rate of approximately 2%.

Figure 6.10: Mean classification performance of the ResNet-34 backbone after fine-
tuning when changing the threshold used for anomaly detection as
well as the combination function. Combinations #1 and #2 correspond
to Equations 27 and 28 respectively.
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6.4.4 Computational performance analysis

We evaluate the computational performance of ROAD during inference on
a Nvidia A10 GPU using CUDA 11.7 and using driver release 515.65.01. The
KNN-based experiments utilise the GPU-based implementation of FAISS3.
We use a batch size of 1024, with a patch size and a latent dimensionality
of 64. Furthermore for the case of the KNN search we assume 1000 normal
training samples to populate the search space. In all cases we use bfloat16

representations of the input data such that to ensure the tensor-cores are
fully utilised. In these results, we perform 1000 forward passes and measure
the resulting latency, throughput in spectrograms per second as well as
peak memory allocation.

The computation performance of the respective models can be seen in
Table 6.4, where it is clear that the supervised model has the lowest com-
putational overhead. We relate the difference performance between the su-
pervised and SSL model to the dimensionality of the models inputs and
required concatenation of the patches on each forward pass. As the SSL
operates on the patch level, there are substantially fewer convolution oper-
ations that need to be applied (approximately 16), resulting in decreased
peak memory performance. ROAD consists of both the supervised and SSL
models and such the overall performance is given by the addition of the
respective values, such that it takes less than 1 ms to predict the normality
of a given spectrogram.

Model Type Latency (ms) Throughput(spec s−1 ) Peak Memory(GBs)

Supervised 0.3 2844 8.11

SSL 0.4 2481 5.95

KNN 12.1 82 5.95

Table 6.4: Computational performance of anomaly detectors, where spec s−1 refer-
ees to the number of spectrograms processed per second by the respec-
tive algorithm.

As described in Chapter 2, LOFAR’s correlator operates with a 80 Gbp/s
output bandwidth. This implies that in order to integrate ROAD into the
correlator it should be able to keep up with the incoming bandwidth with-
out significant buffering. As previously described, ROAD has an overall
latency of 0.7 ms per spectrogram, where a single spectrogram is 4 pol ×
256 frequency samples × 256 time samples × 16 bits. Furthermore, ROAD

3 https:/github.com/facebookresearch/faiss

https:/github.com/facebookresearch/faiss
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only operates on autocorrelations, hence it requires Nst/Ntot ≈ 0.03 of the
total number of spectrograms. This means that when using all 64 antenna
fields, only 80 Gbp/s × 0.03 = 2.4 Gbp/s need to be processed. Note, that
this is a pessimistic estimate, as the correlator outputs far higher resolution
data than what ROAD can effectively handle.

Given ROAD’s output bandwidth of (4× 256× 256× 16)/0.7× 10−3 =

5.99 Gbp/s we can conclude that ROAD is real-time in the context of the
LOFAR telescope. As this estimate considers no parallelisation on a single
Nvidia A10 GPU and the ROAD algorithm is embarrassingly parallel, we
can expect our method to scale proportionally with number of GPUs. Addi-
otionally, we assume that the downsampling and normalisation operations
required for this work are cheap and their cost would be eclipsed by the for-
ward passes use for inference. Furthermore, we note that the KNN-based
model performs significantly worse, suggesting that density based KNN
anomaly detectors are less suitable for real-time applications at observato-
ries.

6.5 conclusions and future work

In this work we have presented the first real time anomaly detector for
system-wide anomalies in spectrographic data from radio telescopes. We
produced a freely available dataset that contains 6708 autocorrelation-based
spectrograms from the LOFAR telescope with labels relating to both com-
monly occurring anomalies as well as rare events. This work provides a for-
mulation of anomaly detection in the SHM-context of telescope operations
and illustrates how purely supervised models are ill-suited to the problem.
Furthermore, we propose a new Self-Supervised Learning (SSL) paradigm
for learning normal representations of spectrographic data. We combine
both the SSL and supervised models and demonstrate how it remedies the
shortcomings of supervised methods. We demonstrated that even with lim-
ited examples of anomalous data our fine tuned SSL model can significantly
outperform its supervised counterpart, while keeping the false positive rate
at an acceptable level. The radio observatory anomaly detector (ROAD) and
dataset are the first major effort to address the system health management
problem in radio telescopes and its potential benefit to all radio observato-
ries is very promising.

We expect through providing open source access to both our models
and dataset, continued effort by the larger community will increase the
amount of training data from scarce events. Thereby enabling other train-
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ing paradigms such as contrastive learning with larger models that are
currently unsuited to the highly imbalanced problem. Furthermore, we
identify several directions for future work in the area of radio observa-
tory anomaly detection. Namely using the cross correlations to enhance
training by using radio interferometer specific losses. Another interesting
direction would be to use Bayesian deep learning to give uncertainty esti-
mates from the classifier such that samples with low confidence would rely
on the detector output. Finally, we would like to propagate the labels from
the down-sampled data to the full resolution data from LOFAR Long Term
Archive such that the performance could be better evaluated in the context
of the full LOFAR data processing pipeline.

In future work we would like to see ROAD tested with data from differ-
ent radio telescopes. We expect that instruments with roughly the same op-
erating bands and time resolution would be good candidates. In previous
work, [94] we show that unsupervised machine learning-based methods
for Radio Frequency Interference (RFI) detection are directly transferable
between the simulated data from the HERA telescope and real data from
LOFAR. One potential problem is that there may be a domain shift between
the ROAD dataset and data produced by another instrument. This could be
addressed by labelling a few examples of anomalies in other instruments’
spectrograms and fine tuning the ROAD model, using the supplied weights
and with the new small dataset. In this manner, the overhead of extensive
labelling would be avoided. However, in principle ROAD can be applied to
any radio telescope provided that a new labelled data set is produced for
the specific instrument. We expect that the anomaly categorisation used for
the ROAD dataset is generic-enough to be directly transferred to other in-
struments. However we note that features such as oscillating tile are LOFAR
specific.

Additionally, we propose investigating how best to integrate RFI detec-
tion and self-supervised anomaly detection for radio telescopes. Founda-
tion models Bommasani et al. [173] offer a promising direction. Here a
single self-supervised model could be trained on the normal data and then
fine-tuned on both RFI-segmentation and anomaly detection tasks. In this
manner, a model would be able to learn both representations of anomalous
samples as well as RFI-contaminated data, which may improve model per-
formance, generalisability and false-positive rates. To this end we would
avoid the problem of potentially classifying RFI as anomalies and vice-
versa.



7
C O N C L U S I O N S

Radio telescopes will continue to increase in sensitivity and system com-
plexity, resulting in steady growth of their data rates. This necessitates au-
tomatic system health monitoring and diagnostic tools that can report on
the telescope health and inform operators of any potential problems. The
ubiquity of machine learning-driven solutions in a variety of industries [27,
122, 123] and scientific disciplines [174] has motivated their application to
radio astronomy-based system health management. However the complex-
ity of the data and the expert domain specific knowledge required to in-
terpret it, has meant that very little work has been done at the intersection
of these two fields. This thesis has described an anomaly detection system
for spectrogram-based data from radio telescopes that effectively offers a
solution to the system health management problem. This was done by cre-
ating a data-inspection framework that can be integrated into the system
monitoring and control pipeline, a representation learning method for pro-
jecting the spectrographic data to a low dimensional space as well as a
discriminative measure for detecting anomalies present in spectrograms.

7.1 contributions

The main contributions of this thesis are as follows.

7.1.1 Representation learning for radio astronomy spectrograms

We have proposed two novel applications of representation learning using
radio astronomy spectrograms. In Chapter 3, we introduced a variational-
autoencoder that can effectively integrate both the magnitude and phase
information present in radio astronomy spectrograms in order produce a
low dimensional prescriptive space. Chapter 6 presented a self-supervised
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learning paradigm that utilised both the positional patch information as
well as the reconstructions of spectrograms from the LOFAR telescope.

7.1.2 Nearest neighbour-based anomaly detection

In Chapter 4 we proposed a novel anomaly detection algorithm that inte-
grates the reconstructions of nearest neighbours in autoencoders. We showed
its flexibility when applied to a variety of latent-variable models as well as
its applicability to several different datasets. Furthermore, we demonstrated
that through the simple adaption of reconstruction-error based losses we
can consistently improve models’ anomaly detection performance.

7.1.3 Expert labelled datasets for anomaly detection in radio astronomy

In this work we provide three datasets to further research on both system
health monitoring and radio frequency interference detection in radio tele-
scopes. As interest grows from the radio astronomical community in ma-
chine learning so does the necessity for easily accessible annotated datasets.
The datasets we provide will continue to encourage new solutions to sys-
tem health management related problems in radio astronomy and telescope
operations. The details and specifications of the datasets can be found in
Chapters 5 and 6.

7.1.4 Data inspection framework for radio observatories

This thesis provides a graphical interface for telescope operators to analyse
data from the LOFAR telescope. The open source web framework enables
representation learning models to be easily integrated into telescope op-
erations. The interface incorporates several telescope specific controls to
inspect particular aspects of the radio telescope; details regarding the data
inspection framework can be found in Chapter 3.

7.1.5 Unsupervised RFI detection algorithm

We presented a novel unsupervised RFI detection algorithm based on ma-
chine learning anomaly detection fundamentals in Chapter 5. This work
documented how inverting the detection problem effectively addressed the
over-fitting issue of supervised RFI detection algorithms. We have shown
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that NLN provides better than state-of-the-art RFI detection without incur-
ring the cost of labelling.

7.1.6 Real time anomaly detector for LOFAR

In Chapter 6 we introduce the Radio Observatory Anomaly Detector, the
first real time anomaly detector for system-wide anomalies in spectrographic
data from radio telescopes. Here it is shown to be effective in detecting ra-
dio telescope specific anomalies from atmospheric, instrumentation, data
processing and astronomical anomalies. This work provides a formulation
of anomaly detection in the SHM-context of telescope operations and il-
lustrates how purely supervised models are ill-suited to the problem. Fur-
thermore, we propose a new Self-Supervised Learning (SSL) paradigm for
learning normal representations of spectrographic data. We combine both
the SSL and supervised models and demonstrate how it remedies the short-
comings of supervised methods. ROAD is the first major effort to address
the system health management problem in radio telescopes and its poten-
tial benefit to all radio observatories is very promising.

7.2 answers to research questions

The research questions defined in Chapter 1 are answered accordingly.

Research Question 1: How can machine learning-based anomaly detection
techniques be harnessed to improve system health management in radio tele-
scopes?

In this thesis we have shown two different approaches for automating
system health management in radio telescopes. Firstly, in Chapter 3 we de-
scribed an expert-in-the-loop data inspection framework that utilises a un-
supervised representation learning model to project radio astronomy spec-
trograms to a prescriptive space. It enables telescope operators to easily
filter observations based on several criteria using the provided web-based
graphical user interface. Furthermore, we have proposed the Radio Obser-
vatory Anomaly Detector (ROAD) in Chapter 6, a model that can detect
9 different classes anomalies even when the model has not been exposed
to particular classes. We show that ROAD offers suitably low false positive
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rates while maintaining its detection capabilities. To this end, we find that
system health management can be successfully automated.

Research Question 2: What is the most effective to way learn robust represen-
tations of normal data from radio telescopes?

We describe two novel methods for learning representations of spectro-
grams from radio telescopes in this thesis. In Chapter 3 we demonstrate
how learning representations of spectrograms from radio telescopes is a
uniquely challenging problem. This is due to high dynamic range from the
presence of radio frequency interference, large data volumes and noisy data
as well as the possible combinatorial effects present in these data products.
To address these problems we propose a variational autoencoder model
which learns joint representations from both the magnitude and phase com-
ponents of spectrograms from radio telescopes. Furthermore, we evaluate
these representations using a linear classifier and illustrate how the model’s
performance scales as we increase the number of possible features present
in given observation using both simulated and real data.

In Chapter 6 we propose a self-supervised learning framework for learn-
ing both the relative positions of patches in a given spectrogram as well as
their reconstruction from a latent encoding. We demonstrate that this model
is capable of learning suitable representations of normal behaviour in radio
telescopes, both with and without fine-tuning. We anticipate with access
to larger datasets consisting of many more telescope operations-specific an-
notations further representation learning models could be developed and
evaluated. To this end, we find self-supervised pretraining and with fine-
tuning is the most effective way to learn representations of radio astronomy
spectrograms.

Research Question 3: Which are the most appropriate ways to discriminate
between normal and anomalous samples using the learnt representations of nor-
mal data?

Anomaly detection in high dimensional data is fundamentally depen-
dant on learning suitable representations of normal data. With the previous
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research question in mind, Chapter 6 demonstrates that fine-tuning the un-
supervised and self-supervised models on small amounts of labelled data
greatly improves the discriminative abilities of models to distinguish be-
tween normal and anomalous samples. This being said, with no access to
labels, Chapter 4 shows that using the reconstructions of nearest neighbours
in autoencoding and generative models gives consistent improvements over
purely reconstruction based counterparts. This is illustrated using both syn-
thetic data from the HERA telescope in an anomaly detection context as
well as using Radio Frequency Interference specific use cases. We find that,
normality is best discriminated using a fine-tuned linear classifier when
labelled data is available.

Research Question 4: To what extent is it possible to make system health
monitoring techniques real-time in the context of LOFAR?

The increasing data rates from modern radio telescopes necessitate real
time computational performance for automated system health monitoring.
As described in Chapter 2, LOFAR’s correlator operates with a 80 Gbp/s
output bandwidth. Furthermore, in Chapter 6 showed that ROAD only uses
a small fraction of the required data produced by LOFAR, therefore our sys-
tem health management system is only required to process 2.4 Gbp/s to be
effectively real-time when using all 64 LOFAR antenna fields. We empiri-
cally estimated ROAD’s output bandwidth to be 6 Gbp/s, demonstrating
that it is real time in the context of the LOFAR telescope. Therefore we can
conclude that with current data rates of the LOFAR telescope, it is indeed
possible to make machine learning-based system health monitoring real-
time. Furthermore, as our estimate considers no parallelisation on a single
GPU and the ROAD algorithm is embarrassingly parallel, we can expect
our method to scale proportionally with number of GPUs. Thus giving it
headroom to be implemented with higher data-rates at potentially bigger
telescopes.

7.3 future work

As radio telescopes continue to generate more data, so does the need for au-
tomated system health management workflows to ensure nominal telescope
operations. The research presented in this thesis has culminated in ROAD,
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a model that can effectively help to automate the tasks performed by the
LOFAR telescope operators. In the creation of this model and through anno-
tating the ROAD dataset we have enabled several more research directions
in the field of system health management in radio telescopes.

An effective method to continue generating labelled spectrograms would
be to integrate ROAD into the data inspection web-framework. This integra-
tion would enable an active learning loop, where misclassifications of sam-
ples near the decision boundary between normal and anomalous samples
could be annotated by operators. An additional Bayesian machine learning
model [175] could also be used in this context to give explicit estimates of
uncertainty of samples near the decision boundary. These additional anno-
tations could be used to retrain the model on a regular basis, until such
time the model is capable of distinguishing all classes relevant to telescope
operations. Furthermore, the integrated data inspection framework would
enable improved error localisation, where telescope operators could imme-
diately diagnose and shutdown stations that are experiencing anomalies
during an observation.

The downsampling operation used for preprocessing the LOFAR spec-
trograms could potentially remove some anomalies present in the full res-
olution data. For example, narrowband anomalies such as lightning could
be removed entirely from an observation by downsampling. Therefore, in
future work we recommend an analysis of the consequences of this opera-
tion. Given the loss of consequential anomalies, we propose associating the
annotations given to the downsampled spectrograms with the data from
the LOFAR Long Term Archive (LTA) and retraining the models. However,
as the full resolution data is in the order of terabytes per observation, we
anticipate complications in training these models when using the full res-
olution data. In particular the supervised training on the full resolution
spectrograms and the fine-tuning of the self-supervised model described
in Section 6.3 will probably not be possible in its general form. Therefore,
we also propose an investigation in pipelined training for radio astronomy
models on the full resolution data.

The system health management system described in this work could be
integrated directly into COBALT [13]. As COBALT uses a GPU cluster and
ROAD makes use of a GPU to perform inference, we find it appropriate
to connect these two pipelines. The only foreseeable additions that would
be necessary would be to include downsampling and normalisation op-
erations after inter-station correlation (which are computationally cheap).
We believe that this would enable automatic reporting during observations.
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Moreover, this would hide the memory load costs currently associated with
our system.

Radio telescopes produce data in various modalities, for example system
logs of the correlator, the temperature readings of each antenna processing
board, the Radio Frequency Interference (RFI) flags generated by AOFlag-
ger and the radio images used by astronomers. We believe that multi-modal
machine learning based solution may offer improved representations of the
radio astronomy data. Another potential option would be to perform multi-
task learning, where objectives from anomaly detection, RFI mitigation and
calibration could jointly be optimised.

Furthermore, the spectrograms alone contain meaningful geographical/-
geometric dependency between stations that could be harnessed in phase-
interferometry specific self-supervised learning objective. Additionally, we
see a clear research direction in associating the autocorrelation-based pre-
dictions done in ROAD to cross correlations so to give a prognosis to op-
erators about the error localisation. This would also enable detection of
inter-station errors such as clock drift, as they are not present in the auto-
correlations.

7.4 vision and outlook

Scientific instruments are becoming more complex and are generating in-
creasing amounts of data [9, 176, 177]. As such experts will probably not
be able to analyse and guarantee nominal instrument operations due to the
amount of data being generated. This necessitates the automation of sys-
tem health management processes. Furthermore, we expect machine learn-
ing methods to continue advance and generate new compelling use-cases
through all scientific disciplines. For this reason, we anticipate machine
learning based anomaly detection systems to become essential in all mod-
ern instruments such as the Large Hadron Collider [176], KM3Net [177],
LIGO [178] and others.

The significant improvements we have seen in machine-learning centric
fields such as computer vision and natural language processing are in part
due to the amount of high quality annotated datasets. Given the need for
instrument specific machine learning system health management methods,
we suggest scientists and instrument operators release more annotated sys-
tem specific datasets on these topics. Furthermore, we anticipate active
learning becoming intrinsic to system health management operations as
it will allow continual model improvement.
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As the data generation rates from scientific instruments increase so does
the computational efficiency of the machine learning algorithms. For this
reason we expect instrument specific integration of real-time machine learn-
ing models into existing scientific pipelines. Additionally, we see an addi-
tional research direction into making machine learning models in scientific
disciplines more efficient through using techniques like pruning and quan-
tisation [179].

Considering the development of foundation models [173] in machine
learning, we see a similar future for system health management systems
in radio telescopes [180]. Here a single self-supervised representation learn-
ing model could be trained using the multiple data modalities and fine-
tuned on context specific tasks. In radio telescopes for example, a single
self-supervised model could be trained on spectrograms with training ob-
jectives related to the different scientific data processing pipelines. Through
this multiple objectives could be simultaneously addressed such as calibra-
tion, imaging, RFI detection and system health monitoring.
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S U M M A RY

Radio telescopes are getting bigger and are generating increasing amounts
of data to improve their sensitivity and resolution. The growing system
size and resulting complexity increases the likelihood of unexpected events
occurring thereby producing datasets containing anomalies. These events
include failures in instrument electronics, miscalibrated observations, envi-
ronmental and astronomical effects such as lightning and solar storms as
well as problems in data processing systems among many more. Currently,
efforts to diagnose and mitigate these events are performed by human op-
erators, who manually inspect intermediate data products to determine the
success or failure of a given observation. The accelerating data-rates cou-
pled with the lack of automation results in operator-based data quality in-
spection becoming increasingly infeasible.

The exponential growth of data production from modern instruments
have made data-driven techniques and machine learning appealing to as-
tronomers and telescope operators. However efforts in machine learning-
based anomaly detection are concentrated in scientific discovery rather than
System Health Management (SHM), with approaches ranging from detect-
ing unusual galaxy morphologies to identifying new transients.

Telescope operators have successfully automated most scientific data pro-
cessing pipelines from calibration to Radio Frequency Interference (RFI)
mitigation and dedispersion. Furthermore, continuous efforts are being
made to create high-performance real-time algorithms, to improve the qual-
ity and reliability of the scientific data. As of yet, there have been no at-
tempts to fully automate the SHM pipeline, and by virtue of the lack of
work on this topic, no real-time implementations exist.

This thesis focuses on applying machine learning-based anomaly detec-
tion to spectrograms obtained from the LOFAR telescope for the purpose of
SHM. It does this across several chapters, with each chapter focusing on a
different aspect of SHM in radio telescopes. We provide an overview of the
data processing systems in LOFAR so to create a workflow for SHM that
could effectively be integrated into the scientific data processing pipeline.
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First we investigate how representation learning methods can be used
to create low dimensional projections of radio astronomy spectrograms. In
doing so, we provide an operator-in the loop tool for data inspection, for
managing data quality in radio telescopes. We propose an autoencoding
architecture that separately processes both the magnitude and phase com-
ponents of the radio astronomy spectrograms. In this chapter we also intro-
duce the combinatorial feature-compounding problem in radio astronomy
spectrograms as well as a simple method to evaluate performance using
synthesised data.

We find that existing anomaly detection problem definitions are not well
suited to the radio observatory use-case. As typical methods rely on the
assumption that there is a single outlying class, whereas we want to detect
both commonly occurring anomalies as well as those that are rare. Using
this modified problem definition, we use the learnt representations from
the previous chapter to perform anomaly detection. This is done using
density-based and reconstruction-error methods for anomaly detection in
latent-variable models. Here we also look at combining supervised and un-
supervised approaches in order to detect both known and unknown events.

Next we consider how to apply these anomaly detection strategies to RFI
detection in radio astronomy. In so doing we propose a novel formulation
of the RFI detection problem and obtain state-of-the-art performance. Fur-
thermore, we demonstrate that our method better generalises to unseen
RFI, whereas current supervised approaches over-fit to weak-label-based
RFI masks. As a consequence, we hypothesise that our approach will better
generalise to future generations of emitters, whereas existing supervised
methods will have to be regularly retrained.

Lastly, we propose the Radio Observatory Anomaly Detector (ROAD), a
self-supervised learning anomaly detection method. We show that it is ef-
fective in both detecting both seen and unseen anomalies with a suitably
low false positive rate. Additionally, we introduce a new dataset specifically
created for the validation of anomaly detection models for system health
management in radio telescopes. We show that ROAD is effectively real-
time in the context of the LOFAR telescope and how with some additional
training could be adapted to work with other telescopes and future develop-
ments in radio astronomy. The work we present in this thesis demonstrates
that machine learning indeed is a valuable tool to reliably perform anomaly
detection and SHM for radio telescopes.



S A M E N VAT T I N G

Radiotelescopen worden groter en genereren steeds grotere hoeveelheden
gegevens om hun gevoeligheid en resolutie te verbeteren. De groeiende
omvang van het systeem en de resulterende complexiteit vergroten de kans
op onverwachte verstoringen, waardoor datasets met anomalieën ontstaan.
Voorbeelden van zulke verstoringen zijn storingen in de elektronica, ver-
keerd gekalibreerde waarnemingen, omgevings- en astronomische effecten
zoals bliksem en zonnevlammen, evenals problemen in dataverwerkingssys-
temen en nog veel meer. Momenteel wordt de diagnose en het verhelpen
van zulke onverwachte verstoringen uitgevoerd door menselijke operators,
die handmatig tussenproducten van gegevens inspecteren om het succes
of falen van een astronomische waarneming te bepalen. De steeds maar
groeiende gegevenssnelheden in combinatie met het gebrek aan automatis-
ering maken de inspectie van gegevenskwaliteit steeds minder haalbaar.

De exponentiële groei van gegevensproductie uit moderne instrumenten
heeft data-gestuurde technieken en machine learning aantrekkelijk gemaakt
voor astronomen en telescoopoperators. Op dit moment is onderzoek naar
machine learning gebaseerde anomaliedetectie echter voornamelijk gericht
op wetenschappelijke ontdekking in plaats van op systeemdiagnose, var-
iërend van het detecteren van ongebruikelijke morfologie van sterrenstelsels
tot het identificeren van variabele bronnen.

Telescoopoperators hebben met succes de meeste wetenschappelijke dataver-
werking geautomatiseerd, van kalibratie tot Radio Frequency Interference
(RFI) mitigatie en dedispersie. Bovendien worden voortdurend inspannin-
gen geleverd om real-time algoritmes met hoge prestaties te creëren om
de kwaliteit en betrouwbaarheid van wetenschappelijke gegevens te ver-
beteren. Tot nu toe zijn er echter geen pogingen ondernomen om systeem-
diagnose volledig te automatiseren, en door het gebrek aan ontwikkelingen
op dit gebied bestaan er geen real-time implementaties.

Dit proefschrift richt zich op het toepassen van op machine learning
gebaseerde anomaliedetectie op spectrogrammen van de LOFAR-telescoop
voor systeemdiagnose. Dit gebeurt in de verschillende hoofdstukken, waar-
bij elk hoofdstuk zich richt op een ander aspect van systeemdiagnose in
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radiotelescopen. We geven een overzicht van de gegevensverwerkingssyste-
men in LOFAR om zo een workflow voor systeemdiagnose te creëren die
effectief geïntegreerd kan worden in het instrument.

Eerst onderzoeken we hoe methoden voor representatieleren kunnen wor-
den gebruikt om laag-dimensionale projecties van radioastronomie spectro-
grammen te creëren. Hierbij bieden we een hulpmiddel voor data inspectie
waar de operator aan het stuurwiel zit voor het beheren van de gegeven-
skwaliteit in radiotelescopen. We stellen een auto-encoder architectuur voor
die afzonderlijk de magnitude- en fasecomponenten van de spectrogram-
men verwerkt. In dit hoofdstuk beschrijven we ook de uitdagingen als er
meerdere anomalieën per spectrogram zijn, evenals een eenvoudige meth-
ode om de prestaties te evalueren met gesynthetiseerde gegevens.

We constateren dat bestaande oplossingen voor anomaliedetectie niet
erg geschikt zijn voor het gebruik in radiotelescopen. Bestaande methoden
veronderstellen dat er een enkele afwijkende klasse is, terwijl we juist zowel
veelvoorkomende anomalieën als zeldzame en volledig nieuwe willen de-
tecteren. Met deze aangepaste probleemdefinitie gebruiken we de geleerde
representaties uit het vorige hoofdstuk om anomaliedetectie uit te voeren.
Dit gebeurt met behulp van dichtheid gebaseerde en reconstructiefout meth-
oden. Hier kijken we ook naar het combineren van leren onder toezicht en
onbegeleide benaderingen om zowel bekende als onbekende verstoringen
te detecteren.

Vervolgens overwegen we hoe we deze anomaliedetectie strategieën kun-
nen toepassen op RFI-detectie in de radioastronomie. Hierbij stellen we
een nieuwe formulering voor van het RFI-detectieprobleem en behalen we
hogere prestaties dan bestaande methoden. Bovendien tonen we aan dat
onze methode beter generaliseert naar nog niet eerder geziene RFI, ter-
wijl bestaande methodes dat niet kunnen. Als gevolg hiervan veronder-
stellen we dat onze aanpak beter zal generaliseren naar toekomstige gen-
eraties (verstorende ) zenders, terwijl bestaande modellen regelmatig op-
nieuw moeten worden getraind.

Tot slot stellen we de Radio Observatory Anomaly Detector (ROAD)
voor, een zelf-lerende anomaliedetectie methode. We tonen aan dat ROAD
effectief is in het detecteren van zowel bekende als onbekende anoma-
lieën met een laag aantal vals-positieven. Daarnaast introduceren we een
nieuwe dataset die speciaal is gemaakt voor de validatie van anomaliede-
tectie modellen voor systeembeheer in radiotelescopen. We laten zien dat
ROAD real-time kan opereren in de context van de LOFAR-telescoop en
ook hoe het met een beperkte hoeveelheid extra training eenvoudig kan
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worden aangepast aan andere telescopen en toekomstige ontwikkelingen
in de radioastronomie. Het werk dat we presenteren in dit proefschrift
demonstreert dat machine learning inderdaad een waardevolle techniek is
om op een betrouwbare manier anomaliedetectie en systeembeheer te im-
plementeren voor radiotelescopen.
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