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Chapter 1

Introduction

Cloud computing provides elastic and on-demand resources for customizing data
storage, processing, and communication, transforming how software applications
are developed, deployed, and managed [286]. By providing on-demand access to
a wide range of computing resources, cloud environments have made it possible
to build and run distributed applications across multiple machines and data cen-
ters, enabling better scalability and performance than traditional applications.
According to a report by Marketsandmarkets, the cloud computing market pro-
duced up to $545.8 billion in 2022, and it will increase up to $1240.9 billion in
20271. As a leading cloud provider, Microsoft Azure2 has deployed tens of mil-
lions of physical servers in thousands of data centers on five continents, running
applications and services for more than 700 million users3.

Distributed cloud applications often contain multiple components or microser-
vices that communicate with each other over a network to perform complex tasks.
With the rise of microservices architecture, applications are being broken down
into more minor, specialized services that can be developed, deployed, and scaled
independently. Many companies have delivered their core business through mi-
croservice technologies. However, this distribution introduces new challenges in
assuring the performance of applications. The performance of distributed appli-
cations can be unstable due to the complex dependencies between services and
the inherent dynamism of cloud environments, and performance anomalies such
as degraded response time caused by resource saturation may severely a↵ect the
quality of the user experience [250]. Therefore, it is crucial to perform diagnosis
and mitigate performance issues in distributed applications.

Performance diagnosis, defined as detecting abnormal performance phenom-
ena, e.g., degradation, predicting anomalies to forestall future incidents, and lo-
calizing root causes of performance anomalies, is vital for distributed applications

1https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
2https://azure.microsoft.com/en-us/
3https://www.usesignhouse.com/blog/microsoft-azure-stats

1



2 Chapter 1. Introduction

[108]. Large-scale performance data can be collected by continuously monitoring
the running status of applications and infrastructures. Based on performance
data, anomaly detection can be developed to identify abnormal behaviour, such
as sudden spikes in resource usage or slow response times and alert operators to
potential issues for preventing future incidents [107]. Additionally, performance
diagnosis should provide insight into the root cause of performance anomalies,
allowing operators to take prompt actions such as migration of services or re-
source scaling to mitigate the impact of these issues [45]. Therefore, e↵ective
performance diagnosis is critical to maintaining the reliability, availability, and
responsiveness of distributed applications and ensuring that they deliver the level
of service that users expect.

Performance diagnosis systems for distributed applications have been studied
in recent years. Ibidunmoye et al. [108] reviewed performance anomaly detec-
tion and bottleneck identification, in which they formulated fundamental research
problems, categorized detection methods, and proposed research trends and open
challenges. In recent years, Artificial Intelligence (AI)-based performance di-
agnosis systems have been popular because AI methods outperform traditional
statistical methods and adapt to large-scale data and complex scenarios [209].
AI-based performance diagnosis systems can be summarized as comprising four
main components: data collection, data preprocessing, anomaly detection, and
root cause localization [209, 250]. Data collection and preprocessing are important
for subsequent processing, while research is mainly about data quality. Research
on performance anomaly detection mainly focuses on developing models that can
accurately and e�ciently detect anomalies based on collected performance data;
statistical and Machine Learning (ML) methods are developed [108]. On the
other hand, research about root cause localization is focused on developing tech-
niques that can identify the underlying causes of performance anomalies, such as
resource-related metrics in faulty services [209]. Despite promising advancements
for performance diagnosis systems, AI-based methods face potential hazards and
may lose public trust due to poor robustness and inexplainability [266]. As a re-
sult, research in this area aims to develop performance diagnosis systems that can
proactively detect and address performance issues in distributed applications, en-
suring user satisfaction and optimal diagnosis performance, such as good accuracy
and robustness.

Despite the progress in developing AI-based performance diagnosis systems
for distributed applications, several challenges still need to be solved. From a
data perspective, there are two primary challenges. The first is the need for
more data labels, as most monitoring data does not contain labels that can be
immediately used to train ML-based models [218]. Labelling time-series data is
often manual and time-consuming, which can limit the scalability of performance
diagnosis systems [104]. The second challenge is data noise, which can signifi-
cantly influence the performance of anomaly detection methods and increase the
false-positive detection rate [211]. Monitoring data collected from a distributed
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network often contain noise, making it challenging to detect performance anoma-
lies accurately. Regarding ML methods used in AI-based performance diagnosis
systems, trustworthiness requirements to prevent potential hazards of AI models,
such as low robustness, and meet user satisfaction is necessary [128]. Specifi-
cally, several challenges must be addressed for AI-based performance diagnosis
systems. Firstly, services in distributed applications are often heterogeneous and
have di↵erent characteristics, which can result in diverse anomaly symptoms for
the same issue. Secondly, there is a trade-o↵ between detection accuracy and
robustness, as some detection methods may be highly accurate but not robust
enough to handle di↵erent performance issues [293]. Thirdly, the complex de-
pendencies between services make it di�cult to accurately model the anomaly
propagation resulting from faulty services. Finally, with the many anomalous
metrics introduced in a system, it can be challenging to identify the root cause
of a performance anomaly, leading to delays in addressing performance issues
and optimizing performance. Addressing these challenges is critical to developing
robust and e↵ective performance diagnosis systems for distributed applications.

Figure 1.1: An illustration of the performance diagnosis system

To overcome the challenges of performance diagnosis in distributed applica-
tions, this thesis aims to develop a comprehensive performance diagnosis system
that can accurately detect anomalies and localize their root causes to provide
actionable insights to operators. The proposed system will first provide real-time
monitoring and visualization tools to collect performance data, such as CPU us-
age, memory usage, and network tra�c. Then based on performance data, the
diagnosis system leverages ML techniques to detect anomalies and use causal
inference and dependency analysis to localize the root causes of performance
anomalies. Additionally, the proposed system will address the challenges of miss-
ing data labels and data noise by leveraging unsupervised learning techniques and
data cleansing algorithms to preprocess monitoring data. The system will be eval-
uated using real-world data collected from distributed applications to demonstrate
its e↵ectiveness and e�ciency in detecting and localizing performance anomalies.



4 Chapter 1. Introduction

As a result, the proposed performance diagnosis system aims to enhance the re-
liability, availability, and responsiveness of distributed applications and improve
user satisfaction. An illustration of the system is shown in Figure 1.1.

1.1 Research questions

To tackle the challenges of building a performance diagnosis system, we formulate
our main research question as:
RQ: How to e↵ectively diagnose the performance of distributed appli-
cations in cloud environments at runtime?

To answer this question, we further define the following sub-questions:
RQ1: What are the state-of-the-art technologies for achieving trust-
worthy performance diagnosis systems?

Due to its convenience, recent research has concentrated on utilizing AI tech-
nologies to develop performance diagnosis systems. However, these AI-based
methods face potential challenges and a loss of public trust due to their poor
robustness and lack of explainability. To provide developers and operators ac-
tionable guidance for distributed cloud applications, a general performance diag-
nosis system should be summarized and its trustworthiness should be achieved
with di↵erent requirements, for example, accuracy and robustness for anomaly
detection, explanation for detected anomalies. While there is a rare survey about
trustworthy performance diagnosis systems, we consider it is critical to review the
current state-of-the-art technologies for creating a performance diagnosis system
and establish requirements for developing an e↵ective trustworthy performance
diagnosis framework.
RQ2: How can a performance diagnosis framework be developed to
identify performance issues and determine root causes e↵ectively?

Firstly, an e↵ective performance diagnosis framework of distributed cloud ap-
plications requires continuous monitoring and data collection. Through monitor-
ing, a large amount of performance data can be collected and valuable insights
into the performance of applications can be gained. However, addressing noise in
the collected performance data is crucial, as it can a↵ect diagnosis results. In ad-
dition, an e↵ective performance diagnosis framework should detect anomalies in
the application’s behaviour, such as slow response times or resource bottlenecks,
and localize the root cause of these anomalies, such as CPU hog, via monitoring
data. Therefore, it is crucial to develop a performance diagnosis framework that
can keep monitoring applications and diagnose performance issues e↵ectively at
runtime.
RQ3: How to improve the accuracy and robustness of detecting per-
formance anomalies?

For performance anomaly detection, addressing the challenge of missing data
labels and data noise is crucial to improving accuracy. An e↵ective anomaly de-
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tection method should meet two main challenging requirements: high accuracy
for identifying anomalies and good robustness when application patterns change.
Research about statistical and ML methods has been developed recently. De-
veloping anomaly detection methods based on existing methods can improve the
trade-o↵ between accuracy and robustness. Furthermore, advanced deep learning-
based methods to extract multiple dimensions of information from data can be
used to improve detection performance.
RQ4: How to localize root causes of detected performance anomalies
at a fine-grained level?

To e↵ectively address the challenges of performance diagnosis systems, fine-
grained root cause localization is necessary to pinpoint the faulty service and
identify which metrics are causing performance anomalies. Root cause local-
ization provides explanation of performance anomalies and enables engineers to
quickly take corrective actions, such as scaling resources or adjusting configu-
ration parameters. Fine-grained root cause localization requires advanced tech-
niques, such as causal inference and dependency analysis, to accurately identify
the root cause of the anomaly. Improving the fine-grained root cause localization
of performance anomalies is crucial for ensuring the reliability and availability of
distributed cloud applications.

1.2 Key contributions

This thesis contributes a literature review, framework, models, and evaluations for
a performance diagnosis framework of distributed cloud applications. Specifically,
the main contributions of this thesis are:
Trustworthy Performance Diagnosis for Distributed Applications: Re-
quirements, Methods, and Challenges

In recent years, AI-based performance diagnosis systems have been gaining the
attention of both academia and industry. However, there is a lack of comprehen-
sive surveys exploring state-of-the-art trustworthy performance diagnosis systems.
While existing surveys mainly focus on general requirements of trustworthy AI
[119], specific aspects of trustworthy AI technologies [162], or technical details
of performance diagnosis frameworks [275], a survey specifically dedicated re-
quirements and state-of-the-art technologies in building trustworthy performance
diagnosis systems remains rare. To bridge the gap, we provide a survey of the
state-of-the-art trustworthy performance diagnosis systems, extracting technical
trustworthiness requirements and exploring state-of-the-art technologies to meet
these requirements in each component of a performance diagnosis system. Our
main contributions are as follows:

• We introduce research about trustworthiness requirements and extract es-
sential technical trustworthiness requirements for AI-based performance di-
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agnosis systems, including data privacy, fairness, robustness, explainability,
and human intervention.

• From data to AI models, we propose a systematic performance diagno-
sis framework and unify technical trustworthiness requirements into the
framework. We then provide a comprehensive taxonomy and approaches to
enhance the trustworthiness of AI-based performance diagnosis systems.

• We discuss the future research directions and challenges of trustworthy AI-
based performance diagnosis systems. Several key issues must be addressed,
such as a more profound and fundamental understanding of robustness and
explainability of detection models.

E↵ective Performance Diagnosis Framework for Distributed Applica-
tions

To ensure the desired service quality of a distributed application, operators
must continuously monitor its run-time status, detect performance anomalies,
and diagnose the root causes. The initial crucial step for an e↵ective performance
diagnosis framework is establishing reliable data monitoring and collection pro-
cesses. However, challenges arise when dealing with collected performance data,
such as the lack of data labels and the presence of data noise, which requires pre-
processing methods. In addition, an e↵ective performance diagnosis framework
has the challenge of accurate performance anomaly detection and root cause lo-
calization. Therefore, it is imperative to look deep into existing methods to gain
a comprehensive understanding and evaluation of them. In brief, our main con-
tributions are as follows:

• We design an integrated framework to implement performance diagnosis
e↵ectively by collecting monitoring data, utilizing metrics selection to filter
useless monitoring metrics, diverse performance anomaly detection meth-
ods, and fine-grained root cause localization.

• We implement a Decentralized Application (DApp) through automate de-
ployment. We monitor its run-time status, inject anomalies to simulate real
scenarios and collect real-time performance data for subsequent analysis.

• We evaluate the framework on the performance data collected from the
DApp and two public datasets. Results present the e↵ectiveness and per-
formance of our diagnosis system.

Performance Anomaly Detection Methods with Enhanced Accuracy
and Robustness

E↵ectively detecting run-time performance anomalies is crucial to identify ab-
normal performance behaviour and to prevent potential incidents of distributed
cloud applications. Considering fewer labels in real scenarios, we focus on weakly
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supervised and unsupervised detection methods. We identify high accuracy and
good robustness as the main challenging requirements for performance anomaly
detection and provide two detection models. We develop an Ensemble Learning-
Based Detection (ELBD) framework that incorporates classic detection methods
rather than enhances a single model. In addition, we develop a deep learning-
based method for unsupervised detection methods and evaluate its detection per-
formance on accuracy and robustness. The contributions mainly include:

• Based on base detection methods, we propose the ELBD framework, includ-
ing three classic linear ensemble methods (maximum, average, and weighted
average) and a deep ensemble method.

• We propose a metric to evaluate the detection performance of the ELBD
framework in terms of accuracy, robustness, and multi-step prediction and
conduct experiments on di↵erent datasets for performance evaluation.

• We develop a deep learning-based unsupervised detection method that out-
performs the base detection methods, as demonstrated in our comparison
experiments.

Root Cause Localization Framework with Gradient-based Causal In-
ference

Root cause localization aims to accurately identify the underlying causes of
performance anomalies, such as resource-related metrics in faulty services. In this
research, we propose the CausalRCA framework, which includes a gradient-based
causal structure learning model and a root cause inference model to build anomaly
propagation paths and perform root cause analysis e↵ectively. We evaluate the
localization performance of CausalRCA on the Sock Shop microservice bench-
mark. Our experimental results show that CausalRCA has improved localization
accuracy. Our contributions can be summarized below:

• We propose an automated, fine-grained root cause localization framework
named CausalRCA, which analyzes monitoring data and localizes faulty
services and system resources in real time.

• We provide a gradient-based causal structure learning method in Causal-
RCA, which can automatically capture linear and non-linear causal relations
between monitoring metrics.

• We conduct coarse- and fine-grained experiments to evaluate the localiza-
tion performance of CausalRCA and demonstrate that the proposed frame-
work has the best localization accuracy compared with baseline methods.
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1.3 Sources of chapters

We provide a quick overview of papers on which each chapter is based.

• Chapter 2 is based on the following paper:

– Ruyue Xin, Jingye Wang, Peng Chen, and Zhiming Zhao. ”Trustwor-
thy AI-based Performance Diagnosis Systems for Cloud Applications:
A Review.” ACM computing survey (under revision).

• Chapter 3 is based on the following paper:

– Ruyue Xin, Jardenna Mohazzab, Zeshun Shi, and Zhiming Zhao.
”CBProf: Customisable Blockchain-as-a-Service Performance Profiler
in Cloud Environments.” In Blockchain–ICBC 2021: 4th International
Conference, Held as Part of the Services Conference Federation, SCF
2021, Virtual Event, December 10–14, 2021, Proceedings, pp. 131-139.
Cham: Springer International Publishing, 2022.

– Ruyue Xin, Hongyun Liu, Peng Chen, Paola Grosso, and Zhiming
Zhao. ”FIRED: a fine-grained robust performance diagnosis frame-
work for cloud applications.” arXiv preprint arXiv:2209.01970 (2022).

• Chapter 4 is based on the following paper:

– Ruyue Xin, Hongyun Liu, Peng Chen, and Zhiming Zhao. ”Robust
and accurate performance anomaly detection and prediction for cloud
applications: a novel ensemble learning-based framework.” Journal of
Cloud Computing 12, no. 1 (2023): 1-16.

– Yujia Song, Ruyue Xin, Peng Chen, Rui Zhang, Juan Chen, and
Zhiming Zhao. ”Identifying performance anomalies in fluctuating cloud
environments: a robust correlative-GNN-based explainable approach.”
Future Generation Computer Systems (2023). (as co-first author)

• Chapter 5 is based on the following paper:

– Ruyue Xin, Peng Chen, and Zhiming Zhao. ”Causalrca: Causal
inference based precise fine-grained root cause localization for mi-
croservice applications.” Journal of Systems and Software 203 (2023):
111724.

Code repositories

The source codes and data are accessible through these repositories.

• ELBD framework: https://github.com/AXinx/ELBD.git
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• CGNN-MHSA-ARmethod: https://github.com/AXinx/CGNN-MHSA-AR.git

• CausalRCA framework: https://github.com/AXinx/CausalRCA code.git

1.4 Thesis overview

Figure 1.2: Thesis overview (inluding chapters, research questions, and contri-
butions)

To provide an overview of our thesis, we present Figure 1.2, which depicts the
relationships between chapters, research questions, and the key contributions of
each chapter. The thesis comprises seven chapters in total. Chapter 1 introduces
the thesis’s background, research questions, contributions, and structure. Chap-
ter 2 reviews technical requirements, state-of-the-art research and approaches for
each component, and research directions and challenges that need further explo-
ration to achieve building trustworthy performance diagnosis systems in RQ1.
Based on the review of requirements and technologies for performance diagnosis
systems, we propose a performance diagnosis framework in Chapter 3 in response
to e↵ectively pre-process data, identify performance anomalies, and determine
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root causes in RQ2. The framework works with a monitoring tool, data prepro-
cessing technologies, performance anomaly detection and root cause localization
methods. We then focus on improving the performance of anomaly detection
and root cause localization in the framework in Chapters 4 and 5. In Chapter
4, we concentrate on the improvement of accuracy and robustness for anomaly
detection methods related to RQ3. We provide an ensemble-based method, a
weakly-supervised approach that integrates existing detection methods based on
ensemble learning and achieves a trade-o↵ between improving detection accu-
racy and robustness. Additionally, we develop a deep learning-based unsuper-
vised method to improve detection accuracy. Chapter 5 focuses on fine-grained
root cause localization for detected performance anomalies in response to RQ4.
We provide a root cause localization framework, including gradient-based causal
structure learning and root cause inference methods. We evaluate the framework
using performance data collected from a benchmark microservice application, and
the results show that the framework outperforms existing methods. After con-
ducting these research works, Chapter 6 summarizes our findings and presents
the conclusion that an e↵ective performance diagnosis framework can be realized
through appropriate data preprocessing, accurate and robust anomaly detection,
and fine-grained root cause localization for detected performance anomalies. Fi-
nally, Chapter 7 provides an overview of future research directions.



Chapter 2

Trustworthy Performance Diagnosis for
Distributed Applications: Requirements,
Technologies, and Challenges

Distributed cloud applications are developing rapidly because cloud environments
provide elastic and on-demand resources for customizing data storage, process-
ing, and communication. The performance of distributed applications can be
unstable due to the inherent dynamism of clouds. Performance anomalies, such
as degraded response time caused by resource saturation, may severely a↵ect the
quality of the user experience [250]. An e↵ective performance diagnosis system
is often developed based on AI approaches to detect performance anomalies and
identify potential root causes. At the same time, AI methods have potential
hazards that could degrade the user experience and trust. For example, issues
with data privacy may compromise the security of AI models, and low robust-
ness can be hard to apply in complex cloud environments. Therefore, defining
the requirements for building a trustworthy AI-based performance diagnosis sys-
tem has become essential. This chapter systematically overviews trustworthi-
ness requirements in AI-based performance diagnosis systems. We first introduce
trustworthiness requirements and extract five essential aspects from a technical
perspective, including data privacy, fairness, robustness, explainability, and hu-
man intervention. We then unify these requirements into a general performance
diagnosis framework, ranging from data collection to model development. Next,
we comprehensively o↵er related work for each component and concrete actions to
improve trustworthiness in the framework. Finally, we identify possible research
directions and challenges for the future development of trustworthy AI-based per-
formance diagnosis systems.

This chapter is based on:
• Ruyue Xin, Jingye Wang, Peng Chen, and Zhiming Zhao. “Trustworthy

AI-based Performance Diagnosis Systems for Cloud Applications: A Re-
view.” ACM computing survey (under revision).

11
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2.1 Introduction

Performance diagnosis, defined as detecting abnormal performance phenomena,
e.g., degradation, predicting anomalies to forestall future incidents, and localizing
causes of performance anomalies, is vital for distributed cloud applications. In
recent years, research about AI-based performance diagnosis systems has been
popular because AI models can outperform traditional diagnosis methods and
adapt to large-scale data and complex cloud environments [108]. However, it is
worth noting that AI-based performance diagnosis systems need to be trustworthy
because some potential hazards of AI models could degrade the user experience
and undermine trustworthiness. For example, performance diagnosis systems
with low robustness are di�cult to apply to large-scale distributed applications
with complex data patterns.

AI technologies bring great convenience to human society, but have many
potential hazards and are losing the public’s trust, such as low data privacy,
poor robustness, and inexplicability. The Equifax [17] data breach made the
personal data of millions of customers accessible, severely compromising user
privacy. Guidelines for trustworthy AI have been proposed recently to deal with
the above problems. The European Union (EU) published three general ethics
guidelines and seven requirements for trustworthy AI [51]. In addition, the EU
released and applied the General Data Protection Regulation (GDPR) [183] to
protect data privacy. The International Organization for Standardization (ISO)
[1] also presented approaches and requirements to establish trust in AI systems.
Research on trustworthy AI provides approaches to meet these requirements. For
instance, Marques et al. [162] mainly focus on explainability and summarize
current developments of the formal Explainable AI (XAI). Existing explorations
of trustworthy AI demonstrate the current necessity to develop AI-based systems
with trustworthiness requirements.

For a performance diagnosis system, we can consider improving its trustwor-
thiness with di↵erent requirements (e.g., fairness) across multiple components in
the system, e.g., data collection, anomaly detection, and root cause localization.
In addition, the trustworthiness of the entire system, for example, human in-
tervention to enhance diagnosis performance, should be assured. Some research
about trustworthy diagnosis systems has been developed. Yu et al. [259] propose
a trustworthy fault diagnosis system that integrates artificial neural network and
rule-based reasoning to meet three trustworthiness requirements: explanation,
accountability, and fairness. Zhang et al. [275] introduce a federated transfer
learning method to ensure data privacy and increase model robustness. Nguyen
et al. [170] propose a gradient-based explainable Variational Autoencoder (VAE)
for anomaly detection, and it achieves explainability by analyzing gradients com-
puted of each feature. The above research shows that existing trustworthy diagno-
sis systems studies focus on di↵erent requirements and aspects of a system, which
inspires us to summarize them and provide guidelines for building a trustworthy
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AI-based performance diagnosis system.

2.1.1 Related survey

Several surveys have discussed trustworthiness requirements for AI systems from
di↵erent aspects. Kaur et al.[119] provide a complete overview of trustworthy AI,
including analyzing all seven trustworthiness requirements, reviewing di↵erent
approaches that can help mitigate AI risks to increase the trust of systems, and
discussing existing strategies for validating and verifying systems and the current
standardization e↵orts for trustworthy AI. Li et al.[128] provide a comprehensive
guide for building trustworthy AI systems, ranging from data acquisition to model
development, system development, deployment, and continuous monitoring and
governance. Liu et al.[147] present a comprehensive appraisal of trustworthy AI
from a computational perspective. They focus on six crucial dimensions, review
related technologies according to a taxonomy, and summarize their applications
in real-world systems. Moreover, Cho et al.[47] propose a system-level trustwor-
thiness metric framework called STRAM that accommodates four submatrices
(security, trust, resilience, and agility) to measure the quality of computer-based
systems.

Besides surveys about the trustworthiness requirements of AI systems, some
researchers provide overviews of specific requirements. For example, Mehrabi
et al.[164] create a taxonomy for fairness definitions that ML researchers have
defined to avoid bias in AI systems. This paper also reviews state-of-the-art
methods that researchers have tried to address unfair outcomes of ML methods.
Harley et al.[92] discuss integrity, the cornerstone of information security, to pro-
mote information trustworthiness through formal information flow models, the
data modification view, and the relationship to data quality.

There are survey works related to performance diagnosis. Duarte et al.[65]
provide a survey about comparison-based diagnosis in diverse, complex computer
systems, and clarify and uncover the potential of this technology. A comparison-
based diagnosis is a realistic approach to detecting faulty units based on the
outputs of tasks executed by system units. Ibidunmoye et al.[108] provide an
overview of performance anomaly detection and bottleneck identification research
in computing systems. They categorize existing solutions based on multiple fac-
tors, such as the detection goals, nature of applications and systems, system
observability, and detection methods. Soldani et al.[209] provide a structured
overview and qualitative analysis of currently available techniques for anomaly
detection and root cause analysis in modern multi-service applications.

Existing surveys focus on general requirements of trustworthy AI, specific as-
pects of trustworthy AI technologies, or technical details of performance diagnosis
frameworks. However, there is rarely a survey about trustworthy performance di-
agnosis systems. To provide cloud application developers and operators with
actionable guidance, extracting trustworthiness requirements for performance di-



14 Chapter 2. Literature Review on Trustworthy Performance Diagnosis

agnosis systems from a systems perspective is necessary to build reliable perfor-
mance diagnosis systems.

2.1.2 Research questions

To fill the gap of existing survey works, we define our main research questions as:
what are the state-of-the-art technologies for achieving trustworthy performance
diagnosis systems? To answer it, three sub-questions are proposed:

• What are trustworthiness requirements for di↵erent components of an AI-
based performance diagnosis system?

• What are the state-of-the-art technologies to achieve these trustworthiness
requirements?

• What are the future research directions and challenges of trustworthy AI-
based performance diagnosis systems?

2.1.3 Methodology

Our objective is to provide technological solutions that meet the trustworthi-
ness requirements of performance diagnosis systems. To achieve this, we con-
duct a comprehensive survey from 2012 and later based on the main scientific
databases and publishers: Google Scholar, ACM Digital Library, Ieee Xlore, El-
sevier, Springer, and arXiv. We use di↵erent keywords and filter papers mainly
according to relevance. For performance diagnosis systems, we first search with
the keywords ”performance diagnosis systems” or ”performance diagnosis + dis-
tributed applications” to get an overview of performance diagnosis systems. We
summarize that a general performance diagnosis system includes four compo-
nents. Then we organize surveyed research in each component based on data
types. We identify three main data types in data collection and review cor-
responding data preprocessing methods, anomaly detection methods, and root
cause localization methods tailored to each data type. Specifically, in the case
of anomaly detection methods, because the feature matrix can be obtained after
data preprocessing, we categorize the detection techniques based on the availabil-
ity of data labels.

To identify relevant technologies that meet trustworthiness requirements for
each component, we begin by conducting searches using specific keywords. For
instance, we use ”robustness technology + AI systems,” to gather research on
robustness technologies in AI systems. We can classify the common technolo-
gies highlighted in these studies into their respective components by analyzing
and summarising them. For example, techniques like data augmentation, which
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enhances robustness, are typically found in the data preprocessing stage. In con-
trast, ensemble learning methods, known for their robustness, are predominantly
employed in the design of detection models.

The chapter is summarized as follows. Section 2.2 presents an overview of
trustworthy AI and performance diagnosis systems. Section 2.3 presents a sys-
tematic survey of trustworthiness requirements and approaches in each component
of performance diagnosis systems. Section 2.4 points future research directions
and existing challenges. Finally, Section 2.5 concludes this chapter.

2.2 Background

2.2.1 Trustworthy AI

For trustworthy AI, many organizations have identified several factors and sum-
marized the principles of AI trustworthiness. The EU published ethics guidelines
and general requirements [51], and released the GDPR [183] to protect data pri-
vacy. The ISO has presented di↵erent approaches to establish trust in AI systems
using the properties of fairness, transparency, accountability, and controllability
[1]. The China Academy of Information and Communications Technology and
JD Explore Academy published a trustworthy AI white paper. They proposed
that current trustworthy AI principles should be converged on five aspects: trans-
parency, security, fairness, accountability, and privacy protection [28]. The US
Government Accountability O�ce provided a framework for the accountability
of AI [173]. The Defense Advanced Research Project Agency launched the XAI
program, whose motive is to make these AI systems explainable [86].

Research about trustworthy AI has been developed in the academy in re-
cent years. Kaur et al. [119] discuss the need, proposed methods, and technical
challenges of five trustworthy AI requirements: fairness, explainability, account-
ability, privacy, and acceptance. Li et al. [128] represent the technical challenges
of trustworthy AI in five aspects: robustness, explainability, transparency, re-
producibility, and generalization, and ethical requirements in terms of fairness,
privacy, and accountability. Liu et al. [147] propose that trustworthy AI is ex-
pected to show the properties of accuracy, robustness, and explainability from a
technical perspective. Kumar et al. [125] mainly focus on the ethics of algorithms
with prevention of harm, respect for human autonomy, fairness, and explainabil-
ity. The ethics of data includes five principles: human-centered, individual data
control, transparency, accountability, and equality. Marques et al. [162] focus on
explainability and summarize the recent developments and existing challenges in
the formal XAI. Toreini et al. [226] propose classifying trustworthy technologies
in fairness, explainability, auditability, safety, and discussing if and how these
support the required qualities.

Research about trustworthy AI usually focuses on di↵erent requirements,
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Figure 2.1: Trustworthiness requirements for AI systems

while all of them are included in EU requirements. We present the seven key
requirements published by EU [51] in Figure 2.1(a). According to above research
[1, 28, 86, 119, 125, 128, 147, 162, 173, 226], we extract keywords of each require-
ment and classify them into technical requirements and ethical requirements, as
shown in Figure 2.1(b). Technical requirements describe that trustworthy can
be ensured with technical methods in the design, development, and use phase of
an AI system [51]. Ethical requirements are non-technical and raise the demand
for appropriate management strategies of AI systems considering that e↵orts of
various roles and steps need to be aligned [128]. We summarize that the technical
requirements for an AI system encompass data privacy, fairness, robustness, and
explainability. Ethical requirements involve aspects such as human intervention,
accountability, and environmental well-being. While human intervention is typi-
cally considered as an ethical requirement, some technologies in AI systems can
perform better with human intervention. Therefore, this chapter will mainly fo-
cus on those technical requirements for improving the trustworthiness of AI-based
performance diagnosis systems.

Technical requirements overview

A general overview of technical requirements is represented below.
Data privacy. Generally, data privacy protection refers to prevent the unau-

thorized use of data that can identify a person directly or indirectly [119]. AI-
based performance diagnosis systems work based on a vast amount of collected
data, which require data privacy protects data from unauthorized access. In ad-
dition, private organizations, governments, or hackers could misuse data, leading
to harmful consequences. For example, the leak of monitoring data can give in-
formation on application status to other companies. As a result, it is vital to
protect the privacy of the data to both avoid harmful consequences and promise
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the development of applications. To address growing concerns about data privacy,
existing protection techniques should cover the entire lifecycle of AI systems, for
example, protect data information and develop privacy-preserving models [128].

Fairness. AI systems frequently manifest bias and discrimination through
unfair treatment of di↵erent groups of people based on their protected informa-
tion (e.g., gender, race, and ethnicity). For example, [8] points out that a risk
assessment tool used by the judicial system to predict future criminals was biased
against black people. These examples show that bias can mislead black-box AI
systems and cause harm or unfairness. Therefore, in AI systems, fairness refers
to avoiding or mitigating the e↵ects of bias and discrimination. When developing
and applying AI-based performance diagnosis systems, biases can take di↵erent
forms, such as data and model bias. Data bias mainly exists because of im-
balanced data and insu�cient labeled data. For example, the imbalanced data
distribution makes an anomaly classifier biased toward the majority class (i.e.,
normal data) [219]. Unfair models exist due to the potentially high correlation
between minority groups and outliers, which will produce injustice outcomes by
overly flagging the samples from the minority groups [266].

Robustness. The robustness of an algorithm or system refers to its ability
to handle execution errors, erroneous inputs, or unknown data [128]. A lack of
robustness might cause a system to behave in an unintended or harmful manner,
a↵ecting its trustworthiness. For performance diagnosis systems, robustness can
be categorized at the levels of data and models, respectively. Distributed ap-
plications are deployed in complicated environments, which means that various
data distributions and features exist in collected performance data. Robustness
against distribution shifts has been a common problem in various applications
[34]. Furthermore, AI models are widely acknowledged to be vulnerable to mali-
cious attacks. Among the various forms of attacks, the adversarial attack and de-
fenses against it have raised concerns in academia and industry. For performance
diagnosis systems, model robustness requires less sensitivity to small changes in
the underlying data distribution and can adapt to di↵erent scenarios [73]. In ad-
dition, defense approaches for adversarial attacks can be considered to gurantee
model robustness [222, 267].

Explainability. For AI models, explainability is a fundamental factor in de-
termining whether they can be trusted since it addresses how AI models make
decisions. The motivation for the explainability of AI comes from various aspects.
From the perspective of scientific research, it is essential to understand all the
intrinsic mechanisms of the data, parameters, procedures, and outcomes in an AI
system. The mechanisms also fundamentally determine AI trustworthiness. Ex-
plainable AI can be realized through data and models. From a data perspective,
selecting useful features is helpful for subsequent model interpretation. Form a
model perspective, designing a series of fully or partially explainable models can
be considered, such as K-Nearest Neighbor (KNN) [180]. In addition, analyz-
ing model inputs, intermediate results, and outputs to find important features is
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helpful for model explainability. For example, for deep learning models like the
Convolutional Neural Network (CNN), the inspection of intermediate features is
a widely used means of explaining model behavior [115].

Human intervention. In AI systems, human intervention refers to human
participation in the decision-making of AI models to improve their performance.
For performance diagnosis systems, data labeling can e↵ectively improve diag-
nosis performance, and manual data labeling is the most primitive and accurate
method. In addition, integrating human feedback to improve model results has
been studied. For example, an analyst can provide direct feedback to an unsu-
pervised anomaly detector to improve detection accuracy [206].

2.2.2 Performance diagnosis system

The performance of distributed cloud applications, which refers to their ability to
successfully complete tasks, is of great importance [63, 224]. Performance man-
agement involves monitoring and measuring relevant performance data of appli-
cations and infrastructures. It also encompasses the analysis of the data, as well
as the detection of performance anomalies and localizing root causes. Table 2.1
provides surveyed papers of performance diagnosis systems for distributed cloud
applications. Based on these papers, we summarize that a general performance
diagnosis system includes four components: data collection, data preprocessing,
anomaly detection, and root cause localization. In data collection, there are di↵er-
ent types of performance data. Free-text log data is collected chiefly. Time-series
data, especially monitoring metrics, is also commonly used. In addition, trace
data is being explored for performance diagnosis in distributed applications. For
data preprocessing, di↵erent methods are developed based on data types. For
example, a log parser has been developed to extract information from log data,
and feature extraction and feature selection methods are mostly used. Existing
performance diagnosis research mainly focuses on anomaly detection and root
cause localization. Anomaly detection aims to find abnormal patterns that do
not meet the estimated behavior during the operation of the system. Root cause
localization is to identify the root causes of an anomaly after it occurs.



2.2. Background 19
T
ab

le
2.
1:

A
I-
b
as
ed

p
er
fo
rm

an
ce

d
ia
gn

os
is
sy
st
em

s

R
ef

D
at
a
co
ll
ec
ti
on

P
re
p
ro
ce
ss
in
g

D
ia
gn

os
is
m
od

u
le

A
n
om

al
y
d
et
ec
ti
on

R
oo

t
ca
u
se

lo
ca
li
za
ti
on

[6
3]

T
ex
t
(l
og
)

lo
g
p
ar
se
r

D
ee
p
le
ar
n
in
g
(L
S
T
M
)
an

d
cl
as
si
c
m
in
in
g

(d
en
si
ty

cl
u
st
er
in
g)

ap
p
ro
ac
h
es

fo
r
d
et
ec
-

ti
on

[2
68
]

T
ex
t
(l
og
)

L
og

em
b
ed
d
in
g

K
N
N
,
N
ai
ve

B
ay
es
,
N
eu
ra
l
N
et
w
or
ks
,
an

d
R
an

d
om

F
or
es
ts

cl
as
si
fi
ca
ti
on

[4
4]

T
ex
t
(l
og
)

L
og

p
ar
se

an
d
em

-
b
ed
d
in
g

G
ra
p
h
A
tt
en
ti
on

N
et
w
or
k
(u
n
su
p
er
vi
se
d
)

R
an

k
b
as
ed

on
d
is
ta
n
ce

[1
32
]

T
ex
t
(l
og
)

L
og

p
ar
se
r

U
n
ifi
ed

at
te
nt
io
n
b
as
ed

B
iL
S
T
M

m
od

el
fo
r

an
om

al
y
d
et
ec
ti
on

[7
5]

S
eq
u
en
ce

(t
ra
ce
)

F
ea
tu
re

se
le
ct
io
n

M
u
lt
i-
la
ye
r
B
iL
S
T
M

to
id
en
ti
fy

ta
sk

an
d

jo
b
fa
il
u
re
s
in

th
e
cl
ou

d
[2
2]

S
eq
u
en
ce

(t
ra
ce
)

L
og

p
ar
se
r

M
as
ke
d
sp
an

p
re
d
ic
ti
on

b
as
ed

on
en
co
d
er
-

d
ec
od

er
st
ru
ct
u
re

[1
35
]

S
eq
u
en
ce

(t
ra
ce
)

F
ea
tu
re

se
le
ct
io
n

C
al
cu
la
te

an
om

al
y
se
ve
ri
ty

of
tr
ac
es

C
al
cu
la
te

su
sp
ic
io
u
s
sc
or
es

of
se
rv
ic
es

[3
9]

T
im

e
se
ri
es

(m
et
ri
cs
)

D
at
a
n
or
m
al
iz
at
io
n

an
d

w
ei
gh

t
m
u
lt
i-

p
li
ca
ti
on

M
u
lt
i-
cl
as
si
fi
ca
ti
on

:
S
N
N

an
d
S
V
M

[2
18
]

T
im

e
se
ri
es

(m
et
ri
cs
)

D
at
a

st
an

d
ar
d
iz
a-

ti
on

an
d
p
ar
ti
ti
on

O
m
n
iA

n
om

al
y
(G

R
U
,V

A
E
an

d
P
la
n
ar

N
F
)

[1
59
]

T
im

e
se
ri
es

(m
et
ri
cs
)

M
et
ri
c
se
le
ct
io
n

G
ra
p
h

co
n
st
ru
ct
io
n

w
it
h

P
C

an
d
ra
n
d
om

w
al
k

[4
1]

T
im

e
se
ri
es

(m
et
ri
cs
)

M
et
ri
c
se
le
ct
io
n

C
U
S
U
M

to
d
et
ec
t
ch
an

ge
p
oi
nt
s

B
u
il
d

ca
u
sa
li
ty

gr
ap

h
an

d
ca
u
sa
l
in
fe
re
n
ce



20 Chapter 2. Literature Review on Trustworthy Performance Diagnosis

2.3 Requirements and technologies for trustwor-
thy diagnosis systems

Based on our review of trustworthy AI and performance diagnosis systems, we
unify the five technical trustworthiness requirements into performance diagno-
sis systems, as shown in Figure 2.2. Fairness is important for data collection,
considering the imbalance issue in performance data. Data preprocessing can
promise the robustness and explainability of diagnosis systems. For anomaly de-
tection, fairness, robustness, and explainability must be satisfied when developing
detection models. Research about robustness and explainability in root cause lo-
calization has been developed. Data runs through the entire system, meaning
data privacy needs to be guaranteed throughout the system. Moreover, human
intervention to improve diagnosis outcomes can be considered. We will introduce
the diagnosis system and these trustworthiness requirements in detail next.

Figure 2.2: trustworthiness requirements for a diagnosis system

2.3.1 Data collection

In performance diagnosis systems, collecting data for training models is the pri-
mary step in the diagnosis pipeline. We will first introduce di↵erent types of
collected performance data. Then we will provide research on fairness for data
collection.
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Performance data

Performance data can be collected with monitoring tools for a running applica-
tion deployed in cloud environments. Performance data has multiple forms and
types and includes information that can reflect the application’s health status.
Performance data can be classified into three categories based on data types, log
data, trace data, and monitoring metrics [216].

Log data is usually unstructured and free-text. Figure 2.3(a) shows an ex-
ample of log data from the HDFS logs on the Amazon EC2 platform [253]. Each
line printed on the system console is a log message. Each log message consists
of timestamps, a constant part (log event), and a variable part (log parameter).
The log event comprises fixed text strings and is a template for a log message.
The log parameter records system attributes, e.g., URL, file name, or IP address.
A log sequence consists of a sequence of log events that records the execution flow
of a specific task. Log events from the same log sequence share the same task ID,
which can be used to link the events chronologically. Log events can be acquired
from log messages through log parsing, a preprocessing method for log data.

Trace data is graph-like abstractions, as shown in Figure 2.3(b), containing
information for understanding the execution workflow and performance of dis-
tributed applications. It consists of spans and traces, where each span represents
a specific operation within a service, and a trace represents the execution process
of an external request. Spans record details such as start time, end time, ser-
vice name, HTTP path, and function in remote procedure calls [22], while traces
provide a higher-level view of the interactions and dependencies between services
[87]. Analyzing trace data enables operators to gain insights into service inter-
actions, pinpoint where failures occur and root causes. To facilitate analysis and
reduce the complexity of trace data, preprocessing steps, same with log parsing
methods, can be employed to transform raw spans into a structured format [22].

Monitoring metrics are time-series data, as shown in Figure 2.3(c), and can
be classified into service- and resource-level data [108]. Service-level data includes
Key Performance Indicator (KPI) like latency and throughput. Latency repre-
sents the time taken for an operation to complete, while throughput measures
the rate of work performed, such as the number of user requests completed in a
given time interval [108]. Resource-level data captures the current capacity and
utilization of infrastructures, including CPU, memory, disk, and network [84].
Resource capacity refers to the storage size or processing strength, while resource
utilization measures the amount of capacity used compared to the available ca-
pacity. For example, CPU usage reflects the time the CPU is busy executing
instructions, memory utilization tracks the storage consumed by a process or ap-
plication, and network utilization quantifies the ratio of transmitted packets to
the full transmission capacity of a network link in a given time interval.

In conclusion, performance data includes log data, trace data, and monitoring
metrics, as shown in Figure 2.3. Log data records which actions are executed by
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Figure 2.3: Performance data: (a) log data, (b) trace data, (c) monitoring
metrics.

the application at runtime. Trace data is a graph-like abstraction built on logs
that encode information for the multiple services serving a particular user request
[22]. Finally, monitoring metrics are time-series data representing the utilization
of the available resources and the status of the infrastructure, typically regarding
CPU, memory, disk, network, throughput, and service latency. Generally, moni-
toring metrics and log data focus on a service or resource level. Trace data relates
to the interactions between the di↵erent components within a distributed cloud
application.

trustworthiness requirements and methods

Performance data collected from distributed applications is important for training
models of anomaly detection and root cause localization. However, collected data
is usually recognized as a common source of bias for AI systems, and it may
a↵ect the results of AI models in a wrong way, e.g., missing data labels can cause
poor accuracy of anomaly detection models. Therefore, when using AI models to
make critical performance diagnosis, fairness related to data quality is an essential
requirement for trustworthy data collection.

Fairness. In performance diagnosis systems, the bias of data collection
mainly comes from two aspects: imbalanced data and missing labels. Imbal-
anced data means that the number of anomalies is minimal compared to normal
records in the training dataset of detection models. It is a common situation when
collecting performance data because distributed applications run normally most
of the time. However, in diagnosis systems, imbalanced data significantly impacts
the outputs of anomaly detection methods because most of the data being learned
by detection methods is normal. This situation will lead to the suboptimal perfor-
mance of these methods when detecting anomalies [217]. Furthermore, collected
performance data usually does not contain labels that can be immediately used
for training AI models, and labeling data is often cumbersome [218]. Therefore,
unsupervised learning methods are desirable in performance diagnosis systems,
and more research is focusing on this area. However, because supervised learning
methods have their advantages in diagnosis performance, it is still meaningful
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to manually annotate labels or explore methods for automated labeling. At the
same time, fair data annotation is necessary to ensure label quality and avoid
mislabeling and missing labels.

The corresponding bias mitigation techniques for the two biases in data col-
lection include data sampling and data annotation. Data sampling methods [54]
alleviate the class imbalance by adjusting the dataset, and they can be further cat-
egorized into two types: undersampling and oversampling [256]. Undersampling
removes the majority class in samples from the data, so the degree of imbalance
can be adjusted. The mainstream undersampling methods are random under-
sampling and informed undersampling. Random undersampling removes a set
of majority samples from the original data in a random manner [94]. Informed
undersampling is to adjust imbalanced data distribution with some mechanisms
or assemble training classifiers [149]. In addition, there are other methods for
undersampling, for example, cluster-based methods to replace the original ma-
jority with new samples [277], and the Tomek Link method pairs samples that
are close to each other but have di↵erent classes [225]. Oversampling duplicates
or generates minority samples to compensate for the lack of minority samples.
The mainstream oversampling methods include random oversampling and syn-
thetic oversampling. Random oversampling randomly replicates a set of minority
samples from the original data [163]. Synthetic oversampling generates synthetic
minority samples using the existing samples. SMOTE [38] and MWMOTE [14]
are two representative synthetic oversampling methods.

Data annotation is especially crucial for anomaly detection because anomaly
data is the minority of collected performance data. Data annotation has three
mainstream methods: manual, crowdsourcing, and active learning [130]. In or-
der to avoid human bias creeping into annotated data, experts must be carefully
chosen for manual labelling [128]. Crowdsourcing is an innovative way for data
annotation, and it aims to harness workers’ knowledge to process machine-hard
tasks [33]. In crowdsourcing, requesters split complex tasks into micro-tasks and
publish them on crowdsourcing platforms like Amazon Mechanical Turk1. The
employed workers answer the questions while getting monetary rewards. Task as-
signment [262, 284], and truth inference [12, 283] are crucial problems for labeling
anomalies and root causes in diagnosis systems. In recent years, Active Learning
(AL) has been developed to solve artificial intelligence tasks using both machine
and human labor [269]. An AL method works by manually labeling a small subset
of objects in a dataset and using the labeled data to train a model first. Then
it uses a trained model to classify unlabeled data and selects samples with high
uncertainties to be labeled manually again. The AL method will iterate these
processes until high-quality data labels are obtained. Statistical AL methods and
their variants are the most popular [20, 50]. At the same time, deep AL methods
have been developing rapidly in recent years, and a comprehensive survey can be

1https://www.mturk.com/
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found in [185].

Figure 2.4: Trustworthiness requirements in data collection component

In conclusion, fairness emerges as the primary trustworthiness requirement
for the data collection component. To address this requirement, it is crucial to
tackle two sources of bias: imbalanced data and missing labels. Upon reviewing
literature, we summarize two key solutions: data sampling and data annotation,
as shown in Figure 2.4. These approaches aim to mitigate the impact of imbal-
anced data by adjusting class distributions and address the issue of missing labels
through appropriate annotation techniques. By implementing these approaches,
we can enhance the fairness of the data collection process and promote a more
equitable foundation for subsequent analysis and modeling.

2.3.2 Data preprocessing

Data preprocessing aims to enhance data quality and extract relevant information
to improve diagnosis performance, including detection and localization precision.
Data preprocessing in diagnosis systems includes several operations, which will
be introduced in this section. In addition, in detail, trustworthiness requirements
for data preprocessing and related research will be provided.

Data preprocessing methods

In performance diagnosis systems, data preprocessing methods should be appro-
priate for the collected performance data. We provide several useful data pre-
processing methods in performance diagnosis systems based on data types, which
will be introduced in detail.

Log parsing. As mentioned in 2.3.1, raw log messages and trace data con-
tain much specific information. For example, log messages have the IP address,
file name, etc., and trace data include service names, HTTP paths, etc. At the
same time, they are all unstructured data and require log parsing methods [22].
Log parsing to parse each raw log message to extract its log event and parame-
ters has been developed. For example, in Figure 2.3(a), the raw log message is
parsed into the log event “Receiving block * src: * dest: *”, and there are three
di↵erent log parameters represented by * in this message. Some research of log
parsers only focuses on extracting log events [153, 253]. Yu et al. [263] simplify
logs by substituting timestamps with numbers at the beginning of logs, removing
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logging levels, replacing identifiers such as IPs, URLs, etc., with simple text, and
shortening text in logs. Zhang et al. [273] provide a general log parser approach
by learning regular patterns from heterogeneous logs. Log parsing is one of the
early steps in log data analysis. Traditional log parsing methods can not extract
information accurately [95, 291]. As a result, log parser methods extracting more
information for analysis are developed. Du et al. [63] maintains a vector of pa-
rameter values, which is used by subsequent training along with the log entry,
that contains the elapsed time between a log entry and its predecessor. In addi-
tion, ML methods to extract text information from logs are applied. Zhang et al.
[276] extract the semantic information of log events and transform each log event
into a fixed-dimension vector. Huang et al. [102] design a log sequence encoder
and a parameter value encoder to obtain their representations correspondingly.

Time-series data processing. Collected monitoring metrics can be seen as
multivariate time-series data, providing valuable insights into the health status of
the application [106]. To prepare this data for subsequent modeling, various data
preprocessing methods can be employed from temporal and feature dimensions.
In the temporal dimension, preprocessing methods to transform the time-series
data into meaningful sequence data fragments with classification labels are de-
veloped [48]. For instance, specific time windows can be identified as abnormal
data, with features such as average, maximum, and minimum values retained.
In the feature dimension, techniques like feature selection and extraction are ap-
plied to reduce noise and feature dimensions. Feature selection methods (e.g.,
filter [193], wrapper [67], embedded [155]) aim to choose a subset of relevant fea-
tures [37]. Feature extraction techniques, such as Principal Components Analysis
(PCA) [254] and linear discriminant analysis [239] generate new feature subsets
from existing combinations.

Other methods. Except for the above processing for collected performance
data, data preprocessing includes other operations such as data cleaning, smooth-
ing, normalization, transformation, and partitioning, as shown in Figure ??.
Data cleaning is to enhance data quality. For example, missing value imputa-
tion methods can be applied [49]. In addition, in performance diagnosis systems,
prediction-based and reconstruction-based models are sensitive to abnormal sam-
ples in training data, which requires outlier detection methods, such as spectral
residual [184] to detect outliers and replace them [278]. Data smoothing is to
smooth out the random transient noise in collected data. Data denoising meth-
ods such as mean and median filters have been developed for many years [88]. In
addition, Fast Fourier Transform (FFT) is studied mostly for time-series data.
For example, [181] highlighted the areas with high-frequency change by FFT and
reconfirmed them with the Z-value test. Data normalization usually normalizes
original data to the range of (0,1) with min-max or z-score normalization [78].
Data transformation is to ensure data compatibility with models. One-hot encod-
ing can be applied to extracted log events [230]. The data partition is to divide
data into subsets. For example, we need to divide data into training and testing



26 Chapter 2. Literature Review on Trustworthy Performance Diagnosis

Table 2.2: Data preprocessing methods

Method Data type Description
Log parsing Log and trace data Extracting log event and information for further analysis
Time-series data processing Monitoring metrics Convert data into sequence data fragments
Data Cleaning Any Enhance data quality
Data Smoothing Any Smooth out the random transient noise in collected data
Data Normalization Any Normalise original data to the range
Data Transformation Any Ensure data compatibility with models
Data Partition Any Divide data into subsets

sets for supervised learning [36]. In addition, we can define sliding windows to
divide time-series data into sequences fragments [218].

As a result, we summarize data preprocessing methods in Table 2.2. For log
and trace data, log parsing methods to transform raw data into vector represen-
tations are developed. For monitoring metrics, we identify technologies to process
multivariate time-series data, such as feature selection and extraction. In addi-
tion, we introduce general data preprocessing methods, such as data cleaning and
smoothing.

Trustworthiness requirements and methods

Data preprocessing converts original data into representations that can be used
for subsequent model training through a series of operations. In addition, data
preprocessing is vital for improving diagnosis performance, such as accuracy, ef-
ficiency, and robustness. To build trustworthy diagnosis systems, robustness and
explainability are two crucial requirements.

Robustness. Distributed applications are often deployed in complex environ-
ments, resulting in the presence of multiple data distributions and diverse features
within the collected performance data [211]. Consequently, applying pre-trained
diagnosis models to di↵erent situations becomes challenging, leading to a lack of
robustness in their performance. To enhance robustness, one possible approach is
to consider enriching the data during the data preprocessing stage to encompass
a wider range of situations. This can help improve the overall performance of the
system and ensure its ability to handle diverse scenarios e↵ectively.

In the data preprocessing component, two technologies can be considered to
improve the robustness of diagnosis models: data augmentation and adversarial
attack. Data augmentation is a series of strategies for enlarging and enhancing
data size while maintaining labels. Data augmentation can minimize overfitting
and improve model robustness and generalization. Data augmentation is a com-
mon practice in image recognition with neural networks [203]. Data augmentation
techniques for text and time-series data (corresponding to log data, trace data,
and monitoring metrics) generally use random transformations to augment the
training data, same as for images [109, 129]. For example, flipping or jittering
to generate more data [182]. In addition, for time-series data, random warping
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in the time dimension [231], and frequency warping [110] can also be used. Be-
cause random transformation is not applicable to diverse amounts of data with
each feature having di↵erent properties, techniques to synthesize new data with
information inherent to the data have been developed, such as pattern mixing,
generative models, and pattern decomposition methods [109]. Pattern mixing is
mixing existing patterns of time-series data and creating new samples with fea-
tures from both patterns. Generative models use the distributions of features in
data to generate new samples. Statistical models such as Gaussian trees [31] and
hidden Markov models [257] have been proposed. In addition, generative mod-
els with neural networks for time series generation have recently become popular,
such as generative adversarial networks [81]. Data decomposition methods extract
features from the dataset, such as trend components in time-series data [18], to
generate new patterns. The advantage of these data augmentation methods is
that they preserve the distribution of time series in the dataset. In addition, for
log data, Han et al. [89] propose the robust online evolving anomaly detection
framework, which adopts natural language processing to remove the e↵ects of
noise and uses online learning theory to update parameters dynamically.

The concept of adversarial attack was first proposed by [221] for image recog-
nition. The main idea is to generate adversarial examples by adding small, subtle
perturbations to input data, causing ML models to give a false prediction with
high confidence. Based on this idea, many researchers have developed algorithms
for constructing such adversarial examples, relying on the architecture and pa-
rameters of the deep learning model [82, 160]. There have been some studies
about the adversarial attack on time-series data in recent years. The sensitivity
of time-series data to adversarial perturbations has not been considered, unlike
images. Oregi et al. [174] adopt a soft KNN coupled with dynamic time warping
to generate adversarial examples. Karim et al. [118] propose using an adversarial
transformation network to attack various prediction models. Harford et al. [91]
propose transforming the existing adversarial transformation network onto a dis-
tilled model to attack various multivariate time-series prediction models. There
is limited adversarial attack research for deep time-series prediction models, such
as long- and short-term time-series network and recurrent neural network [127].
Fawaz et al. [69] utilize the fast gradient sign method and basic iterative method
attacks to attack residual network classifiers for univariate time-series data.

Explainability. Explainable AI plays a crucial role in performance diagnosis
systems as it fosters a deeper understanding of the diagnostic results and can
be helpful to enhance public trust. Furthermore, explainability provides valuable
insights into improving the performance of diagnosis systems. As data forms
the foundation of dignosis system, gaining a comprehensive understanding of the
original data is essential. In data preprocessing component, various operations
can be applied to original data to enhance the explanation of performance data.

Although di↵erent data types exist in performance data, numerous studies
have proposed approaches that can be applied to enhance data explainability.
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These approaches can be broadly categorized into three aspects: data visualiza-
tion, feature analysis, and feature importance. Data visualization is to better
understand the data before using it [208]. Data visualization systems have been
developed for di↵erent data types. For example, ELK stack2 (ElasticSearch,
Logstash, and Kibana) is convenient for storing and visualizing logs, traces, and
metrics. In addition, Prometheus3 and Grafana4 are more suitable for collection
and visualization of time-series metrics.

Except for visualization of collected performance data, feature analysis before
feeding them into training models can provide more understanding of data dis-
tributions. For logs and traces, many recent studies, e.g., [63, 96, 143], as well
as industrial solutions, e.g., Splunk 5, ELK, Logentries6, have evolved to provide
powerful text search and analytics capabilities. For time-series data, analysis
for single variate mainly includes determining stationarity, seasonality, and au-
toregressive character of data [204]. At the same time, it is possible to perform
feature selection or extraction for multivariate time-series data to understand
training models better.

Feature importance [243] technologies for explainable AI can be divided into
preprocessing and in-processing. Preprocessing feature importance is based on
feature selection methods [37]. Filter methods score each feature, use scores as
weights to represent the importance of features, and then sort them according to
weights [193]. Wrapper methods regard selecting features as a search optimization
problem, generating di↵erent combinations, evaluating these combinations, and
comparing them [67]. Embedded methods use some ML algorithms and models
for training first [155]. After obtaining the weight coe�cients of each feature,
features are ordered according to their coe�cients.

Figure 2.5: Trustworthiness requirements in data preprocessing component

As a result, robustness and explainability are essential trustworthiness re-
quirements for the data preprocessing component, as illustrated in Figure 2.5. To

2https://www.elastic.co/elastic-stack/
3https://prometheus.io/
4https://grafana.com/
5http://www.splunk.com/
6https://logentries.com/
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enhance robustness, data augmentation techniques and adversarial attacks can be
employed as part of the data preprocessing stage to enrich the original data. On
the other hand, to improve explainability, techniques such as data visualization,
feature analysis, and assessing the importance of pre-processed features can be
utilized to gain a deeper understanding of the data.

2.3.3 Performance anomaly detection

Performance diagnosis is detecting abnormal performance phenomena, e.g., degra-
dation, predicting anomalies to forestall future incidents, and localizing the causes
of performance anomalies. Research for anomaly detection has been developed for
many years. This section will introduce anomaly detection methods and discuss
related research on trustworthiness requirements for anomaly detection.

Anomaly detection methods

In general, performance anomalies are associated with anomalous indicators that
point to service or infrastructure issues. For example, anomalous indicators of
resource consumption can suggest a burst of service workloads. After preprocess-
ing, collected performance data can be represented as a feature matrix, and many
di↵erent detection methods have been developed, and ML methods are widely ap-
plied [26, 98, 180]. In this section, we will mainly introduce ML-based anomaly
detection methods in supervised, semi-supervised, and unsupervised learning.

Supervised learning methods. Supervised learning uses labeled data to
train models and has been developed for several years. For example, Hu et al. [98]
defined six meta-features to statistically describe the local dynamics of multivari-
ate time-series sequences and used the Support Vector Machine (SVM) to detect
the anomalies. Ren et al. [184] propose an algorithm based on spectral resid-
ual and CNN for a time-series anomaly detection service that helps customers
monitor the application continuously and alert for potential incidents on time.
The advantage of supervised learning is that the accuracy of detection is rela-
tively higher than that of unsupervised learning in most cases. However, labeling
performance anomalies requires human experts and is time-consuming in reality.

Unsupervised learning methods. Unsupervised learning methods are de-
veloped, considering there are usually no labels in reality. We provide a classifica-
tion of unsupervised performance anomaly detection methods, as shown in Table
2.3. The density-based such as Local Outlier Factor (LOF) [26], distance-based
such as (K-Nearest Neighbor) KNN [180], kernel-based such as One-Class Support
Vector Machine (OCSVM) [197], and ensemble-based methods such as Isolation
Forest (IForest) [146] are most used and usually focus on di↵erent features in
data. The detection performance of these methods varies greatly for di↵erent
datasets because they focus on di↵erent characteristics in data [250]. In addi-
tion, many unsupervised deep detection methods are developed based on neural
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Table 2.3: Machine learning-based anomaly detection methods

Model Classification Required data Model
Supervised With labels SR+CNN [184] etc.

Unsupervised No labels

Density-based [26]
Distance-based [180]
Kernal-based [197]
Ensemble-based [146]
Neural network [122, 192]

Semi-supervised Few labels SLA-VAE [104] etc.

network [122, 192]. Su et al. [218] provided a stochastic recurrent neural net-
work named OmniAnomaly for various devices’ multivariate time series anomaly
detection. The method utilizes VAE to reconstruct input data and uses the recon-
struction probabilities to determine anomalies. Audibert et al. [11] proposed an
unsupervised anomaly detection method called USAD for multivariate time se-
ries IT system monitoring data. USAD is designed based on an adversely trained
autoencoder, which allows it to isolate anomalies while providing fast training
compared to other deep learning methods. Deep detection methods usually have
good accuracy, but the model training is time-consuming.

Semi-supervised learning methods. Semi-supervised learning can train a
model using data when only a few labels exist. Camacho [30] et al. presented a
semi-supervised approach for anomaly detection. The method extends the unsu-
pervised multivariate statistical network monitoring approach based on Principal
Components Analysis (PCA) [254] by introducing a supervised optimization tech-
nique to learn the optimum scaling in the input data. Huang et al. [104] present
SLA-VAE, a semi-supervised learning anomaly detection framework using Varia-
tional Autoencoder (VAE) [7]. The model uses semi-supervised VAE to identify
anomalies in multivariate time series and employs active learning to update the
online model via a small number of uncertain samples. Semi-supervised meth-
ods are more practical in real distributed applications and perform better than
unsupervised detection methods.

In summary, we classify anomaly detection methods into supervised, unsuper-
vised, and semi-supervised based on the requirement for data labels, as shown
in Table 2.3. Supervised models train models with labels, which can achieve
the best detection accuracy, but labeling data manually is time-consuming and
impractical. Unsupervised learning methods work without labels, which can be
used broadly, and research is more focused on improving detection accuracy and
robustness. While semi-supervised learning methods can train models with fewer
labels and achieve good detection performance, which are the most practical.

Trustworthiness requirements and methods

Anomaly detection is a crucial component in performance diagnosis systems.
Many studies on performance anomaly detection methods have been carried out,
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mainly aiming to improve the diagnosis performance, such as accuracy and ro-
bustness. In addition, fairness and explainability are necessary trustworthiness
requirements for anomaly detection methods.

Fairness. The fairness requirement for anomaly detection mainly focuses on
the imbalanced data issue. Besides data sampling methods in Section 2.3.1, cost-
sensitive has also been developed for processing imbalanced data. Cost-sensitive
methods improve the detectors by applying di↵erent costs for misclassifying sam-
ples [124]. For cost-sensitive learning-based methods, determining an optimal
cost representation is essential. Nikolaou et al. [171] incorporate the shifted de-
cision threshold and calibrated probability estimation for cost-sensitive learning
in imbalanced data classification. Wu et al. [114] use cost-sensitive multi-set fea-
ture learning to learn discriminant features. Yin et al. [256] use the cost for both
positive and negative output calculations and obtain a weighting mechanism to
maximize the cost.

Robustness. In performance diagnosis systems, achieving model robustness
is crucial as it entails reduced sensitivity to minor changes in the underlying data
distributions and the ability to adapt to diverse scenarios. To ensure model ro-
bustness, it is imperative to design algorithms that can e↵ectively identify and
accommodate di↵erent data distributions. Furthermore, numerous defense ap-
proaches have been proposed to mitigate the impact of adversarial attacks on
the system, enhancing models resilience and reliability. Robust models enable
diagnosis systems to maintain consistent performance across varying conditions
and enhances its reliability in diagnosing performance issues.

Existing research to enhance model robustness can be categorized into: ro-
bust representation, ensemble learning, and adversarial defense. Some research
focuses on learning robust representation of input data for robust models designed.
For example, Su et al. [218] propose OmniAnomaly for multivariate time-series
anomaly detection. The model maintains robustness by learning multivariate
data representations and using reconstruction probability to identify abnormal-
ities. Zhao et al. [278] also provide a robust model for multivariate time-series
data by learning a distribution of stochastic variables, which is more robust to
perturbations and noise. Zhang et al. [276] provide a log-based anomaly de-
tection method using an attention-based bidirectional Long Short Term Memory
(LSTM) model. The model uses the semantic vector transformed by log data
and can handle similar but unstable log events. Zhao et al. [281] propose a ro-
bust anomaly detector containing two layers: identifying the log data quality and
classification for anomaly detection. The detector is robust to unreliable datasets
with label noise.

Ensemble learning combines several base models and produce an optimal pre-
dictive one [93, 290]. The idea is that errors of a single model will be compensated
by other models. It can be used to reduce variance and improve the accuracy
and robustness of anomaly detection models [73]. Ensemble learning methods
can be classified into supervised, semi-supervised and unsupervised for anomaly
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detection [61]. As for supervised ensemble learning, Tyralis et al. [229] propose
an ensemble learning method by combining ten ML algorithms. The weights are
estimated through a k-fold cross-validation procedure in the training set, and
a properly selected loss function is minimized. Tama et al. [223] proposed a
stacked ensemble for anomaly-based intrusion detection systems in a web appli-
cation. They use three classifiers (random forest, gradient boosting machine, and
XGBoost) and provide a generalized linear model as a combiner. Semi-supervised
ensemble learning mainly focuses on expanding the training set and utilizing ex-
panded training sets. Yu et al. [265] proposed a multi-objective subspace selection
process to generate the optimal combination of feature subspaces and an auxil-
iary training set based on the sample confidence to improve the performance of
the classifier ensemble. Sjoerd et al. [55] presented a reliable semi-supervised
ensemble learning method to exploit unlabeled data to generate diverse classifiers
through self-training and combine these classifiers into an ensemble for prediction.
For unsupervised ensemble learning, research mainly focuses on consensus clus-
tering. Ensemble clustering can be classified into three categories [101], pair-wise
co-occurrence based methods [71], graph partitioning based methods [99] and me-
dian partition based methods [100]. Clustering ensemble algorithms have their
advantages in improving clustering accuracy and robustness. The disadvantage
of these unsupervised ensemble learning methods is that they are unsuitable for
large-scale applications due to the e�ciency bottleneck.

For model robustness, we discussed the adversarial attack in Section 2.3.2,
which adds small perturbations to the data. The key to improving model robust-
ness lies in adversarial defense mechanisms. Adversarial training, as proposed by
[82], incorporates data perturbed with an adversarial attack into the training set
alongside their correct labels. For unsupervised learning, Goodge et al. [83] pro-
pose the approximate projection autoencoder, which incorporates two defenses,
approximate projection, and feature weighting, into a general autoencoder to im-
prove robustness under adversarial attacks. Lo et al. [152] develop the principal
latent space method by updating latent embeddings, and the model purifies the
latent embeddings of the autoencoder based on PCA. Tuli et al. [228] provide
a deep transformer network-based anomaly detection method, and it includes a
two-phase adversarial training for improving model generalizability and robust-
ness to diverse input.

Explainability. In AI-based performance diagnosis systems, models are of-
ten perceived as ”black boxes,” which show di�culties in understanding their
decision-making processes and reasoning. Interpreting these models is crucial as
it allows us to gain insights into their inner workings and design more e↵ective
models. However, achieving model explainability is a complex task because of
numerous parameters and intricate interactions within the models. Neverthe-
less, ongoing research is focusing on addressing these challenges to enhance our
understanding of these models and improve their overall performance.

Di↵erent studies have been developed to achieve explainable AI, and we



2.3. Requirements and technologies for trustworthy diagnosis systems 33

can classify them into self-explainable models and feature importance. Self-
explainable models are human-understandable because interpretability is built
into architectures. Self-explainable models are widely used for anomaly detec-
tion. For example, the auto-regressive integrated moving average model [166]
and GAM [60] can be used for time-series anomaly detection. The tree-based
model IForest [146] has good detection performance, and its outputs are easy to
understand. In addition, the bayesian model [213] can use probability to rep-
resent all uncertainty within the model, which provides a clear interpretation.
Some models, except those with built-in explainable architecture, are designed
to provide interpretation by incorporating explainable components into original
models. For example, Nguyen et al. [170] propose a gradient-based explainable
VAE for anomaly detection. Its explainability is achieved by analyzing the gra-
dients contributed by each feature of the data point. Aguilar et al. [5] propose a
decision tree-based autoencoder for detecting anomalies. It can explain its results
by finding the correlations between all attributes.

In-processing feature importance is to explain model results by analyzing fea-
tures. Lundberg et al. [156] propose SHAP, which explains predictions by cal-
culating feature importance and uses Shapley values from game theory to ensure
consistency of the explanations. DeepLIFT [205], a method for decomposing the
output prediction of a neural network on a specific input by back-propagating
the contributions of all neurons in the network to every feature of the input.
LIME [187] is a model-agnostic method. It calculates the feature importance of
samples with local self-explainable models. SAGE [52] provides global interpre-
tation, and it is also a model-agnostic method that quantifies model-based and
universal predictive power while accounting for feature interactions. Huang et al.
[105] provide DeepExplainer, which outputs the significance of features based on
feature importance and uses the significance to explain detection results.

Figure 2.6: Trustworthiness requirements in anomaly detection component

In conclusion, trustworthiness requirements for anomaly detection encompass
fairness, robustness, and explainability, as shown in Figure 2.6. To address the is-
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sue of imbalanced data and promote fairness, cost-sensitive techniques have been
developed. Robustness is crucial in the presence of diverse data distributions
within performance data. Approaches such as robust representation learning us-
ing deep neural networks, ensemble learning methods to reduce model variance,
and adversarial defense mechanisms against adversarial attacks have been devel-
oped. To enhance explainability, self-explainable models like tree-based models
and in-processing feature importance techniques have been introduced. These
advancements contribute to the overall trustworthiness of anomaly detection sys-
tems.

2.3.4 Root cause localization

For distributed applications with detected performance anomalies, root cause
localization to determine the causes of anomalies can help enable rapid recovery
and loss mitigation. In this section, we first introduce research about root cause
localization. Then, we will discuss trustworthiness requirements and methods for
root cause localization.

Root cause localization method

In recent years, research has been developed for root cause localization in clouds
[240] [247]. Based on data types, we can categorize these studies into three groups:
log-based, trace-based, and metric-based [209].

Log-based research. Log-based root cause localization is mainly based on
log data with multi-dimensional attributes after log parsing. The root cause can
be one or more combinations of attribute values in multiple dimensions, which
means the major challenge for root cause localization is the huge search space for
potential root causes. Various techniques to reduce the search space for multi-
dimensional root cause localization have been proposed. Bhagwan et al. [21]
propose Adtributor assuming that the root cause only relies on one attribute. The
Adtributor relies on forecasting for attribute combinations in all one-attribute
cuboids to calculate explanation power and surprise. Lin et al. provide [142]
iDice, which uses isolation power to measure the degree of separation between
abnormal and normal values within an attribute combination. Sun et al. [220]
use a novel potential score based on the ripple e↵ect for anomaly propagation and
adopt the Monte Carlo tree search algorithm and a hierarchical pruning strategy
to determine the root cause in multi-dimensional attribute space. Li el at. [133]
propose SwissLog, which determines the root cause with an ID relation graph
built based on ID information in log data.

Trace-based research Trace-based root cause localization works with call
graphs between services and mainly localizes root causes at the service level.
Zhou et al. provide MEPFL [288], which trains a supervised ML model to predict
the root-cause microservices with a training corpus built by fault injection. Liu
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et al. propose TraceAnomaly [148], which focuses on detecting structural or
latency anomalies in traces. Li et al. provide TraceRCA [135], which suggests
an insight that a service with more abnormal traces and fewer normal traces
passing through is more likely to be the root-cause service. They use a unified
metric to measure the insight of each service. Yu et al. propose TraceRank [261],
which uses spectrum analysis and the PageRank-based random walk methods to
pinpoint abnormal services.

Metric-based research. Based on monitoring data, some researchers iden-
tify root causes of performance anomalies with statistical analysis. Want et al.
[234] conduct correlation analysis based on mutual information to determine the
root-cause metric for the anomalies they detect. However, given that correlation
does not ensure causation [29], statistical analysis can not pinpoint root causes.
In addition, some researchers have developed a topology graph-based analysis
technique that reconstructs the topology graph of a running application. For
example, Wu et al. [247] generate a topology graph based on deployment in-
formation and extract a weighted anomalous subgraph by parsing resource-level
monitoring metrics. Brandón et al. [25] make snapshots of abnormal states of
the application as graphs and then identify the root cause of a new anomaly by
graph matching. This research uses a reconstructed application topology graph
to determine root causes, which can only be used for coarse-grained root cause
localization. Root cause localization can be explored at two granularities: coarse-
grained and fine-grained. Coarse-grained means that only faulty services can be
identified. Fine-grained is defined as identifying both the faulty service and the
root cause metric of the service, which can help operators choose accurate actions
to mitigate performance anomalies [248].

Existing CI-based root cause localization research works by constructing a
causal graph based on monitoring data, i.e., including causal structure learning
and root cause inference [209], as shown in Table 2.4. Coarse-grained root cause
localization usually builds a causal graph based on service level objective (SLO)
metrics, such as service latency, and focuses on determining faulty services. For
example, Microscope [85, 141] collect information on service interactions and
monitoring service latency and then processes them based on Peter-Clark (PC)
and Breadth First Search (BFS) algorithms to determine possible faulty service
of detected anomalies. In addition, CloudRanger [235], MS-Rank [157, 158],
and AutoMAP [159] all exploit PC and random walk algorithms to build causal
graphs and infer root causes. MS-Rank and AutoMAP use metrics not only
service latency but also throughput, power, and resource consumption, whereas
AutoMAP develops novel operations to refine the causal graph. Various coarse-
grained root cause localization studies have been conducted, but they cannot
assist operators in resolving application anomalies with accurate actions.

To address the drawback of coarse-grained root cause localization, some re-
searchers focus on fine-grained root cause localization. Chen et al. first proposed
CauseInfer [41, 42], which infers the faulty service and root cause metric by con-
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Table 2.4: Classification of metric-based root cause localization research

Reference Year
Causal structure

learning
Root cause
inference

Input
Root
cause

Granu-
larity

Micorscope[85,
141]

2018 Parallelized PC BFS Service
latency

Faulty
service

Coarse-
grained

CloudRanger[235] 2018 PC Random walk Service
latenct

Faulty
service

Coarse-
grained

MS-
Rank[157, 158]

2019 PC Random walk Multi
metrics

Faulty
service

Coarse-
grained

AutoMAP[159] 2020 PC Random walk Multi
metrics

Faulty
service

Coarse-
grained

CauseInfer[41, 42] 2014,
2016

PC DFS Service
latency

Faulty
service

Fine-
grained

MicroCause[165] 2021 PCTS Random walk Resource
metrics

Root
cause
metric

Fine-
grained

MicroDiag[246] 2021 DirectLiNGAM PageRank Service
and
resource
metrics

Root
cause
metric

Fine-
grained

structing a causality graph of monitoring metrics in each service with the PC
algorithm and traversing the metric causality graph with a Depth First Search
(DFS) method. After several years, Meng et al. provided MicroCause [165],
which mainly focuses on the root cause metric localization in a faulty service.
It provides a PC-based causal graph building method for time-series data and
infers root causes with the random walk method. Afterward, Wu et al. proposed
MicroDiag [246], which focuses on fine-grained root cause localization and applies
a direct Linear Non-Gaussian Acyclic Model (LiNGAM) to build causal graphs
and PageRank to infer root causes. Fine-grained root cause localization focuses
mainly on SLO metrics and monitoring resource metrics of services and deter-
mining the root cause resource metric to help operators take actions like scaling
resources [227].

Figure 2.7: Root cause localization methods

In conclusion, we summarize root cause localization methods in Figure 2.7.
Log-based research [4] mainly localizes root causes based on text log parsing.
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Trace-based research [121, 240] gathers information through complete tracing
of the execution paths and then identifies root causes along those paths. In
addition, metrics-based research uses monitoring data collected from applications
and underlying infrastructures to construct causal graphs and infer root causes.

Trustworthiness requirements and methods.

Root cause localization research is mainly based on causal inference and graph
methods. Several studies about robust root cause localization for log data are
proposed for trustworthiness requirements. Sun et al. [220] achieve robustness by
using a novel potential score based on the ripple e↵ect for anomaly propagation.
Li et al. [136] propose a generic and robust method called Squeeze, which com-
bines bottom-up and top-down strategies with a generalized ripple e↵ect method.
Furthermore, Li et al. [134] propose a novel probabilistic clustering method called
PSqueeze to reduce the influence of noise and improve model robustness. These
studies mainly focus on developing novel robust approaches based on the ripple
e↵ect. On the other hand, for causal inference and graph-based root cause lo-
calization on monitoring metrics, there is little research about model robustness.
For explainability, root cause localization can be seen as the explanation of de-
tected methods. In addition, root cause localization based on causal inference is
inherently interpretable and easy to understand. In conclusion, trustworthiness
requirements for root cause localization component is currently being developed
with a focus on ensuring robustness through the incorporation of ripple e↵ects, as
well as enhancing explainability through the use of causal inference techniques,
as shown in Figure 2.8.

Figure 2.8: Trustworthiness requirements in root cause localization component

2.3.5 System trustworthiness requirements

In addition to the trustworthiness requirements for each component within the
diagnosis system, there are additional considerations that apply to the system
as a whole. One such requirement is data privacy, which is a crucial aspect
throughout the entire process of performance diagnosis and can be viewed as
an ”in-the-loop” requirement. Furthermore, human intervention, referring to the
involvement of external humans, can occur at various components and can be
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considered an ”over-the-loop” requirement. This section will introduce the two
requirements and related research in detail.

Data privacy

Having massive amounts of data available to develop diagnosis algorithms is a
great benefit. However, it also provides an avenue for compromising the security
of AI models built from the data by providing an additional vector for hackers to
attack. Data governance is about allocating authority and control over data and
the exercise of such authority through decision-making in data-related matters
[24]. Data privacy is vital in data governance and should focus on the diagnosis
system through which data is collected, managed, and used. We mainly focus on
DP and FL for privacy-preserving methods in diagnosis systems.

Blockchain-based data storing. Blockchain provides an easy-to-use plat-
form for distributed data storage and protection [186]. Using blockchain, a group
of users, also known as miners, create blocks used to validate and record trans-
actions. Transactions in performance diagnosis systems can be collected through
logs and monitoring metrics. With blockchain technologies, storing and protect-
ing a large volume of data has been explored. Li et al. [131] present a clear
definition of the transactions in a non-cryptocurrency system and illustrate how
the transactions are processed in Internet of Things (IoT) data. Zhou et al. [287]
design a blockchain-based decentralized IoT system in which anonymity and the
amount of confidentiality of blockchain provide strong privacy for users and de-
vices to hide sensitive data. Liang et al. [140] provide secure data storage based
on blockchain technologies. A recovery scheme in the blockchain-based network
is provided by improving the decentration, tampering-proof, real-time monitor-
ing, and management of storage systems. Liu et al. [145] combine blockchain into
edge computing to provide more secure data storage and transmission, supporting
tamper resistance and traceability for the IoT.

Di↵erential privacy. DP can be used to hide certain input data from the
output [62]. In other words, when looking at the statistical results calculated
from input data, one cannot determine whether the input data contain a certain
record. DP is achieved by adding random noise to the input data or data analysis
procedure so that the input di↵erence can be hidden by the noise [144]. The
performance data in diagnosis systems has little sensitive user information, so
we can focus on using DP framework to obfuscate the input data or apply it to
models. Dwork et al. [66] define the typical DP as ✏-DP, and it measures how
well a randomized statistical function on a dataset reflects whether an element
has been removed. For obfuscating input data, Zhang et al. [274] propose an
obfuscate function and apply it to the training data before feeding them to the
model training task. There are studies about ML with DP. Rubinstein et al. [190]
suggest privacy-preserving mechanisms for SVM learning, which add noise to the
output classifier and yield close approximations to non-private SVMs. Song et
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al. [210] propose private stochastic gradient descent for general convex objectives
and validate the approach’s e↵ectiveness using logistic regression for classification.
Abadi et al. [2] introduce a simpler DP stochastic gradient descent algorithm,
which adds DP noise to the gradients, and the whole training process involves
multiple iterations. In addition, Wei et al. [238] propose a framework combining
the concept of DP into FL to prevent information leakage e↵ectively.

Federated learning. FL is popular in academia and industry as a solu-
tion to collaborative model training tasks using data from multiple parties [128].
It is designed to address data privacy issues that prevent ML algorithms from
properly using multiple data types. Existing FL algorithms can be categorized
into horizontal FL, vertical FL, and federated transfer learning algorithms [255].
Horizontal FL describes the situation in which each party has di↵erent samples,
but the samples share the same feature space. In horizontal FL, it is common for
all parties to calculate and upload local gradients so that the central server can
aggregate them into a global model [270]. Methods like homomorphic encryption
[9] and di↵erential privacy [66] are used to ensure the security of switching gra-
dients in horizontal FL. Many ML models, such as the logical regression model
[76], tree structure model [154], and neural network model [189] based on hori-
zontal FL, have been gradually developed. Federated transfer learning describes
the condition in which none of the parties overlaps in either the sample or the
feature space [270]. With federated transfer learning, knowledge can be shared
without compromising user privacy, and complementary knowledge can be trans-
ferred between domains in a data federation, enabling a party in a target domain
to leverage rich labels from a source domain to build flexible and e↵ective models
[150].

Several studies have examined federal learning to preserve privacy in perfor-
mance diagnosis systems. Cui et al. [53] introduce a FL framework based on the
blockchain for anomaly detection. This framework is based on FL and blockchain,
using these technologies’ traits to ensure the system’s privacy and robustness. Liu
et al. [151] introduce an FL framework for time series IoT data. Aside from fed-
eral learning, some researchers propose mechanisms for processing encrypted or
securing data. Pei et al. [178] propose a personalized federal anomaly detection
framework FedPAD for cellular tra�c data that aggregates data from di↵erent
organizations while protecting privacy and security.

Human intervention

Human intervention, referred to as human-in-the-loop or interactive ML [249,
269], such as labeling data or participating in decisions, has been applied to
various AI systems to compensate for limited performance. Unsupervised deep
learning methods are being developed rapidly, considering fewer labels exist in
reality. However, supervised learning needs less data and has better performance
than unsupervised learning. Data annotation and active learning have been



40 Chapter 2. Literature Review on Trustworthy Performance Diagnosis

discussed in 2.3.1. Human work for data preprocessing, such as parsing the source
files and generating the logs, is necessary. With limited labels, Zhou et al. [289]
propose a deep, weakly supervised anomaly detection method that leverages the
autoencoder to fit the normal data and then extracts a feature representation.

In addition to data annotation, humans are necessary for hyper-parameter
tuning for deep learning methods. For deep learning methods in diagnosis sys-
tems, hyper-parameters, such as network layer, epoch, and learning rate, are
determined and tested by human [198]. Automated ML [236] is developing to
reduce the demand for human experts, but it still has a long way to go. Fur-
thermore, human intervention provides feedback for trained AI models is vital
for compensating for decision-making. Xu et al. [252] update evaluation re-
sults based on human judgment, which makes users feel satisfied and confident
about their detection results. Ding et al. [59] propose a collaborative, contex-
tual bandit algorithm named GraphUCB for attributed networks. They consider
improving detection performance by integrating feedback from human experts
into the model to update its selection strategy in the next round. Siddiqui et al.
[206] develop a human-in-the-loop anomaly detection system where an analyst
can provide direct feedback to the unsupervised anomaly detector. Duan et al.
[64] use the Q-learning algorithm to build the core part of the anomaly detection
model and provide a feedback mechanism to update the detection model and the
abnormal level of abnormal logs. In addition, there is less research on human
intervention in root cause localization. However, revising causal graphs built by
algorithms based on human knowledge can be considered to improve localization
performance.

Figure 2.9: Trustworthiness requirements in system-level

In conclusion, we identify data privacy and human intervention as two trust-
worthiness requirements that need to be ensured for the entire diagnosis system.
For data privacy, technologies such as blockchain-based data storing, di↵erential
privacy, and federated learning to protect data privacy from data collection to
model development have been developed. For human intervention, data annota-
tion for original data, hyper-parameter tuning during model training, and human
feedback to improve diagnosis performance can be considered. These technolo-
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Table 2.5: Representative papers of methods for building trustworthy perfor-
mance diagnosis systems

System component
Trustworthiness
requirement

Method Reference

Data collection Fairness
Data sampling [14, 38, 54, 94, 149, 163, 225, 256, 277]
Data annotation [20, 33, 50, 128, 130, 185, 269]

Data preprocessing

Robustness
Data augmentation [18, 31, 81, 89, 109, 110, 182, 231, 257]
Adversarial attack [69, 82, 91, 118, 160, 174, 221]

Explainability
Data visualization [208]
Feature analysis [63, 96, 143, 204]
Preprocessing feature importance [37, 67, 193, 243]

Anomaly detection

Fairness Cost sensitive [114, 124, 171, 256]

Robustness
Robust representation [218, 276, 278, 281]
Ensemble learning [55, 61, 101, 223, 229, 265]
Adversarial defense [82, 83, 152, 228]

Explainability
Self-explainable [5, 60, 146, 166, 170, 180, 213]
In-processing feature importance [52, 105, 156, 187, 205]

Root cause localization
Robustness Ripple e↵ect [134, 136, 220]
Explainability Causal inference [46, 201, 202, 214, 264, 282]

In-the-loop Data privacy
Blockchain-based data storing [131, 140, 145, 186, 287]
Di↵erential privacy [2, 62, 66, 144, 190, 210, 238, 274]
Federated learning [53, 128, 151, 178, 255, 270]

Over-the-loop Human intervention
Data annotation [20, 33, 50, 128, 130, 185, 269, 289]
Hype-prarameter tuning [198]
Human feedback [59, 64, 206, 252]

gies contribute to the overall trustworthiness of the diagnosis system by preserving
privacy and leveraging human expertise throughout the diagnosis process.

In summary, we provide the Table 2.5 to represent methods and related pa-
pers for building a trustworthy performance diagnosis systems. Di↵erent data
types exist in the data collection component, which requires fairness because
there are problems with imbalanced data and fewer labels. For data prepro-
cessing, data augmentation and adversarial attacks to guarantee the robustness
of diagnosis models are crucial. In addition, feature processing methods will be
helpful for model interpretation. Anomaly detection models need to focus on fair-
ness, robustness, and explainability. Meanwhile, root cause localization explains
detected anomalies, and localization model robustness is also explored. Data
privacy should be assured through data to model in diagnosis systems. Besides,
human intervention is necessary for diagnosis systems and can play a role in data
annotation, hyper-parameter tuning, and feedback. This section will provide a
detailed introduction to each component in diagnosis systems, combining related
research and trustworthiness requirements.

2.4 Future research directions and challenges

Lots of progress has been made in trustworthy performance diagnosis systems.
However, some issues and challenges in this field still need to be addressed. There-
fore, the following research directions have been identified from existing literature.

Enhance performance data quality. High-quality labelled data can im-
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prove detection and localization accuracy in performance diagnosis systems. How-
ever, in real scenarios, obtaining a large amount of labelled data can be challeng-
ing, and data fluctuations are caused by unstable cloud environments, resulting
in irregular patterns. To address these issues, weakly-supervised learning with
ML methods which leverage limited labelled data and provide promising perfor-
mance, has drawn more attention in academia and industry [113]. In addition,
e↵ective data preprocessing and cleaning are essential to ensure data quality and
remove noise or irregularities that could undermine the performance of diagnosis
systems.

Robust and accurate anomaly detection. Anomaly detection has been
researched for several years, and many detection methods have been developed.
Existing research mainly focuses on improving detection accuracy for performance
anomaly detection of distributed applications. However, practical anomaly detec-
tion should also consider model robustness. Dynamic cloud environments create
diverse anomalies and data patterns, making robust anomaly detection meth-
ods crucial for consistent detection performance. Several studies about model
robustness have been developed. However, these methods may compromise de-
tection accuracy [272]. Therefore, more studies to improve model robustness and
accuracy need to be addressed in the future.

Precise and fine-grained root cause localization. Root cause localiza-
tion is essential to explain detected anomalies. Research on root cause localization
for distributed applications has recently attracted attention. Accurate localiza-
tion is essential to help operators take action. In addition, most metric-based
methods focus on service-level localization, while fine-grained localization iden-
tifying both the faulty service and metric can be more helpful for fast recovery
of cloud application [159]. However, metric-level localization faces challenges
such as multiple metrics and complex dependencies. As a result, we believe that
root-cause localization methods can be explored further in terms of precise and
fine-grained pinpointing in the future.

Secure data governance for data and models. A vast amount of per-
formance data can be collected in distributed applications, containing lots of
application and infrastructure-related information. When applying this data to
a performance diagnosis system, it is necessary to consider implementing secure
data governance from data collection to model training. Collected performance
data, primarily stored in centralized or distributed environments, is highly likely
to be attacked or stolen [200]. Blockchain-based data storage to encrypt data and
avoid data tampering can be considered to solve this problem. However, the in-
e�ciency of blockchain-based storage is a big issue because data synchronization
is time-consuming and requires further research.

For model training, FL [255] has been developed in recent years. FL can
overcome data transmission delays while maintaining data privacy, considering
that performance data collected from distributed applications is distributed across
di↵erent regions and infrastructures. Therefore, FL is suitable for secure data
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governance in performance diagnosis systems. However, it has many challenges to
be addressed in the future. For example, FL models have low e�ciency, especially
when ML models have many parameters. In addition, it is not easy to coordinate
multiple devices and heterogeneous collected data in FL models.

Automatic operations after diagnosis. To ensure the running of dis-
tributed applications, recovery from performance anomalies is essential. Diagno-
sis results can be used for recovery solutions such as scaling virtual machines or
migrating services. However, selecting the best operation is challenging because
di↵erent operations exist, and multiple constraints must be considered. For ex-
ample, it is vital to recovering from anomalies in real-time before they are dis-
covered by users [6]. In addition, an automatic operation system that combines
monitoring, diagnosis, and recovery for intelligent performance management of
distributed applications is also worth exploring.

Meet ethical trustworthiness requirements. The EU provides seven
trustworthiness requirements, while this chapter mainly focuses on five technical
trustworthiness requirements for performance diagnosis systems, data privacy,
fairness, robustness, explainability, and human intervention. To build compre-
hensively trustworthy AI-based performance diagnosis systems, it is essential
to develop research to meet ethical trustworthiness requirements, for example,
meeting environmental well-being through energy research [70, 120], and meeting
accountability requirements through law research [241].

2.5 Conclusion

This chapter provides a systematic overview of studies on trustworthiness require-
ments in AI-based performance diagnosis systems. We combine the five essential
technical trustworthiness requirements for AI models, namely data privacy, fair-
ness, robustness, explainability, and human intervention, with the general per-
formance diagnosis framework covering data collection, preprocessing, anomaly
detection, and root cause localization. From this integration, we summarize ten
requirements, such as fairness in data collection and robustness in anomaly detec-
tion, and provide a comprehensive review of methods for each requirement. We
believe the presented survey will o↵er practical guidance for researchers to develop
advanced performance diagnosis systems. Finally, we identify several research di-
rections and challenges. This thesis mainly focuses on the quality improvement
of data, robust and accurate anomaly detection, and precise and fine-grained root
cause localization. In the future, we will focus on the studies of other challenges,
such as secure data governance, automatic operation, and ethical trustworthiness
requirements.





Chapter 3

E↵ective Performance Diagnosis
Framework for Distributed Applications

To run a distributed application with the required service quality, operators have
to continuously monitor the run-time status, detect potential performance anoma-
lies, and diagnose the root causes. However, the existing monitoring tools lack
automated deployment and a customized interface. In addition, an e↵ective per-
formance diagnosis framework is required for operators to detect and maintain
performance issues. In addition, collected performance data lacks high-quality la-
bels and usually contains noise which will a↵ect diagnosis performance. Existing
performance anomaly detection methods usually focus on di↵erent characteris-
tics in data and have varying detection performances. Moreover, the current
root cause localization models make locating system-level root causes of applica-
tion performance anomalies di�cult for e↵ective adaptation decisions. We pro-
pose a FIne-grained pErformance Diagnosis (FIED) framework to tackle monitor-
ing challenges and employ real-time, fine-grained methods to detect performance
anomalies and locate root cause metrics of anomalies.

This chapter is based on:
• Ruyue Xin, Jardenna Mohazzab, Zeshun Shi, and Zhiming Zhao.

”CBProf: Customisable Blockchain-as-a-Service Performance Profiler in
Cloud Environments.” In Blockchain–ICBC 2021: 4th International Con-
ference, Held as Part of the Services Conference Federation, SCF 2021,
Virtual Event, December 10–14, 2021, Proceedings, pp. 131-139. Cham:
Springer International Publishing, 2022.

• Ruyue Xin, Hongyun Liu, Peng Chen, Paola Grosso, and Zhiming Zhao.
”FIRED: a fine-grained robust performance diagnosis framework for cloud
applications.” arXiv preprint arXiv:2209.01970 (2022).
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3.1 Introduction

Cloud environments provide elastic and on-demand resources for developing appli-
cations [286]. However, because of the inherent dynamism of clouds, performance
anomalies of distributed applications, such as degraded response time caused by
resource saturation, may severely a↵ect the quality of the user experience. In ad-
dition, considering complex dependencies and multiple components in distributed
applications, it’s di�cult for operators to detect performance anomalies and iden-
tify root causes. Traditionally, operators perform diagnoses for distributed ap-
plications manually, which is complicated and time-consuming. Data of di↵erent
monitoring metrics, e.g., CPU and memory usage, can be continuously collected,
reflecting the run-time status of distributed applications [278]. Therefore, we
could consider a performance diagnosis solution that leverages monitoring data
and supports rapid recovery and loss mitigation for distributed applications.

Performance diagnosis involves detecting abnormal performance phenomena,
predicting anomalies, and localizing their causes based on performance data [108].
A general performance diagnosis framework consists of four components: data col-
lection, data preprocessing, anomaly detection, and root cause localization. Each
component has been extensively researched and various methods have been devel-
oped. Data collection relies on monitoring tools to capture accurate performance
data reflecting the application’s running status. It is important to consider auto-
matic deployment and a customized user-friendly interface to accommodate the
complexities of the cloud environment. Data preprocessing mainly addresses the
challenge that noise exists in the collected data. Overcoming these challenges is
crucial to ensure accurate results in anomaly detection and root cause localization.

In recent years, research about methods for performance diagnosis have been
developed and mainly focus on performance anomaly detection and root cause
localization. For performance anomaly detection, numerous existing methods
[26, 98] focus on improving detection accuracy. However, because the scaling
of cloud infrastructures will change the distribution of monitoring data, it is
important to observe the detection performance of di↵erent detection methods.
As for root cause localization, approaches are still developing [74][25] and most
of them are focusing on service-level or container-level faults [247][260], which
can not provide accurate maintain instructions for operators. To fill these gaps,
we are motivated to develop a a FIne-grained pErformance Diagnosis (FIED)
framework that can collect real-time performance data, pre-process data properly,
detect performance anomalies, and identify the root causes in metric-level.

The rest of this chapter is organized as follows. In Section 3.2, we first analyze
requirements for a performance diagnosis framework, then provide the overview
of the FIED framework and introduce each component in detail. In Section 3.3,
we introduce collected performance data with the monitoring tool and conduct
experiments to evaluate data preprocessing, anomaly detection, and root cause
localization components. Finally, we draw our conclusions in Section 3.4.
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3.2 The performance diagnosis framework

In this section, we first analyze the requirements and challenges of the perfor-
mance diagnosis framework for distributed applications. Then, we describe our
FIED framework and introduce each component in detail.

3.2.1 Requirement analysis

To ensure the development of an e↵ective performance diagnosis system, several
design requirements need to be considered for each component. We identify them
from several use cases in the EU project SWITCH1 and ARTICONF2.

• Continuously monitoring run-time applications. While many monitoring
tools exist, there are specific requirements that need to be considered. One
such requirement is the development of mechanisms for automatic deploy-
ment of applications and monitoring tools that enable easy testing and
evaluation of di↵erent scenarios, such as di↵erent anomalies. Additionally,
it is important to design a customized user-friendly interface that allows
users to conveniently observe the performance of distributed applications.

• Data preprocessing to reduce noise. This requirement involves addressing
the challenge of noise reduction. Methods need to be designed to extract or
select the most relevant features that contribute to the accurate detection
of performance anomalies.

• Anomaly detection for varying performance data. While multiple detection
methods exist, they often focus on di↵erent characteristics in the data and
have varying performance. In the diagnosis framework, it is necessary to
incorporate several di↵erent anomaly detection methods to cater to the
diverse nature of performance data. In addition, evaluating the performance
of these methods on various datasets becomes essential to gain insights into
the selection of existing detection methods and to guide the development
of advanced detection methods.

• Root cause localization needs be accurate. Complex dependencies between
services makes it challenging to model anomaly propagation path. In addi-
tion, it is di�cult to identify the root cause metric while multiple metrics
exist.

To meet these requirements and tackle challenges, we develop an e↵ective per-
formance diagnosis framework which includes a monitoring tool with automated
deployment, data preprocessing technologies to address data challenges, di↵erent
unsupervised detection methods, and fine-grained root cause localization.

1https://www.switchproject.eu/
2https://articonf.eu/
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3.2.2 Framework overview

d. Root cause 
localization

Model training

FIED framework

a. Monitoring tool
Adaptation
decisions

Normalization Metrics selection

b. Data preprocessing C. Anomaly detection

Detection

Figure 3.1: The FIED framework for performance diagnosis of distributed appli-
cations.

For e↵ective performance diagnosis of distributed applications, we provide
the FIne-grained pErformance Diagnosis (FIED) framework, which can be seen
in Figure 4.1. The framework can e↵ectively detect performance anomalies and
localize root causes for cloud applications, and it works with several modules. At
first, we collect multivariate time-series data with a monitoring tool continuously.
For collected data, we focus on service- and resource-level data, such as service
latency, CPU and memory usage, and input them into the FIED framework. In
FIED framework, we first perform (a) a monitoring tool to monitor run-time
status and collect performance data. We then provide (b) data preprocessing,
including data normalization to scale data, and the metrics selection that involves
the use of feature selection or extraction methods to filter multivariate data and
reduce data dimensions. Subsequently, pre-processed data is used to (c) anomaly
detection for model training and detection of performance anomalies. Once an
anomaly occurs, we start the (d) root cause localization to discover the causes of
the anomaly. The localization results can be used for rapid recovery of distributed
applications. In this section, we will introduce these technologies in detail, and
provide experiments for evaluation.

3.2.3 Monitoring tool

Automated deployment. First, we implement a monitoring tool to processes
deployment requests and facilitate deployment automatically. We collect deploy-
ment requests from users, such as Virtual Machine (VM) types, numbers, and
providers. After receiving configuration requirements, CloudsStorm [285], which
is a framework for managing an application-defined infrastructure, is used for au-
tomatic deployment. When deploying a distributed application in the cloud, the
nodes of a network are represented by VMs, and the nodes must form a network
to ensure their communication with each other. Therefore, the deployment com-
ponent includes functions for VM creation and communication. All services will
be started automatically after deployment. The automated deployment tooling
includes Prometheus and Grafana for monitoring and visualization.
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Data collection. The monitoring tool allows the monitor to collect real-time
performance data and store it in MongoDB3, which is a time-series database pro-
viding persistent storage. Furthermore, we can visualize real-time performance
data and build the graphical user interface with Vue.js4. We configure a dash-
board to visualize the data collected by the database. With this component, we
can check many performance metrics, like block numbers and committed transac-
tions, in real-time. This component is also interactive, so users can customize the
performance of a specific period. With the monitoring tool, the specification, re-
trieval, and storage of customized requests, such as execution time and send rate
of workloads is possible. After sending requests, we provide an overview and com-
parison of application performance, such as transaction latency and throughput.
The comparison can provide users with a clear perspective regarding a specific
purpose or a certain performance measure.

3.2.4 Data preprocessing

Data normalization. For collected performance data, we apply z-score normal-
ization [194] to ensure that all data have the same scale. The z-score method
uses the mean and standard deviation of the original data for normalization so
that the processed data follows the normal distribution. After normalization, we
represent data with R

t

i
(i = [1, ..., N ] is the index of resource metrics. N is the

number of all resource metrics. t 2 N⇤ is the index of timestamps) as input data.
Next, we provide the metrics selection for the input data, including feature se-
lection and extraction methods. After metrics selection, data D

t

j
will be used to

diagnose the running status of distributed applications where j = [1, ..., n] is the
index of data dimensions and n is data dimensions after reduction.

Metrics selection. Multivariate data usually contains noise, introducing
unnecessary variance into a developed model. Therefore, metrics selection to
identify relevant metrics and reduce data dimension is needed. We provide feature
selection and extraction methods within the metrics selection module, taking
into consideration the availability of service-level data. With service-level data,
we can easily select relevant resource metrics from multiple metrics with filter
methods, which extract a subset from all features [37]. Specifically, Pearson’s
correlation is generally used to measure the relevance between features, and it
provides a fast estimation for feature selection. In addition, the feature extraction
method creates a subset of new features from combination of existing features. For
example, principal components analysis (PCA) [254] can be used to extract main
features in data and reduce data dimensions without labels. With the metrics
selection, we can extract related resource metrics automatically.

For feature selection, we provide a filter method of correlation analysis for all

3https://www.mongodb.com/
4https://vuejs.org/
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metrics. For time-series data, we use K
t to represent service-level data, and R

t

i

represent resource metrics. We calculate the Pearson’s correlation of the labels
with each resource metric.
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cov(Kt
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i

(3.1)

A significant test for the Pearson’s correlation.

si = ri

s
d� 2
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i

(3.2)

Here, d is the number of timestamps, which is also the sample number of each
resource metric. In order to filter out low correlation metrics, we set the threshold
si < 0.05 and |ri| > 0.5 for all correlation results.

In addition, we can use the feature extraction method PCA to transform a
dataset with lots of variables into a smaller one that still contains most of the
information in the original dataset. The process steps of PCA are: 1) getting the
covariance matrix of original features; 2) calculating eigenvectors and eigenvalues
of the covariance matrix to identify principal components; 3) sorting eigenvalues
and selecting eigenvectors with high eigenvalues as feature vectors; 4) recasting
the original data based on feature vectors. In step 3, the number of selected
eigenvectors determines the data dimensions after reduction. Therefore, we can
see that based on these calculations, PCA can be used without labels and achieves
principal feature selection and data dimension reduction. In practice, we set
the reduction dimension based on a calculated percentage of variance [3]. We
apply the correlation analysis and PCA to resource metrics Rt

i
and compare their

performance in section 3.3.3.

3.2.5 Anomaly detection

Di↵erent anomaly detection methods usually focus on di↵erent features in data,
such as density-based, distance-based, and this results in diverse detection accu-
racy on di↵erent data. Therefore, to have a comprehensive understanding of mon-
itoring data characteristics, we select four classic unsupervised methods (IForest,
KNN, LOF, OCSVM) for performance anomaly detection.

IForest is based on the decision tree algorithm [72]. Many isolation trees
make up an isolation forest to make anomaly detection results more credible. To
build an isolation tree, we need to randomly select a feature in data and a value
between the max and min values of that feature first, and then perform a binary
partition to divide data into two sides of tree nodes. We can iterate the binary
partition until the data has only one feature or reaches the limit height of the
tree. The random partitioning of features will produce shorter paths in the tree
for the anomalous data points, thus distinguishing them from the others.



3.2. The performance diagnosis framework 51

KNN is a distance-based algorithm [180]. It calculates each point’s distance
(Euclidean, Manhattan) with k nearest neighbors and sets the distance as an
anomaly score. Based on the assumption that similar things exist in close prox-
imity, points with a high anomaly score mean they are far from others and can
be distinguished as anomalies.

LOF is a density-based algorithm [26]. The density here is a local density,
while the locality is given by k nearest neighbors, and their distance is used to
estimate the density. Thus, by comparing the local density of a point to the local
densities of its neighbors, we can identify regions of similar density, and points
that have a substantially lower density than their neighbors will be considered
anomalies.

OCSVM is based on support vector machine (SVM) [197]. A property of SVM
is that it can create a non-linear decision boundary by projecting data through
a non-linear function into a high-dimensional space. The non-linear function is
known as the kernel function. After the projection, a hyper-plane can be found
for separation, and points are separated into di↵erent classes. Because the kernel
function calculation is time-consuming, it usually works slowly for large-scale
data.

For each detection method, the input is preprocessed data. The processing of
input data includes model initialization, fitting data, and output anomaly scores.
Model initialization includes the setup of hyper-parameters, such as anomaly
fractions, which can be set based on data characteristics. After fitting the data,
an anomaly score vector will be outputed. We use the anomaly score vector of
each detection method to identify anomalies and evaluate the performance of each
detection method.

3.2.6 Root cause localization

Figure 3.2: The root cause localization pipeline

Performance anomaly detection allows us to know the status of distributed
applications. When an anomaly occurs, localizing the root causes of the anomaly
can enable the application to recover e↵ectively. We provide the pipeline of
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root cause localization for performance anomalies in Figure 3.2. The input data
consists of selected metrics and anomaly labels. Selected metrics are metrics
after feature selection, which can be identified as CPU or memory related. We
do not use metrics after feature extraction because there is no clear meaning of
extracted features. For these selected time-series metrics, we extract their causal
relations and build a dependency graph with the PC (named after its authors,
Peter and Clark) algorithm. Based on the dependency graph, we use a random
walk to find the propagation path and localize root causes. Finally, we evaluate
the localization accuracy.

Build dependency graph

The causality between system resources and application performance is obvious,
for example, low network bandwidth will cause high response latency. To ex-
tract the relation, a causal Directed Acyclic Graph (DAG) is commonly used in
practical applications because of its intuitiveness. The most popular method for
constructing a causal DAG from observational data is the PC algorithm [116].

We use the PC algorithm to discover the causal relationship between system
resources and performance anomalies. There are four steps to build a dependency
graph with the PC algorithm:

• Construct a fully connected graph of the m random variables (all nodes are
connected).

• Perform a conditional independence test on each adjacent variable under the
significance level ↵. If conditional independence exists, the edge between
the two variables is removed. In this step, the size of the conditional variable
set S increases step by step until no more variables can be added into S.

• Determine the direction of some edges based on v-structure[168].

• Determine the direction of the rest of the edges.

Based on the PC algorithm, we build a dependency graph for all selected
metrics D

t

j
and the anomaly labels K

t. We define the anomaly labels K
t as an

anomaly indicator. In addition, other causal inference methods can be used to
build the dependency graph, like Additive Noise Model (ANM) [97]. We also
compare their localization performance in our experiments.

Localize root causes

In a dependency graph, there can be many paths that point to the anomaly
indicator, which makes it hard to localize root causes. To solve this problem, we
apply a Random Walk algorithm to the dependency graph, which performs well
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Algorithm 1: Random walk for the causal DAG
Input : DAG G, path length l, start node N

Output: Path points to the start node

1 path = [N]
2 while len(path)<l do
3 cur node = path[-1];
4 if len(list(G.predecessors(cur node)))>0 then
5 predecessor = random.sample(list(G.predecessors(cur node, 1);
6 path.extend(predecessor);
7 else
8 break;

9 return path

in capturing anomaly propagation. The random walk procedure in a dependency
graph is presented in Algorithm 1.

In this algorithm, we set the anomaly indicator as the start node. Further-
more, we end up with a path pointing to the start node by randomly selecting
the predecessors of the current node. We iterate the algorithm many times and
get several paths. The last node of each path can be regarded as the root cause.
By counting and ranking root cause nodes, we can finally get the root cause set.

Figure 3.3: Visualization of root cause localization pipeline

We provide an example for the root cause localization pipeline in Figure3.3.
Nodes 0-23 represent selected metrics, and node 24 represents the anomaly indi-
cator. We first build a dependency graph for these metrics with the PC algorithm.
Isolated nodes which have no causality relation with others are removed in the
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dependency graph. Next, for the dependency graph, we use the random walk
algorithm to get paths pointing to the anomaly indicator and rank all root cause
nodes. We can see that there are paths like 6 ! 5 ! 24, 17 ! 24, 18 ! 24,
14 ! 16 ! 15 ! 24. After ranking, the root causes are localized as {6, 17, 18,
14}.

3.3 Experiments and results

Based on our framework, we deploy and collect performance data from a De-
centrailized Application (DApp). Then we add another two public datasets, and
provide di↵erent experiments to evaluate each component in the FIED framework.

• We implement automatic deployment and monitoring with the monitoring
tool for a DApp. We present the interface of run-time status and collected
performance data with inject anomalies for FIED evaluation.

• We evaluate metrics selection by comparing the detection performance of
unsupervised detection methods with data processed by metrics selection
methods.

• We conduct performance anomaly detection experiments for the four detec-
tion methods and compare their detection accuracy on multiple datasets.

• We check the feasibility of the root cause localization pipeline, compare
di↵erent causal inference methods, and observe time spent.

In this section, we will introduce a collected dataset and two public datasets that
are used in our experiments. For the evaluation of each component, we present
the experimental settings and evaluation results in detail next.

3.3.1 DApp monitoring

In business scenarios where real-time transactions are required, e.g., energy trad-
ing or crowd journalisms[195], the performance quality of a DApp, such as trans-
action throughput, latency, and failure rates, are critical to the business value.
To deliver such a quality-critical DApp in cloud environments, one needs to se-
lect cloud services carefully, customize their capacities, and monitor the run-time
status of the application. We implement the deployment and monitoring of a
DApp with our monitoring tool. Figure 3.4 shows the DApp example developed
with Hyperledger Fabric5. For the DApp, di↵erent organizations, which contain
many peer nodes, are deployed on VMs and monitored by Prometheus. After
deployment, we use Hyperledger Caliper6 to simulate workload generation and
check the run-time status of the DApp through an interface.

5https://www.hyperledger.org/use/fabric
6https://github.com/hyperledger/caliper
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Figure 3.4: The monitor component and a DApp in cloud

Collected performance data. For the running DApp, we mainly collect
system resource metrics, which can be seen in Table 3.1. When the DApp receives
transaction requests stably, we add system pressures with stress-ng7, such as disk
pressure to inject anomalies manually. We increase disk pressure by 20 minutes
every hour. We monitor the DApp for twelve hours and collect data at 15-second
intervals. Ultimately, the DApp monitoring data contains 3237 samples and 229
resource-related metrics for our experiments. The general information can be
seen in the Table 3.2.

Table 3.1: Description of system resource metrics

Resource Metrics Description

CPU related
Per core and overall load, usage, idle time, I/O wait time,
hard and soft interrupt counts, context switch count, etc.

Memory related Free, cached, active, inactive, dirty memory, etc.
Disk related Disk space used, IOps, I/O usage, read/write rate, etc.
Network related Receive/transmit network tra�c, etc.

3.3.2 Experimental settings

Public datasets. Except performance data collected from the DApp, we use
another two public datasets in our experiments.

7https://kernel.ubuntu.com/ cking/tarballs/stress-ng/

Table 3.2: General information of three datasets

Dataset
Number of
samples

Number of
features

Number of
extracted features

Anomaly
fraction (%)

DApp monitoring data 3237 229 15 28.14
SMD data 28479 38 5 9.46

Vichalana data 45486 13 6 6.45
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Server Machine Dataset (SMD) is a dataset collected and made publicly avail-
able by a large internet company[218]. It contains data collected from many dif-
ferent server machines and includes 38 metrics. In addition, domain experts have
labeled anomalies in SMD based on incident reports.

Vichalana is a multivariate time-series dataset that can be used for perfor-
mance anomaly detection in API Gateways [77]. It has di↵erent anomalies, such
as high CPU and memory usage. Performance metrics in this dataset are collected
when the system operates in normal and anomalous mode. The information of
SMD and Vichalana data used in our experiments can be seen in Table 3.2.

Parameters. The DApp monitoring data is collected from a deployed DApp
in a cloud environment. Here, we use Azure8 as the cloud environment and
deploy the monitor component and DApp separately. The monitor component
is deployed on a VM with the following properties: Ubuntu 18.04 as operating
system, 2CPU, 4G Memory, 32GiB Storage. The DApp is deployed on VMs which
have properties: Ubuntu 18.04 as the operating system, 4CPU, 16G Memory, and
32GiB Storage.

For feature extraction, we need to determine the reduction dimensions of PCA.
In general, PCA needs to retain as much variance information of original data
as possible, such as 95%. Therefore, we set the reduction dimensions to 15 for
DApp monitoring data based on a calculated percentage of variance [3].

As for each base detection method, their hyper-parameters are set as below.
Anomaly fractions need to be determined first. For the DApp monitoring data,
because we inject anomalies 20 minutes every hour, we set the anomaly fraction as
0.3. For SMD and Vichalana data, we use the default anomaly fraction, which is
0.1. Next, the hyper-parameters of each detection method need to be determined.
We set the tree number for IForest to 100. The neighbor number in KNN is 5.
In LOF, we set the neighbor number as 20. In OCSVM, we use the radial basis
function kernel function.

Evaluation indicators. We evaluate the detection performance of these
detection methods with F1 score to indicate accuracy, and time spent to indicate
e�ciency. F1 score is a function of both Precision and Recall. The Precision
is about how much of the data detected as anomalies are true anomalies, while
recall is about how much of the real anomaly data is detected as anomalies. So,
we calculate F1 score as below:

F1 score = 2 ⇤ Precision ⇤Recall

Precision+Recall
(3.3)

Therefore, we mainly focus on the F1 score for detection accuracy. Our ex-
periment results also evaluate and present the time spent on each unsupervised
detection method and test time for the deep ensemble method.

To evaluate the accuracy of root cause localization, we use two performance
metrics: AC@k and Avg. These two metrics are most commonly used to evaluate

8https://azure.microsoft.com/en-us/
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the rank result of the root cause localization task [165][247]. AC@k represents
the probability that top k results localized by algorithms include the real root
causes for a given anomaly. When the k is small, the higher AC@k indicates the
algorithm identifies the actual root cause more accurately. We calculate AC@k

as follows:

AC@k =

P
i<k

R[i] 2 Vrc

min(k, |Vrc|)
(3.4)

where R[i] is the result of rank of all metrics for the anomaly. Vrc is the
root cause set of the anomaly. Avg@k evaluates the overall performance of the
localization algorithm by computing the average AC@k. The calculation is as
follows:

Avg@k =
1

k

X

1jk

AC@j (3.5)

We use k = 1, 2, 3, 4 in our experiments to give a comprehensive evaluation of
localization accuracy.

3.3.3 Metrics selection evaluation

We execute experiments to validate the metrics selection component in the per-
formance diagnosis framework. We only use the DApp monitoring data here
because we know the detailed information of each metric, for example, CPU us-
age, system load. The metrics selected by the two methods – correlation analysis
and PCA, and all metrics are used as the input to the four detection methods.
Afterward, we check the e↵ect of metrics selection methods by comparing the
detection performances of the four detection methods.

For metrics selection, we apply the correlation analysis and PCA separately
on the DApp monitoring data. Figure 3.5 shows the correlation analysis result
based on r-values in descending order. We calculate the correlation between
all monitoring metrics and fewer labels. The results show that metrics like the
amount of unevictable memory and iowait have high r-values, which means there
is a relationship between these metrics and the occurrence of the transaction
failure anomaly. In addition, we reduce the data dimensions from 229 to 15
based on PCA method.

We then compare the e↵ects of metrics selection methods based on the per-
formance of the various detection methods. We use the data after correlation
analysis, PCA, and without metrics selection as the input of detection methods,
respectively. The F1 score and time spent of each detection method can be seen
in Figure 3.6 and Figure 3.7. In Figure 3.6, we can see that after correlation
analysis, three detection methods, IForest, KNN and OCSVM have the highest
F1 score. In comparison, the F1 score of LOF is slightly lower. For PCA, the F1
scores of KNN and LOF are higher than without metrics selection. But the F1
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Figure 3.5: Top 10 resource metrics with high relevance to performance anomalies

Figure 3.6: Detection accuracy by detection methods as function of the metrics
selection methods: correlation analysis, PCA and no metrics selection.

scores of IForest and OCSVM are lower than without metrics selection. We can
say that metrics selection based on correlation analysis improves the detection
accuracy. In addition, in Figure 3.7, we can see that without metrics selection,
the time spent is about 2 to 10 times for each detection method compared with
using metrics selection.

In conclusion, we can see that with metrics selection, the detection accuracy
is improved and the time spent is reduced compared with no metrics selection.
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Figure 3.7: Time spent by detection methods as function of the metrics selection
methods: correlation analysis, PCA and no metrics selection.

In addition, correlation analysis has better detection accuracy than PCA. Next,
we will use data after metrics selection as the input of performance anomaly
detection and root cause localization.

3.3.4 Performance of detection methods

We apply the four detection methods (IForest, KNN, LOF, and OCSVM) to the
DApp monitoring data, SMD, and Vichalana data. The performance of their
detection accuracy can be seen in Table 3.3.

Table 3.3: Performance of di↵erent detection methods. For each dataset, we
show the F1 score of the best detection method in bold.

Detection
methods

DApp monitoring data SMD data Vichalana data Average
F1 scoreF1 score Time(s) F1 score Time(s) F1 score Time(s)

IForest 0.791 0.318±0.012 0.752 1.278±0.020 0.658 1.981±0.070 0.734
KNN 0.803 0.025±0.002 0.571 0.311±0.005 0.552 0.776±0.069 0.642
LOF 0.514 0.044±0.002 0.547 0.538±0.011 0.513 1.468±0.123 0.525

OCSVM 0.737 0.305±0.008 0.605 33.923±0.892 0.678 95.118±0.019 0.673

For the DApp monitoring data, we can see that the KNN has the highest F1
score, 0.803, demonstrating that the data has clustering characteristics because
KNN is good at identifying clusters in data. IForest takes into account di↵erent
features in the data. IForest usually has good detection performance [32], as well
as on the DApp monitoring data with an F1 score of 0.791. If the abnormal
features are concentrated in a few dimensions, it will be hard to detect anomalies
for LOF. Therefore, LOF has the lowest F1 score, 0.514, for the DApp monitoring
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data. The F1 score of OCSVM is 0.737, which is not high enough because the
projection through a kernel function cannot be divided into normal and abnormal
data very well. For time spent, we can see that IForest and OCSVM spend about
0.3s, which is higher than other detection methods because the calculation of
features takes some time, but the time spent is under 0.5s overall, which is not
high actually. As a result, for the DApp monitoring data, the KNN is the best of
the four detection methods.

For SMD data, we can see that IForest has the highest F1 score, 0.752, which
shows the advantage of IForest for anomaly classification through multiple fea-
tures. However, F1 scores are not high for other detection methods, showing too
much noise in this dataset, and the overall distribution of normal and abnormal
data is similar. Thus, we can say that anomalies may be mainly in a few features
in the SMD data. In addition, the time spent on OCSVM is higher than on others
because the kernel function calculation in OCSVM is time-consuming. On the
other hand, IForest has the best detection accuracy and takes about 1.3s, which
is the best detection method.

For Vichalana data, we can see that OCSVM has the highest F1 score, 0.678,
showing that the non-linear projection can classify normal and abnormal data but
is not very accurate. The F1 score of IForest is 0.658, slightly lower than OCSVM,
which means that abnormal data distribution varies in di↵erent features, making
it hard to detect. The F1 scores of KNN and LOF are pretty low, showing that
the overall distribution of normal and abnormal data is also similar. It is worth
noting that the time spent on OCSVM is relatively high because the dataset
includes more than 40k samples, and it takes too much time for kernel function
calculation in OCSVM. Here, IForest only takes about 2s, which is quite faster
than OCSVM.

In conclusion, we can see that detection accuracy varies for these unsupervised
detection methods on the three di↵erent datasets. For example, KNN performs
the best on the DApp monitoring data but relatively poorly on the SMD and
Vichalana data. Overall, IForest has the highest average F1 score 0.734, as its
e↵ectiveness in handling high-dimensional and large datasets. However, it is still
critical to develop suitable performance anomaly detection methods for improving
detection accuracy for distributed applications.

3.3.5 Root cause localization evaluation

We conduct experiments to validate the feasibility of root cause localization in
the performance diagnosis framework. Our experiments are implemented based
on DApps monitoring data, because we have clear description of each metric.
We will identify which metrics in the DApps monitoring data cause performance
anomalies. We apply root cause localization methods on the DApps monitoring
data. In Table 5.1, we provide 24 selected metrics and 1 anomaly indicator of
DApp monitoring data. We classify them into CPU/MEM/NET/Disk related
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Table 3.4: Description of selected resource metrics

Index Type Metric
Ground
truth

0 Memory related Unevictable - Amount of unevictable
memory that can’t be swapped out for
a variety of reasons

1 Memory related Size of pages locked to memory using
the mlock() system call

2 Memory related Inactive anon - Anonymous and swap
cache on inactive LRU list, including
tmpfs (shmem)

3 Memory related Shmem - Used shared memory (shared
between several processes, thus includ-
ing RAM disks)

4 CPU related Iowait - Waiting for I/O to complete X
5 CPU related Busy Iowait X
6 Disk related sda X
7 CPU related Load 5m
8 CPU related Sys Load (5m avg)
9 CPU related Load 1m
10 CPU related CPU Busy
11 Memory related Pagesout - Page out operations
12 Disk related sda - Successfully written bytes X
13 Disk related sda - Written bytes X
14 Disk related sda - discard X
15 Network related OutOctets - Sent octets
16 Network related trans eth0
17 Disk related Processes blocked waiting for I/O to

complete
X

18 Memory related Dirty - Memory which is waiting to get
written back to the disk

19 CPU related Sys Load (15m avg)
20 CPU related Load 15m
21 Memory related Writeback - Memory which is actively

being written back to disk
22 Disk related sda - Writes completed X
23 CPU related Idle
24 Anomaly indicator txn fail label
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Figure 3.8: root cause localization accuracy based on di↵erent dependency graph
building methods

metrics. For the DApp we are monitoring, we add I/O pressure to inject anoma-
lies. The root causes are I/O related as shown in Table 5.1. As for methods in
the localization pipeline, we set ↵ in the PC algorithm as 0.05, and the iteration
for the random walk is 500.

Table 3.5: root cause localization accuracy for anomalies with the PC algorithm

Metric AC@1 AC@2 AC@3 AC@4 Avg Time(s)
Anomaly point 1 1.0 0.50 - - 0.75 0.84
Anomaly point 2 1.0 1.0 1.0 0.75 0.94 0.80
Anomaly point 3 1.0 0.50 0.67 0.75 0.73 0.59
Anomaly point 4 1.0 - - - 1.0 0.69
Anomaly point 5 1.0 0.50 - - 0.75 0.91

When an anomaly is detected, we start to localize its root causes. With
anomaly injection, we get several anomalies periods, and each of them lasts for
20 minutes. We select 5 of them randomly and compare the localization accuracy
based on two di↵erent dependency graph building methods: the PC and the
ANM algorithms. The comparison results can be seen in Figure 3.8. To evaluate
the localization accuracy, we use the Avg metric with di↵erent values of k due
to the uncertain nature of the number of predicted root causes. We can see
that, for di↵erent anomaly points, the PC algorithm has better performance than
the ANM algorithm. In addition, for anomaly point 1 and anomaly point 2, we
can see that the ANM algorithm does not discover real root causes because the
dependency graph does not extract causality relations from data. Therefore, the
PC algorithm has better localization accuracy and more stable performance for
the DApp monitoring data. We also show detailed localization performance of



3.4. Conclusion 63

PC algorithm in Table 3.5. We calculate the detection accuracy of AC@1, AC@2,
AC@3, AC@4, and Avg, and present the localization results. We can see that
the real root cause can be localized directly for di↵erent anomaly points. As for
anomaly point 2 and anomaly point 3, we can see that multiple root causes are
discovered, including many real root causes, so the localization accuracy is high.
Also, we provide the time spent of building dependency graph and localizing root
causes, we can see that the localization for these anomalies can complete within
1s, which means that the localization can be done in real-time with given data.

In conclusion, our experiments demonstrate the feasibility of real-time root
cause localization in the performance diagnosis framework. In addition, we build
the dependency graph and localize root causes at fine-grained. Our experiments
also show that the localization based on the PC algorithm is accurate for the
DApp monitoring data.

3.4 Conclusion

In this chapter, to achieve e↵ective performance diagnosis, we provide a per-
formance diagnosis framework named FIED, which can collect real-time perfor-
mance data, handle noise in monitoring metrics, e↵ectively detect performance
anomalies and localize root causes of distributed applications. The performance
anomaly detection provide evaluation for di↵erent unsupervised detection meth-
ods. The proposed root cause localization method can identify root causes in
a metric granularity with high accuracy. The monitoring tool in FIED includes
automated deployment and customized interface for observing application status.
The preprocessing component aims to reduce noise in data and improve diagnosis
performance.

We provide experiments to evaluate the e↵ect of metric selection, and re-
sults show that it can help improve detection accuracy and reduce time spent.
For performance anomaly detection, our experiments show that IForest has the
highest average F1 score 0.734, as its e↵ectiveness in handling high-dimensional
and large datasets. However, it is still critical to develop suitable performance
anomaly detection methods for improving detection accuracy. We provide the
root cause localization pipeline to fine-grained identify the root causes of per-
formance anomalies accurately and in real-time. The pipeline includes building
the dependency graph with the PC algorithm, localizing and ranking root causes
with a random walk. We apply the localization pipeline to the DApp monitoring
data. We compare the PC and ANM algorithms to build the dependency graph,
and the results show that the PC algorithm has the average localization accuracy
higher than 0.7. Our experiments also demonstrate the feasibility of real-time
root cause localization based on the PC algorithm. More research into improving
localization accuracy can be considered in the future.





Chapter 4

Performance Anomaly Detection
Methods with Enhanced Accuracy and
Robustness

In the previous chapter, we proposed the FIne-grained pErformance Diagnosis
(FIED) framework and demonstrated the feasibility of each component. How-
ever, in the anomaly detection component, we have observed that existing detec-
tion methods have varying performance for di↵erent datasets because they focus
on di↵erent features in data. In addition, e↵ective anomaly detection meth-
ods should meet challenging requirements, including high accuracy in detect-
ing anomalies and robustness to changing data patterns, while few studies have
addressed both challenges simultaneously. To address these issues, we propose
an ensemble learning-based detection (ELBD) framework that integrates well-
selected existing methods, including three classic linear ensemble methods and a
novel deep ensemble method. Our deep ensemble method, which is weakly su-
pervised, achieves the highest accuracy and robustness for performance anomaly
detection in distributed applications. Furthermore, we propose an unsupervised
detection method called CGNN-MHSA-AR for multivariate time series anomaly
detection. This method leverages temporal and feature information to achieve
superior accuracy compared to baseline detection methods.

This chapter is based on:
• Ruyue Xin, Hongyun Liu, Peng Chen, and Zhiming Zhao. ”Robust and

accurate performance anomaly detection and prediction for cloud appli-
cations: a novel ensemble learning-based framework.” Journal of Cloud
Computing 12, no. 1 (2023): 1-16.

• Yujia Song, Ruyue Xin, Peng Chen, Rui Zhang, Juan Chen, and Zhim-
ing Zhao. ”Identifying performance anomalies in fluctuating cloud envi-
ronments: a robust correlative-GNN-based explainable approach.” Future
Generation Computer Systems (2023). (as co-first author)
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4.1 Introduction

Performance anomaly detection plays a vital role in operating cloud services, and
applications [23] [292]. Cloud performance anomalies such as degraded response
time, often caused by underlying system resource shortages, may severely a↵ect
the quality of an application’s user experience and service. With monitoring tools,
performance data such as resource usage of applications can be collected [10]. At
the same time, anomaly detection to build a profile of performance data, and
detect deviations from the profile for distributed applications can be developed
[167]. Considering it is tedious and time-consuming to label data manually be-
cause various anomalies exist, weakly-supervised or unsupervised learning to pick
up interesting structures in the data and learning features is popular [169]. As
a result, e↵ective anomaly detection to identify abnormal behaviors and predict
anomalies to forestall future incidents is required in cloud computing systems.

Performance data of cloud computing systems, such as CPU and memory us-
age, are usually represented as multivariate time series. Multivariate time series
reflects health status of cloud computing system and can be used to identify ab-
normal behavior or events in real-time [35]. In this context, we can highlight two
challenging requirements for performance anomaly detection methods. At first,
the main target of real-time anomaly detection models is to improve detetion ac-
curacy, reduce False Position Rate (FPR), and achieve better performance [199].
However, the rapid increase of resources, dynamic cloud environments will cause
irregular data fluctuations and increase the FPR of anomaly detection. For ex-
ample, sudden changes in a certain feature, e.g., CPU usage, do not necessarily
mean anomalies of the system. In addition, improving robustness of detection
method to meet changes in data patterns and maintain performance consistency
is essential because di↵erent data distributions exist in multiple monitoring data.

Existing anomaly detection methods have often been developed using statistics
[207] or machine learning [26, 98] based methods. Most methods focus on im-
proving detection accuracy. For example, Audibert et al.[11] developed the USAD
based on an adversely trained AutoEncoder and achieved the best detection accu-
racy. Deep learning-based methods for multivariate time series anomaly detection
are also popular recently. STGCN[258] is a novel Graph Neural Network (GNN)-
based model tackling the time series prediction problem in the tra�c domain and
improving detection accuracy with multi-head self-attention. OmniAnomaly[218]
utilizes a stochastic recurrent neural network to capture long-term temporal in-
formation and a planar normalizing flow to define and detect anomalies. However,
existing deep learning-based detection methods mainly target improving detection
accuracy for specific scenarios, which cannot meet the requirements of complex
and dynamic cloud computing systems. Studies on improving the robustness of
detection methods usually use adversarial training, which needs to make a trade-
o↵ between robustness and accuracy[272], rather than simultaneously improving
accuracy and robustness.
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We thus define our research question as ”how to e↵ectively detect and predict
performance anomalies with high accuracy and good robustness?”. To address the
challenges of fewer labels and data noise, we focus on unsupervised and weakly
supervised detection methods and provide feature extraction to filter noise in the
data. To answer our research question, we provide two solutions. Firstly, consid-
ering various detection models have been developed, we adopt integrate existing
methods with ensemble learning [73] to capture di↵erent features in the data in-
stead of solely improving individual models. Therefore, we develop an Ensemble
Learning-Based Detection (ELBD) framework that incorporates classic detection
methods. We apply linear ensemble methods such as maximum, average, and
weighted average ensemble, which heavily rely on base detection methods, while
all of them can hardly surpass the performance of the individual base detection
methods. We then introduce a deep ensemble method that e↵ectively extracts and
incorporates the strengths of the base detection methods with a neural network
to enhance detection accuracy and robustness.

Secondly, we recognize that deep ensemble method improve detection perfor-
mance but has limited improvement due to the inherent limitations of classical
detection methods in extracting information from data. To overcome this prob-
lem and enhance detection accuracy and robustness, we explore the development
of advanced deep learning-based detection methods. Furthermore, to reduce the
reliance on labeled data, we shift our focus to unsupervised learning methods.
Specifically, we propose the Correlative-GNN with Multi-Head Self-Attention and
Auto-Regression Ensemble Method (CGNN-MHSA-AR) for unsupervised multi-
variate time series anomaly detection in distributed applications. This method
leverages the power of deep learning techniques, including GNN, multi-head self-
attention, and auto-regression, to achieve accurate anomaly detection without
the need of labeled data.

The rest of this chapter is organized as follows. In Section 4.2, we introduce
the details of the ELBD framework and conduct experiments to evaluate detection
accuracy and robustness. In Section 4.3, we provide detailed description of each
module of the CGNN-MHSA-AR model and present experimental results and
analysis. Finally, we draw our conclusion in Section 4.4.

4.2 An ensemble learning-based detection frame-
work

Base detection methods focus on di↵erent features in data and have diverse per-
formances. Therefore, it is reasonable to consider that the integration of base
methods can extract more features from data and improve detection performance.
Furthermore, ensemble learning is proposed with the assumption that by combin-
ing several base models, the errors of a single model will be compensated by others.
Therefore, we consider integrating base methods with ensemble learning and pro-
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pose an Ensemble Learning-Based Detection (ELBD) framework, including three
classic linear ensemble methods (maximum, average, and weighted average) and
a deep ensemble method.

4.2.1 Problem definition

Multivariate time-series data are timestamped data points sequences and can be
represented as D. Then each data point will be D

t

i
(i = [1, ..., n] is the index

of resource metrics. n is the number of resource metrics. t 2 N⇤ is the index
of timestamps). Multivariate time-series data anomaly detection is to learn the
characteristics of data D and determine whether an observation Dn+1 is anoma-
lous or not. For multi-step anomaly prediction, we will use data D for training,
and determine whether Dn+1, Dn+2, ..., Dn+p is anomalous.

In this section, we first provide the performance of classic detection methods.
Then we propose an ELBD framework, which is developed based on ensemble
learning and aims to improve detection accuracy and robustness by non-linearly
integrating information extracted by classic detection methods. In addition, we
implement multi-step prediction ability in the deep ensemble method in ELBD
framework.

4.2.2 Basic idea

The ELBD framework can be seen in Figure 4.1. First, input data is multivariate
time-series monitoring data, including system and service level data, which can be
collected and used as input. In this section, we mainly focus on system resource
data. We can represent input data as D

t

i
(i = [1, ..., n] is the index of resource

metrics. n is number of resource metrics. t 2 N⇤ is the index of timestamps).
Next, preprocessing needs to be done for the input data, including feature ex-
traction and train/test split. Feature extraction has been introduced in 4.2.3.
There is no need to do the train/test split for unsupervised learning. However,
the train/test split is important to avoid over-fitting for weakly-supervised learn-
ing. Therefore, we do the train/test split for the deep ensemble method, as seen
in the experimental settings. After preprocessing, data D

t

j
(j = [1, ..., d] is the

index of data dimensions. d is data dimensions after reduction) will be the input
of anomaly detection methods.

The base method selection provides unsupervised detection methods. In this
section, we manually select four typical base methods, which have been introduced
in detail in 3.2.5. The output of base methods can be assembled as an anomaly
score matrix. For the matrix, we provide three linear ensemble methods without
training and a deep ensemble method, which needs to be trained with a neural
network. The output of anomaly detection methods can be represented as Ct

m
(m

is the index of all detection methods). We mainly focus on accuracy, robustness,
and multi-step prediction ability to evaluate the multiple detection methods.
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Figure 4.1: ELBD framework, including three classic ensemble methods without
training (blue line) and a deep ensemble method which need to train a neural
network (red line).

4.2.3 Feature extraction

Multivariate data usually contains noise, which can induce unnecessary variance
in a model. Therefore, preprocessing data through feature extraction to remove
redundant information and reduce data dimension is needed. For feature ex-
traction, we apply PCA, which is an unsupervised method that uses eigenvalue
decomposition to compress and denoise data [254]. Our experiment in Section
3.3.3 has approved that it can reduce data dimension and computation costs well.

4.2.4 Linear ensemble methods

The outputs of base methods have di↵erent meanings and scales. For example,
the anomaly score of IForest is calculated based on path depth, and KNN is based
on distance. Because all the features should be measured in the same units, we
apply z-score normalization [194] to ensure that all outputs have the same scale.
The z-score method uses the mean and standard deviation of the original data for
normalization so that the processed data follows the normal distribution. After
normalization, we can represent the anomaly score vector Ct

k
(k represents base

detection methods) of each base method as O
t

k
. Here, k is the index of base



70 Chapter 4. Performance Anomaly Detection Methods

detection methods and k 2 [1, r], r is the number of base methods. Therefore,
by taking each anomaly score vector as a column, we can get the anomaly scores
matrix M :

M =

2
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The left side of table 4.1 can be seen as an example of the matrix. For ma-
trix M , we provide linear ensemble methods first, including maximum ensemble,
average ensemble, and weighted average ensemble.

The maximum ensemble is to select the max value of each row in matrix
M and form a new anomaly score vector.

Vmax = max
k

O
t

k
, t 2 N⇤ (4.1)

The average ensemble is to calculate the average of each row and form a new
anomaly score vector.

Vavg =
1

r

rX

k=1

O
t

k
, t 2 N⇤ (4.2)

A limitation of the average ensemble is that each base detection method con-
tributes equally to the final anomaly scores. However, some methods perform
better or worse than others. Therefore, we can consider assigning di↵erent weights
for these methods. For example, we assign more weights to better methods and
fewer to worse ones. Weighted average ensemble is a method developed based
on this idea.

Based on the assumption that if a mixed model can maximize the informa-
tion provided by each model, the mixed model has the best weight distribution
strategy. Mutual information can measure the di↵erence between models, which
can be used to calculate the weight of each base method [126]. To calculate the
mutual information of two models, we first need to transfer anomaly scores into
anomaly classes (0 or 1). We assume n samples in the two models, a and b.
Next, we use N

a

0 and N
a

1 to represent the number of normal and abnormal data
in model a, and N

b

0 and N
b

1 to represent the number of normal and abnormal
data in model b. In addition, Nab

0 and N
ab

1 represent the data that is detected as
normal and abnormal by both models. Then we can calculate the MI of models
a and b:

I(A,B) = Nab

0 log
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(4.3)
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To normalize it, we can calculate:

�(A,B) =
I(A,B)q

(
P1

i=0 N
a

i
log

Na
i
n
)(
P1

i=0 N
b

i
log

Nb
i
n
)

(4.4)

Therefore, the average mutual information of base method is:

�k =
1

r � 1

rX

l=1,l 6=k

�(�(k)
,�

(l)), k 2 [1, r] (4.5)

Here, each base method is �
(k). �k is the standard value of the di↵erence

between models and �k 2 [0, 1]. The smaller the value, the greater the di↵erence
between the two models. Based on the di↵erence value of each model, we calculate
the weights with wk = �k ⇤ Z, Z is the normalization factor. The new anomaly
score vector can be calculated as:

Vw avg =
1

r

rX

k=1

�k ⇤Ot

k
, t 2 N⇤ (4.6)

in Table 4.1, we provide five samples as an example to show how maximum,
average, and weighted average ensemble methods work. In the left part of the
table, we show the anomaly scores of four detection methods. In the right part,
we can easily get the maximum and average anomaly scores. As for the weighted
average ensemble, we assign the weights as (0.39, 0.28, 0.04, 0.29) for base meth-
ods based on the calculation. These new anomaly score vectors will be used to
identify anomalies and evaluate the performance of these ensemble methods.

Table 4.1: Linear ensemble methods example: on the left side is anomaly scores
obtained by each base method; on the right side is anomaly scores obtained
through ensemble methods.

Index IForest KNN LOF OCSVM Max Avg Weighted Avg
1 -0.41 -0.23 0.14 -0.88 0.14 -0.35 -0.49
2 -0.18 -0.03 0.63 -0.86 0.63 -0.11 -0.33
3 2.29 5.14 1.07 0.62 5.14 2.28 2.76
4 2.36 4.56 0.86 0.11 4.56 1.97 2.42
5 1.99 1.5 -0.3 -0.19 1.99 0.75 1.14

4.2.5 The deep ensemble method

The ensemble methods above try to combine di↵erent anomaly scores linearly.
However, the linear combination may not represent the information extracted by



72 Chapter 4. Performance Anomaly Detection Methods

each model well. Therefore, we provide a deep ensemble method in Figure
4.2, and it combines base methods in a nonlinear way by using an Multi-Layer
Perceptron (MLP). An MLP is a supplement to a feed-forward neural network.
It consists of three layers: the input layer, the output layer, and the hidden
layer. An MLP is suitable for classification or regression problems where inputs
are assigned a class or real-value label. Therefore, the deep ensemble method is
weakly-supervised and needs to be trained with some labels. Considering that
there are fewer labels in reality, we design to train the deep ensemble with fewer
labels and then test the trained model.

Figure 4.2: The architecture of deep ensemble method includes four steps:
(a)preprocessing data is sent to four (b)base methods; then after normalization,
the (c)ensemble of their outputs forms a score matrix; we finally input the score
matrix into an (d)MLP for training.

We provide the MLP architecture in Figure 4.2. The input layer receives
the anomaly score matrix M at first. We have two hidden layers consisting of an
arbitrary number of neurons and use ReLU as an activation function. The output
layer has one neuron and outputs the probability using the softmax activation
function. We define x = [Ot

1, O
t

2, O
t

3, O
t

4]. W
(1) and b

(1) are weights and biases of
the first layer. W

(2), b(2) and W
(3), b(3) are weights and bias of the two hidden

layers. The output can be calculated based on the below functions.

z
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(1)
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(1)
,

h
(1) = ReLu(z(1)),
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(2) = W

(2)
h
(1) + b

(2)
,

h
(2) = ReLu(z(2)),

z
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(3)
h
(2) + b

(3)
,

h
(3) = softmax(z(3))

(4.7)
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For the output h
(3), we can calculate the di↵erence between the predicted

and actual results y with the cross-entropy error function below. Here, y is the
label at time t. The optimization goal is to minimize this equation by constantly
adjusting parameters.

l = �y
T log h(3) (4.8)

The deep ensemble method needs to be trained with fewer labels, and then
the trained model can be applied to other data to detect anomalies. If we let y be
the label of time t + s (s is steps), we can train a model with prediction ability.
We provide an ELBD framework for improving detection accuracy, robustness,
and predicting anomalies. Experimental results can be seen next.

4.2.6 Experiments and results

Experimental settings

We design four experiments to evaluate the performance of the ELBD framework.

• E1: performance of methods in the ELBD framework. To evaluate the im-
provement in detection accuracy and algorithm robustness, we compare the
performance of methods in the ELBD framework with the best-performing
base detection method.

• E2: comparison with other deep detection methods. We design di↵erent
deep detection methods, such as combining base detection methods with
MLP, or replacing MLP with other deep learning methods, and compare
their detection performance with ELBD.

• E3: impact of di↵erent amounts of labels. Considering that the deep en-
semble is a weakly-supervised method, we conduct experiments to observe
the detection performance based on di↵erent amount of labels.

• E4: multi-step prediction of the deep ensemble method. As for the deep
ensemble method, we evaluate its multi-step prediction ability.

No hyper-parameter exists for maximum, average, and weighted average en-
semble methods. We first do the train/test split for the deep ensemble method.
Because there are fewer labels in real scenarios, we use only 10% of data with la-
bels to train the model. Next, hyper-parameters in the MLP for the three datasets
are the same. The input layer has 4 neurons because we have 4 base methods.
In addition, we set 20 neurons in the two hidden layers and the output layer as
1. We train 100 epochs and set the batch size to 20. We use the Adam optimizer
for stochastic gradient descent with an initial learning rate of 10�3 during model
training. We train the deep ensemble method 10 times. We show the error bar
in figures and take the average of evaluation metrics in tables, such as F1 score
and time, as the final result.



74 Chapter 4. Performance Anomaly Detection Methods

Experimental results

E1: Performance of methods in ELBD framework. We provide dif-
ferent methods in the ELBD framework to improve detection performance. We
apply these methods to the DApp monitoring, SMD, and Vichalana datasets to
evaluate them. We compare these methods with the best-performing base method
and evaluate the detection accuracy and robustness.

Figure 4.3: Detection accuracy of ensemble methods

Figure 4.4: Time spent of ensemble methods

For the DApp monitoring data in Figure 4.3, we can see that the F1 score
of the weighted average ensemble is higher than KNN, maximum, and average
ensemble, which shows that ensemble methods can improve the detection accuracy
by integrating extracted information of base methods. In addition, the weighted
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average ensemble assigns weights to base methods to highlight their di↵erent
contributions. The most noteworthy thing in Fig 4.3 is that the deep ensemble
method has the highest F1 score, 0.838. We train the deep ensemble method with
only 10% labels, but the improvement is significant. The result shows that the
nonlinear combination of base methods can extract more information and help
improve detection accuracy. As for time spent, in Figure 4.4, we can see that the
deep ensemble method spends about 1.3s for data testing, and other ensemble
methods spend about 1s. Time spent on each method for the DApp monitoring
data not high overall.

For SMD data in Figure 4.3, we can see that the F1 score of the IForest is
0.752, which is higher than the maximum, average, and weighted average ensem-
ble methods. Ensemble methods rely heavily on base methods, and other base
methods (KNN, LOF, and OCSVM) perform poorly. The most important thing
is that the deep ensemble has the best F1 score, 0.780, which is higher than
other methods, showing its superior detection ability by integrating information
non-linearly. Figure 4.4 presents the time spent of these methods. We can see
that the maximum, average, and weighted average ensemble spend about 36s,
and the deep ensemble spends about 37s. Still, ensemble methods rely on base
methods, so their time spent is mainly because of the kernel function calculation
in OCSVM and the computational cost of the neural network.

For Vichalana data in Figure 4.3, we can see that the F1 scores of the maxi-
mum and average ensembles are higher than OCSVM, which shows the detection
performance improvement of ensemble-based methods. In contrast, the weighted
average ensemble does not assign weights well. In addition, the deep ensemble
has the best F1 score, 0.830, which greatly improves detection accuracy compared
with other methods and shows the advantages of the non-linear combination of
base methods. Figure 4.4 presents the time spent on these methods. We can
see that the maximum, average, and weighted average ensemble spend about
100s, and the deep ensemble spends about 96s. The time spent is still mainly
because the large-scale data makes the kernel function calculation in OCSVM
time-consuming. In addition, the neural network’s computational cost takes a
little time.

Table 4.2: Rank results of algorithm robustness

Method IForest KNN LOF OCSVM
Emsemble

max
Ensemble

avg
Ensemble
w avg

Deep
ensemble

DApp monitoring data 4 3 8 7 6 5 2 1
SMD 2 7 8 6 3 5 4 1

Vichalana data 5 7 8 4 2 3 6 1
Average rank 3.667 5.667 8 5.667 3.667 4.333 4 1

Robustness score 0.619 0.333 0 0.333 0.619 0.524 0.571 1

As for algorithm robustness, we provide rank results in Table 4.2. We rank
the detection accuracy of all methods, including best base methods and methods
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in the ELBD framework, and calculate their average rank and robustness score,
respectively. In the Table, we can see that the deep ensemble method has the best
detection accuracy on the three di↵erent datasets, showing that it has not only
superior detection accuracy but outstanding robustness for di↵erent data distribu-
tions. Other ensemble methods rely heavily on base detection methods, showing
poor robustness. In conclusion, we can say that the deep ensemble method in the
ELBD framework improve detection performance in terms of detection accuracy
and robustness.

E2: Comparison with other deep detection methods.

Figure 4.5: Detection accuracy of deep detection methods

Figure 4.6: Time spent of deep detection methods

The deep ensemble method needs fewer labels to train, making it unfair to
compare it with unsupervised methods. Therefore, we design experiments to
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compare its performance with other weakly-supervised detection methods. We
create deep detection models by combining each base learner with an MLP and
comparing their performance with the deep ensemble method at first. In addition,
we also extend the deep ensemble method by replacing MLP with CNN and
LSTM, and we provide a comparison of their detection performance.

The comparison results of detection accuracy is shown in Figure 4.5. We
can see that the deep ensemble method has the highest F1 score for the three
datasets, showing that the deep ensemble method achieves the best detection
accuracy, and it is a robust method that can be applied to di↵erent datasets.
In Figure 4.6, we show the test time for each method. We can see that for the
DApp monitoring data, the test time of all methods is similar and small, around
1s. For the SMD and Vichalana data, the test time for OCSVM-based and deep
ensemble methods are similar and significant higher than other methods, because
of time-consuming OCSVM kernal function calculation and computational cost
of the neural network.

As for replacing MLP with CNN and LSTM, the comparison of their detection
performance can be seen in Table 4.3. We can see that for both the DApp moni-
toring data and SMD data, the deep ensemble (MLP) has the highest F1 score,
and it benefits from having more parameters. The deep ensemble (CNN) has the
lowest F1 score because the pooling layer in CNN will compress information, and
this does not suit time-series data very well. The deep ensemble (LSTM) performs
similarly to the deep ensemble (MLP) because it can e↵ectively capture long-term
dependencies in time-series data, which is well-suited for this type of data. As for
spent time, we can see that these deep learning methods take similar time for test
data. For Vichalana data, we can see that the deep ensemble (LSTM) has higher
detection accuracy and lower spent time, showing that it maybe more suitable for
large-scale data. As a result, we can see that the deep ensemble method can be
extended easily, and replacing the MLP with other deep learning methods may
improve detection accuracy.

Table 4.3: Performance of di↵erent deep ensemble methods

Detection methods
DApp monitoring data SMD data Vichalana data
F1 score Time(s) F1 score Time(s) F1 score Time(s)

Deep ensemble (MLP) 0.838±0.007 1.352±0.038 0.780±0.013 38.303±0.097 0.830±0.009 100.402±0.043
Deep ensemble (CNN) 0.832±0.003 1.402±0.073 0.764±0.019 40.747±0.036 0.812±0.009 96.262±0.100
Deep ensemble (LSTM) 0.827±0.006 1.846±0.142 0.765±0.014 42.139±0.219 0.833±0.002 94.782±0.047

E3: Impact of di↵erent amounts of labels. The deep ensemble needs to
train with fewer labels. We use 10% labels for all the experiments above. Here, we
design an experiment to test the impact of amounts of labels for detection ability
of the deep ensemble method. We conduct experiments on the three datasets,
and the results can be seen in Table 4.4.

For the DApp monitoring data, SMD data and Vichalana data, we set di↵erent
amounts of labels (10%, 30%, 50%, 70%, 90%) to train the deep ensemble method.
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Previous experiments show that with only 10% labels for training and testing for
all data, the F1 score of the deep ensemble method is higher than all the base
learners and linear ensemble methods. Furthermore, we can see that more labels
are used for training, and the F1 score is higher, which is easy to explain given
that more samples with labels provide more information to learn. Besides, the
time spent for each dataset in the table is similar, and this shows that the amounts
of labels for training the model have little e↵ect on the test time. To conclude,
the deep ensemble method can achieve superior performance with fewer labels,
such as 10%, to train, and the trained models can be used on other data with
high detection accuracy.

Table 4.4: Impact of amounts of labels on the DApp monitoring data and SMD
data

Number of labels
DApp monitoring data SMD data Vichalana data
F1 score Time(s) F1 score Time(s) F1 score Time(s)

10% labels 0.838±0.007 1.352±0.038 0.780±0.013 38.303±0.097 0.830±0.009 100.402±0.043
30% labels 0.866±0.009 1.298±0.042 0.792±0.015 37.890±0.038 0.837±0.008 103.123±0.161
50% labels 0.879±0.011 1.334±0.046 0.805±0.018 38.020±0.047 0.839±0.008 98.532±0.040
70% labels 0.887±0.012 1.293±0.046 0.807±0.012 39.104±0.041 0.841±0.010 99.071±0.121
90% labels 0.888±0.011 1.290±0.038 0.811±0.007 37.000±0.071 0.843±0.010 101.853±0.062

E4: Multi-step prediction of the deep ensemble method. With the
deep ensemble method, we can predict multi-step performance anomalies. We
mainly test its prediction ability on the DApp monitoring data. The time interval
in the DApp monitoring data is 15s. Thus, we can use every 4 steps, which is 1
minute, as the prediction step. We use the first 1500 samples to train the model.
Then, we predict whether the anomaly will happen or not after one or two or three
minutes. To evaluate the prediction ability, we present the prediction accuracy
with the F1 score in Figure 4.7.

In Figure 4.7, we can see that the longer the prediction time, the lower the
detection accuracy, which means that it is di�cult to predict long-term anomalies
because dependency between data diminishes over time. In addition, we can see
that all F1 scores are higher within four minutes than 0.8, which is good detection
accuracy. Therefore, we can say that it is available for the deep ensemble to
predict anomalies in the next four minutes with high accuracy. We also show
the time spent testing the prediction ability in Figure 4.7. We can see that the
testing time is around 1.1s, meaning that the deep ensemble method can predict
anomalies quickly.

For all the detection methods, we provide a table 4.5 to compare their per-
formance in terms of detection accuracy, algorithm robustness, and multi-step
prediction. In the table, we can see that neither base detection nor linear en-
semble methods have prediction ability. In addition, we can notice that IForest
and weighted average ensemble methods have good detection accuracy and ro-
bustness. The most important thing is that the deep ensemble method perfectly
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Figure 4.7: Prediction accuracy and time spent for di↵erent time steps of the
deep ensemble method on the DApp monitoring data

addresses three challenges and has the highest ARP score 5.166, which is much
better than other methods.

Table 4.5: Comparison results of all detection methods

Challenge Indicator IForest KNN LOF OCSVM
Emsemble

max
Ensemble

avg
Ensemble
w avg

Deep
ensemble

Detection accuracy F1 score 0.734 0.642 0.525 0.673 0.745 0.719 0.717 0.816

Algorithm robustness
Robustness

score
0.619 0.333 0 0.333 0.619 0.524 0.571 1

Multi-step prediction
Prediction

score
- - - - - - - 3.350

ARP score 1.353 0.975 0.525 1.006 1.364 1.243 1.288 5.166

In conclusion, we provide the performance evaluation of ensemble methods in
the ELBD framework. Our experiments show that these methods improve de-
tection accuracy and robustness by integrating extracted information from base
methods. Among those, the deep ensemble method has superior detection perfor-
mance in terms of accuracy, robustness, and multi-step prediction. In addition,
the deep ensemble method can predict anomalies in the next four minutes with
high accuracy. While the deep ensemble method demonstrates the superiority of
deep learning methods, its improvement is limited as it depends on the partial
information extracted by base detection methods. For instance, algorithms like
IForest, LOF, and OCSVM primarily emphasize the feature dimension rather
than the time dimension in time-series data, which limit their detection accuracy
[90]. To enhance the accuracy and robustness of anomaly detection, we propose
an advanced deep learning-based method that leverages the strengths of deep
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learning techniques.

4.3 A robust correlative-GNN-based Approach

E↵ective performance anomaly detection requires processing irregular data with
accident fluctuations and avoiding false positive detections. Figure 4.8 shows the
normal fluctuations of underlying resources. The red box part may be detected as
an anomaly due to fluctuating CPU and memory usage, but during this period the
system is actually healthy and both disk IOps and network tra�c are fluctuating
steadily. To avoid high FPR caused by this situation, it is vital to consider
correlations between variables in multivariate time series to di↵erentiate normal
fluctuations from anomalies.

Figure 4.8: An example of multivariate time series. The red box represents normal
fluctuations.

Deep learning makes it possible to extract information from unstructured
data. The GNN is good at processing graph structure data and mining inter-
dependencies between nodes. We can use GNN to mine inter-dependencies from
both feature and time dimensions for multivariate time series. To improve de-
tection robustness, we need to extract as much information as possible from
multivariate time series. Multi-head self-attention has been developed to extract
context information in sequence data, and Gate Recurrent Unit (GRU) is good
at capturing long-term temporal dependencies. In addition, the Autoregressive
(AR) model can be used to maintain linear relations in time series. Based on
these ideas, we propose a Correlative-GNN with Multi-Head Self-Attention and
Auto-Regression Ensemble Method (CGNN-MHSA-AR) for unsupervised multi-
variate time series anomaly detection in cloud computing systems and e�cient
abnormal explanation results are achieved on five public datasets. In this sec-
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tion, we provide the problem statement of unsupervised multivariate time series
anomaly detection and introduce the overall architecture of our model in detail.

4.3.1 Problem statement

We define multivariate time series in a cloud computing system asX = {x1, x2, · · · xn} ,
where n is the number of timestamps in a sliding window. We also define
xt = {v1

t
, v

2
t
, · · · vm

t
} as a vector at time t, where m represents the number of

features. For data X 2 R
n⇥m, the task of multivariate time series anomaly detec-

tion is to learn the characteristics of dataX and determine whether an observation
xn+1 is anomalous or not.

For multivariate time series anomaly explanation, our goal is to find the root
cause of the anomaly. Having located the abnormal time point xt = {v1

t
, v

2
t
, · · · vm

t
}

in the test set, we have to determine which feature at that time point is abnormal.
Typical unsupervised deep learning methods usually train and model normal

data of multivariate time series and identify abnormal points through high re-
construction errors, such as the LSTM-VAE[177]. The LSTM-VAE replaces the
feed-forward network in a VAE with LSTMs to extract temporal dependencies
but ignores feature inter-dependencies and contextual information in multivariate
time series. However, the LSTM-VAE only models normal data distributions and
lacks information extracted from complex abnormal data, which may increase the
FPR in anomaly detection.

To improve the detection accuracy and robustness of multivariate time series
anomaly detection, we first provide two parallel GNNs to learn inter-dependencies
in both feature and time dimensions. We then integrate multi-head self-attention
to capture context information, GRU to extract long-term dependency, and AR
model to maintain linear relations in multivariate time series. We will introduce
the overall architecture and detailed modules next.

4.3.2 Overall architecture

The overall architecture of CGNN-MHSA-AR is shown in Figure 4.9, which is
composed of the following modules in order:

• Data preprocessing: we perform data preprocessing with data normalization
and denoising for original multivariate time series.

• 1D-CNN feature extraction: we use the one-dimensional convolutional layer
to extract local patterns of each feature in preprocessed data.

• Correlation calculation based parallel GNNs: we provide parallel GNNs to
learn inter-dependencies in multivariate time series from feature and time
dimensions, and correlation calculation is used in this module.
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Figure 4.9: Overall architecture of CGNN-MHSA-AR.

• Context learning via multi-head self-attention: we use a multi-head self-
attention to extract context information in multivariate time series.

• Time-series forecasting via GRU: we use a GRU to capture the dependencies
between di↵erent time series.

• Autoregressive model ensembling: we utilize an AR model to maintain lin-
ear relations in original data.

• Anomaly Detection and Explanation: we utilize anomaly scoring functions
for anomaly detection and anomaly explanation.

4.3.3 Modules of CGNN-MHSA-AR

Data preprocessing. For original data, we apply min-max data normalization
to ensure that all data has the same scale. In addition,we adopt the Fourier
transform to denoise data as shown in Figure 4.9.(1). We treat each row of time
series as univariate time series and use Fast Fourier Transform (FFT) to denoise
and replace detected noise with zero.

1D-CNN feature extraction. The one-dimensional convolution neural net-
work (1D-CNN) is widely used in sequence processing because it is good at rec-
ognizing local patterns of sequences. For preprocessed multivariate time series,
we use the 1D-CNN with kernel size 7 to extract information along the time
dimension, as shown in Figure 4.9.(2).

Correlation calculation based parallel GNNs. Generally, given a graph,
we can use GNN to get new representations of nodes by considering inter-dependencies
between nodes. For multivariate time series, inter-dependencies in data can be
exploited with correlation calculation in both feature and time dimensions. How-
ever, traditional correlation calculation methods, such as Pearson correlation, do
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not work when a cloud computing platform is running stable, because multivari-
ate time series will keep certain values unchanged[139]. Therefore, the correlation
in time series is calculated by using the inner product of vectors, and we will con-
sider both feature and time correlation calculations.

For feature correlation calculation, we define a feature as a vector xi =
{vi1, v2i , · · · , vin}, where n is the number of timestamps in a sliding window.
We utilize the inner product between di↵erent vectors to get correlations of dif-
ferent features. We use cfeature

ij
to represent the correlation between feature i and

j, and the formula is as follows:

c
feature

ij
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i
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t

j

k
(4.9)

where k represents the rescaling factor, and equal to the length of a sliding window
in this work. We calculate feature correlations of all features in the multivariate
time series and finally obtain the feature correlation matrix with a shape ofm⇥m.
m represent the number of features in the multivariate time series.

For time correlation calculation, we define the vector at time i as xi =
{vi1, v2i , · · · , vim}, where m is still the number of features in the multivariate
time series. We can use c

time

ij
to represent the correlation between time i and j,

and the formula is as follows:
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where � represents the rescaling factor, and equal to the length of a sliding win-
dow. We calculate time correlations between of all timestamps and finally obtain
the time correlation matrix with a shape of n ⇥ n. n represents the length of a
sliding window.

As shown in Figure 4.9.(3.1), we use feature correlations between a vector i

with others as weights of a GNN and calculate the output representation of the
vector as follows:

hi = �(
mX
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ij
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i
) (4.11)

where � represents the sigmoid activation function. Similarly, for Figure 4.9.(3.2),
we use time correlations between a vector i with others as weights of a GNN and
calculate the output representation of the vector as follows:

hi = �(
nX

j=1
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time

ij
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j

i
) (4.12)

To fuse di↵erent information, we concatenate the output representations based
on feature correlation and time correlation as well as the convoluted represen-
tation to a matrix with a shape of n ⇥ 3m, where each row represents a 3m
dimensional feature vector for each timestamp.
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Context learning via multi-head self-attention. As shown in Figure
4.9.(4), to make the network’s complexity scales with the input size, we set the
multi-head self-attention mechanism with m heads and 3m embedding dimension
to learn di↵erent contextual information from data. where m is the number of
features in the multivariate time series.

Time series forecasting via GRU. After multi-head self-attention, we use
a GRU to extract time dependence in time series, as shown in Figure 4.9.(5). We
set the neurons of GRU are 150 and the number of layers is the default value of
1. Finally, we use all n data in a sliding window to predict the value at the next
timestamp. We use x

forecast

n+1,i to represent the predicted value of the i-th feature
at the time n+1.

Autoregressive model ensembling. Due to the nonlinearity of convolu-
tional, multi-head self-attention, and GRU modules, the output is not sensitive
to original input[103]. To address this drawback, we apply a first-order AR model
to preprocessed data and directly integrate its predicted value with the output
after GRU. We use x

AR

n+1,i
to represent the predicted value of the i-th feature at

the time n+1 after the AR model. The final prediction result can be formulated
as follows:

x̂n+1,i = ↵x
forecast

n+1,i + (1� ↵)xAR

n+1,i
(4.13)

where ↵ is to adjust the nonlinear and AR prediction results. In this work, we
set ↵ = 0.5.

Finally, we define the root mean square error as loss function:

Loss =

vuut
mX

i=1

(xn+1,i � x̂n+1,i)
2 (4.14)

Anomaly detection. After training the model, we get the predicted value
x̂n+1 at time n+1. We follow [176] to use the error between the actual value xn+1

and the predicted value as the anomaly score, and the formula is as follows:
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We identify a timestamp as an anomaly if its anomaly score is larger than a
threshold.

4.3.4 Experiments and analysis

In this section, we conduct experiments to evaluate the anomaly detection ac-
curacy and performance of abnormal explanation of CGNN-MHSA-AR. We first
compare the detection performance of CGNN-MHSA-AR with baseline methods
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on seven public datasets. Then we provide ablation experiments to analyze the
importance of modules in CGNN-MHSA-AR. Finally, we utilize five datasets to
test the ability of abnormal explanation of CGNN-MHSA-AR.

Datasets

We use seven public datasets: SMD and its four sub-datasets, Soil Moisture
Activate Passive satellite (SMAP), and Mars Science Laboratory rover (MSL).
SMD is a five-week-long real-time dataset of 28 cloud platform servers[218], which
contain 708405 data points from the training set and 708420 data points from the
testing set. The anomaly rate of SMD is 4.16%. In this dataset, we found that the
four datasets, machine-1-3 (the training set has 23702 data points and the testing
set has 23703 data points), machine-1-8 (23698 data points in the training and test
sets each), machine-2-6 (28743 data points in the training and test sets each), and
machine-3-5 (the training set has 23690 data points and the testing set has 23691
data points), did not perform well in many detection models because the irregular
fluctuations in the data would lead to false positives in abnormal detection. We
analyze that false positive anomaly detection is caused by irregular fluctuations in
data, as shown in Figure 4.10. Figure 4.10(a) and Figure 4.10(b) illustrate four-
feature segments for machines 1-3 and 1-8, respectively. It is possible to detect
anomalies in the red box in Figure 4.10(a) because of fluctuations in Feature 4.
While features 1, 2, and 3 fluctuate steadily, the system is actually operating in a
healthy state. Each feature has apparent fluctuations when we look at the green
box, which represents abnormal data segments. Figure 4.10(b) shows a similar
scenario. Due to fluctuations in features 1 and 2, anomalies may be detected in
the red box, which will lead to lower detection accuracy. Therefore, we use these
four datasets to prove that our model can e↵ectively resolve the false positive
issue and improve detection accuracy.

The SMPA and MSL are spacecraft datasets provided by NASA [218]. The
abnormal rate is 13.13% and 10.72%, respectively. For MSL, we choose 28317 data
points from the training set and 20000 data points from the testing set. And a
total of 20000 data points are selected from the training set and 20000 from the
testing set in SMAP. We use SMAP and MSL to prove that CGNN-MHSA-AR
has good anomaly detection ability in other fields.

Experimental settings

We use Python 3.7 and CPU-only PyTorch 1.11.0. We set the sliding window size
as n = 100, the 1D-CNN with kernel size 7, the neurons of GRU are 150 and the
number of layers is the default value of 1, the multi-head self-attention mechanism
with m heads and 3m embedding dimension. To train CGNN-MHSA-AR, we set
epochs as 10, batch size as 256, learning rate as 0.001, dropout as 0.4 and we use
the Adam optimizer.



86 Chapter 4. Performance Anomaly Detection Methods

(a) A sample segment in SMD machine-1-3
dataset

(b) A sample segment in SMD machine-1-8
dataset

Figure 4.10: Typical segment in datasets that has both normal fluctuations and
anomalies. An anomalous data set is displayed in green box while a normal data
set is displayed in red box.

Experimental results

E1: Performance of anomaly detection. We provide comparison results
between CGNN-MHSA-AR with baseline methods on seven public datasets and
an analysis of their detection performance.

Comparison results. For comparison, we select seven baseline methods, in-
cluding five statistical methods (from PYOD[280]): LODA, IForest, CBLOF,
HBOS and DeepSVDD; and two deep learning methods: MTAD-GAT[279] and
GDN[58]. We calculate the best-f1 of each model and present the comparison
results in Table 4.6.

Table 4.6: Comparison of anomaly detection performance for multiple detection meth-
ods on seven datasets.

Method
machine-1-3 machine-1-8 machine-2-6 machine-3-5 SMD MSL SMAP F1 Average

RankPre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

LODA 0.348 0.581 0.435 0.476 0.460 0.468 0.996 0.651 0.787 0.725 0.694 0.709 0.555 0.729 0.631 0.931 0.647 0.764 0.509 0.999 0.674 4.857

CBLOF 0.974 0.925 0.949 0.663 0.424 0.517 0.997 0.959 0.978 0.838 0.938 0.885 0.600 0.761 0.671 0.854 0.925 0.888 0.435 0.999 0.607 2.571

HBOS 0.987 0.401 0.571 0.252 0.463 0.326 0.851 0.660 0.743 0.507 0.999 0.340 0.992 0.198 0.330 0.205 0.999 0.341 0.396 0.999 0.568 6.714

IForest 0.947 0.924 0.935 0.472 0.853 0.608 0.911 0.898 0.904 0.614 0.704 0.656 0.601 0.505 0.549 0.669 0.925 0.775 0.302 0.999 0.464 4.000

DeepSVDD 0.468 0.806 0.592 0.709 0.854 0.775 0.702 0.905 0.791 0.832 0.971 0.897 0.788 0.334 0.470 0.981 0.730 0.837 0.462 0.272 0.342 4.429

GDN 0.285 0.558 0.377 0.461 0.250 0.324 0.874 0.294 0.440 0.444 0.617 0.518 0.227 0.151 0.181 0.205 0.942 0.345 0.197 0.917 0.343 7.571

MTAD-GAT 0.449 0.873 0.593 0.599 0.433 0.503 0.885 0.620 0.703 0.725 0.584 0.647 0.642 0.773 0.702 0.974 0.944 0.959 0.427 0.999 0.598 4.143

CGNN-MHSA-AR 0.837 0.870 0.853 0.712 0.956 0.816 0.777 0.999 0.875 0.918 0.955 0.936 0.839 0.867 0.853 0.906 0.944 0.925 0.727 0.999 0.842 1.714

Table 4.6 shows that CGNN-MHSA-AR outperforms all other methods on
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Figure 4.11: F1-score of CGNN-MHSA-AR and all baseline models.

machine-1-8, machine-3-5, SMD, and SMAP. The average F1 on these four datasets
can reach 86.1%. The F1 of CGNN-MHSA-AR is slightly lower than the best base-
lines on machine-1-3, machine-2-6, and MSL. CGNN-MHSA-AR outperforms the
state-of-the-art method (MTAD-CAT) on all six datasets except the MSL dataset
and F1-scores are relatively increased by 26%, 31%, 17%, 28%, 15%, 24%. The
robustness of CGNN-MHSA-AR is much better than all baselines because the
precision of CGNN-MHSA-AR is above 0.7, and the recall is above 0.85 on all
seven datasets, while no baseline can achieve this. In terms of the average ranking
of F1-score, CGNN-MHSA-AR also performs best.

As shown in Figures 4.11, we can see that the CGNN-MHSA-AR performs
well in the F1-score, and the fluctuations of CGNN-MHSA-AR on seven datasets
are all small, which proves the excellent robustness of CGNN-MHSA-AR. Fur-
thermore, on average, as shown in Figure 4.12, CGNN-MHSA-AR has the best
ranking across the three evaluation metrics for all datasets.

Performance analysis. Baseline methods have di↵erent performances on these
public datasets. LODA is a lightweight anomaly detector that is very practical
in sensor failure. LODA consists of multiple one-dimensional histograms, which
approximate the probability density of the input data and project it into a single
vector. A low density indicates a larger outlier in the sample. However, LODA’s
insu�cient dependency extraction between time series results in its poorer per-
formance than CGNN-MHSA-AR.

Based on the characteristics of a sample, HBOS divides it into multiple in-
tervals, and intervals with fewer samples are more likely to be outliers. HBOS
performs well in global anomaly detection but cannot detect local outliers. GDN
analyzes sensor relationships based on a graph and then identifies deviations from
learned patterns. However, GDN ignores correlations in the time dimension,
which makes it hard to predict various behaviors. CGNN-MHSA-AR extracts
correlations between di↵erent times and features in parallel, making it perform
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Figure 4.12: Average Precision, Recall, F1-score ranking of seven data sets across all
methods.

better than GDN and HBOS.

CBLOF is a cluster-based local outlier detector that uses clusters to identify
dense regions in data and then performs a density estimate for each cluster. When
a data point deviates significantly from most data, it is considered abnormal.
IForest defines anomalies as sparsely distributed points far away from groups with
high density. Due to the small density of abnormal points, the tree model can
easily detect abnormal points. Consequently, the abnormal data will be closer
to the root of the isolation tree when it is established, while the normal data
will be farther from it. The performance of CBLOF and IForest on machine-1-3
and machine-2-6 is better than CGNN-MHSA-AR because of the low density of
outliers in these two datasets.

MTAD-GAT considers each univariate time series as a feature. It uses two
graph attention layers simultaneously to learn both the temporal and feature
dimension dependencies of multivariate time series. However, MTAD-GAT ig-
nores maintenance of linear relationship for dynamic periodic data, resulting in
a decrease in prediction accuracy. In contrast, the CGNN-MHSA-AR addresses
this problem by adding the AR model’s prediction results. For the MSL dataset,
MTAD-GAT extracts correlations between data with a better weight matrix,
leading to a slightly better performance than CGNN-MHSA-AR.
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E2. Ablation experiments We conduct ablation experiments to analyze
the influence of convolutional layers, correlation calculation of feature and time
dimensions, GRU, and AR model in CGNN-MHSA-AR. Table 4.7 shows experi-
mental results.

Table 4.7: Ablation Study:F1-Score for CGNN-MHSA-AR and its ablated versions

Method machine-1-3 machine-1-8 machine-2-6 machine-3-5 SMD MSL SMAP
CGNN-MHSA-AR 0.853 0.816 0.875 0.936 0.853 0.925 0.842

w/o conv 0.851 0.794 0.842 0.929 0.849 0.883 0.811
w/o time-correlation 0.778 0.790 0.827 0.929 0.850 0.917 0.701

w/o feature-correlation 0.616 0.758 0.847 0.927 0.852 0.882 0.820
w/o GRU 0.763 0.789 0.801 0.911 0.851 0.923 0.815
w/o ar 0.473 0.487 0.770 0.649 0.681 0.793 0.636

The influence of convolutional layers. The impact of convolutional layers on
the anomaly detection ability of our proposed model can be seen in Table 4.7 w/o
conv, and the best-f1 is reduced by an average of 2%. For machine-2-6, the best-
f1 is reduced most, 3.3%. Therefore, these results show that convolutional layers
can help CGNN-MHSA-AR to better extract correlations between the temporal
dimension and the feature dimension via convolution.

The influence of correlation calculation. We verify the e↵ect of correlation
calculation on CGNN-MHSA-AR by removing the time and feature correlations,
denoting w/o time-correlation and w/o feature-correlation in Table 4.7. We can
discover that in w/o time-correlation, the best-f1 value is reduced by 4.4% on
average. For SMAP, the correlation calculation of the time dimension has the
greatest impact, and the best-f1 is reduced by 14.1%. In w/o feature-correlation,
the best-f1 is reduced by 5.6% on average. For machine-1-3, the correlation
calculation for the feature dimension has the greatest impact, and the best-f1 is
reduced by 23.7%. From these results, we can see that feature and time correlation
calculations can extract inter-dependencies between non-adjacent vectors, which
plays a crucial role in the final performance of our model.

The influence of GRU. We verify the e↵ect of GRU in our model by remov-
ing GRU, denoting w/o GRU in Table 4.7. We can see that the average best-f1
value drops by 3.5% when we remove the GRU. The GRU has the most sig-
nificant impact on machine-2-6, and the best-f1 drops by 7.4% after removing
the GRU. The GRU can extract the time dependency in time series and output
the predicted value considering the hidden status of previous data. The gated
structure ensures that important information will not disappear during long-term
propagation, which makes GRU improve the abnormal detection ability of CGNN-
MHSA-AR.

The influence of AR model. We show the e↵ect of an AR model on the
anomaly detection ability of CGNN-MHSA-AR in Table 4.7 w/o ar. We can
see that the best-f1 is reduced by 23% on average, with the greatest impact
on machine-1-3, which has a 38% reduction in best-f1 value. The AR model
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predicts data based on previous data linearly. We add the AR model because
the output after GRU in CGNN-MHSA-AR is not sensitive to the original data.
Experimental results show that the AR model improves the anomaly detection
performance of our model.

4.4 Conclusions

This chapter focuses on performance anomaly detection of distributed applica-
tions, which need to satisfy two challenging requirements: high detection accuracy
and robustness. Based on our survey, many machine learning-based methods have
been developed for performance anomaly detection. However, these detection
methods have inconsistent performance for di↵erent datasets and rarely simulta-
neously solve the three requirements. Therefore, based on existing performance
anomaly detection methods, we provide the ELBD framework that integrates ex-
isting detection methods, and the CGNN-MHSA-AR for unsupervised anomaly
detection.

Considering that base detection methods (IForest, KNN, LOF, OCSVM) per-
form di↵erently on datasets with di↵erent data patterns, we develop an ELBD
framework (maximum, average, weighted average, and deep ensemble) that in-
tegrates existing detection methods for improving detection performance. Our
experiments show that methods in the ELBD framework significantly improve
detection accuracy and robustness, especially the deep ensemble method. In ad-
dition, the deep ensemble method has the multi-step prediction ability, which can
predict anomalies in the next four minutes with high accuracy. We also evaluate
detection performance with our indicator, and the results show that the deep
ensemble method has the highest ARP score 5.166, which is much better than
other methods.

Accurately capturing the relationship between features and time series is cru-
cial for multivariate time series anomaly detection. Therefore, in CGNN-MHSA-
AR, we use two parallel GNNs to resolve false positive detection caused by ir-
regular fluctuations in the data. Furthermore, considering complex data patterns
in multivariate time series, we integrate multi-head self-attention, GRU, and the
AR model to extract multiple-dimensional information and improve detection ro-
bustness. CGNN-MHSA-AR also provides the function of abnormal explanation.
In experiments, we use seven public datasets to evaluate our model. In terms
of best-f1 score, CGNN-MHSA-AR outperforms all baseline methods in seven
datasets. Compared with the state-of-the-art baseline method, CGNN-MHSA-
AR increases the best-f1 up to 31.3%. Furthermore, on the seven datasets, the
precision of CGNN-MHSA-AR is above 0.7, and the recall is above 0.85, reflecting
the excellent robustness of our model. The model has also been shown to be able
to correctly determine the root causes of 74.1% of detected anomalies, a higher
percentage than the state-of-the-art models.
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This chapter provides two solutions for performance anomaly detection of dis-
tributed applications, and the results show that the AI-based method has superior
performance in terms of detection accuracy, robustness. However, some aspects
of this research can still be improved. For example, for applying AI methods
to help operators and developers better implement performance management of
cloud applications, detection e�ciency can be explored more in the future [80].





Chapter 5

Root Cause
Localization with Gradient-based Causal
Inference Method

In chapter 3, we have demonstrated the feasibility of real-time metric-level root
cause localization. However, our approach relied on the traditional method PC
algorithm (named after its authors, Peter and Clark) for building the causal di-
rected acyclic graph (DAG), and our experiments were conducted with only one
type of anomaly. In this chapter, we aim to expand our exploration of root
cause localization within the performance diagnosis framework by incorporating
advanced methods and conducting comprehensive experiments. Causal Inference
(CI) based methods have gained popularity recently for root cause localization,
but currently used CI methods have limitations, such as the linear causal rela-
tions assumption and strict data distribution requirements. In addition, existing
research primarily focuses on coarse-grained localization (only faulty services can
be localized), but there is a growing interest in fine-grained root cause localiza-
tion (localize indicative metrics on the faulty service). To tackle these challenges,
we propose a root cause localization framework working with causal inference
and named CausalRCA. The CausalRCA uses a gradient-based causal structure
learning method to generate weighted causal graphs and a root cause inference
method to localize root cause metrics, achieving fine-grained, automated, and
real-time root cause localization. We conduct coarse- and fine-grained root cause
localization to evaluate the localization performance of CausalRCA. Experimen-
tal results show that CausalRCA significantly outperforms baseline methods in
localization accuracy.

This chapter is based on:
• Ruyue Xin, Peng Chen, and Zhiming Zhao. ”Causalrca: Causal inference

based precise fine-grained root cause localization for microservice applica-
tions.” Journal of Systems and Software 203 (2023): 111724.
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5.1 Introduction

Microservices architecture [13] builds cloud applications by decomposing the sys-
tem functionalities into multiple independently deployable units, making dis-
tributed applications more resilient, robust, and adaptable to dynamic cloud en-
vironments. The performance of a microservice application is vital to guarantee
the quality of user experience and service [251]. However, performance anomalies,
such as degraded response time, are inevitable due to the large scale and complex
dependencies of services, causing enormous economic loss and user dissatisfac-
tion [137]. Furthermore, the performance of applications heavily depends on the
underlying resources [84]; for example, high CPU usage results in a congested
queue and growing latency [108]. In order to enable application operations to
take actions to resolve performance anomalies e↵ectively, root cause localization
to identify faulty services or resources is at the core of software maintenance for
online service systems [45].

A microservice application can be observed by monitoring tools, which help
operators to detect performance anomalies[40, 212]. However, performance anomaly
detection only notifies operators when an anomaly occurs. To e↵ectively handle
performance anomalies, operators need to be informed about where the anomaly
occurs (e.g., the faulty service) and what causes the anomaly (e.g., the memory
leak). Root causes of a performance anomaly can be localized at di↵erent gran-
ularity: coarse-grained and fine-grained [42]. Coarse-grained means that only
faulty services can be identified, and the corresponding action will be the mi-
gration or restart of the entire service [244], which is simple and straightforward
but may not recover anomalies and has a higher risk of a↵ecting other services
and longer recovery times [245]. The developer of Instana Autotrace1 emphasized
the importance of identifying anomaly locations and root causes to avoid delays
associated with restarting services, as this may not solve anomalies[68].

At a fine granularity, root cause localization will identify not only the faulty
service but also the underlying resources through monitoring metrics of the service
[248]. Operators can choose accurate actions to mitigate the performance anomaly
using fine-grained root cause when pinpointing indicative metrics on the faulty
service [42, 247]. For example, service scale-out has a positive e↵ect and shorter
recovery time compared with service restart in the case of underlying resources
being insu�cient [245]. In industry, fine-grained root cause localization attracts
much attention. The CCF AIOps Challenge2, jointly organized by industry and
academia, aims to solve problems in real IT operations scenarios based on produc-
tion systems of industrial companies (e.g., Sougo, eBay, Tencent) [138], providing
the performance diagnosis challenge for microservice systems and requires local-
izing root causes at the metric level in 20203. Instana Autotrace1, Google Cloud

1https://www.instana.com/
2http://iops.ai/
3https://competition.aiops-challenge.com/home/competition/1484441527290765368
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Operations4 are commercial platforms to identify root causes to help developers
and operators fix performance issues [233]. However, these platforms work with
trace data that requires integrating tracking codes into applications and require
time and expert technologies to analyze data. Monitoring data, which is di↵erent
from trace data, can be readily collected and utilized for fine-grained root cause
localization in microservice applications, aiding service operators in e�ciently
and cost-e↵ectively identifying faulty services and pinpointing faulty metrics to
resolve performance anomalies [42].

To track the root cause localization problem of microservice applications, some
research has developed in recent years. We can classify them into log-based, trace-
based, and metric-based according to the data sources [209]. Log-based [4] and
trace-based [121, 240] research have limitations, such as complex real-time pro-
cessing and information extraction. On the other hand, metric-based research
uses real-time monitoring data, including service latency and system resources,
and focuses on localizing faulty services and resource metrics. This kind of re-
search can assist anomaly recovery in taking actions like resource scaling easily
without intervention of application source code [209]. Nowadays, most metric-
based research is coarse-grained [85, 141, 157, 158, 159, 235], and fine-grained
root cause localization is starting to catch the attention of researchers [165, 246].
As for localization methods in metric-based research, causal inference (CI) based
methods that can model causal e↵ects between services have been developing re-
cently. For example, CauseInfer [41] applies the PC algorithm (named after its
authors, Peter and Clark) [214], and MicroDiag [246] uses the linear non-Gaussian
acyclic model (LiNGAM) [202] to obtain causal graphs of metrics, which can be
seen as anomaly propagation paths. However, currently used CI methods have
limitations, such as uncertainty about some causal relations between metrics and
strict assumptions about input data and causal relations [248]. Therefore, ad-
vanced CI methods can be considered for fine-grained root cause localization to
discover anomaly propagation paths and improve localization performance.

Fine-grained root cause localization in a microservice application is challeng-
ing because 1) services are often heterogeneous and have di↵erent characteristics,
which may result in diverse anomaly symptoms for the same issue; 2) the complex
dependency between microservices makes it di�cult to model the anomaly prop-
agation resulting from faulty services; 3) a large number of anomalous metrics
introduced in a system makes it hard to find out the root one for a performance
anomaly. To address these challenges, we formulate our main research question:
how to pinpoint the root cause of performance anomalies at a fine granularity
based on monitoring data? Three sub-questions are proposed:

• How to model anomaly propagation between monitoring metrics using CI
methods?

4https://cloud.google.com/products/operations
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• How to precisely determine the root cause based on the propagation model?

• How to evaluate the performance of root cause localization result?

To answer the research question, we propose a CI-based fine-grained root
cause localization framework named CausalRCA for microservice applications in
this chapter. The framework activates when an anomaly is detected. Based on
real-time monitoring data, CausalRCA will perform automatic root cause local-
ization, including modeling anomaly propagation paths as a causal graph and
ranking metrics to localize the root cause by traversing along the graph. Finally,
CausalRCA outputs predicted root causes, which can be used by operators to
determine strategies and recovery actions to solve the anomaly. We evaluate the
localization performance of CausalRCA on the Sock Shop microservice bench-
mark. When a performance anomaly in the Sock Shop, such as the high response
time of user requests, is detected, we can input monitoring metrics, including
service latency and resource metrics of each service, to CausalRCA. After pro-
cessing, the faulty service and root cause metric, for example, the memory usage
metric in the order service, will be identified. Our experimental results show that
CausalRCA improves localization accuracy. For example, the average improve-
ment of AC@5 for the fine-grained root cause metric localization in the faulty
service is 9.4% compared with baseline methods.

Our contributions can be summarized below:

• We propose an automated, fine-grained root cause localization framework
named CausalRCA, which analyzes monitoring data and localizes faulty
services and system resources in real-time.

• We provide a gradient-based causal structure learning method in Causal-
RCA, which can automatically capture linear and non-linear causal relations
between monitoring metrics.

• We conduct coarse- and fine-grained experiments to evaluate the localiza-
tion performance of CausalRCA and demonstrate that the proposed frame-
work has the best localization accuracy compared with baseline methods.
For example, the average AC@3 is 0.719, which is a 10% improvement
compared with baseline methods.

The rest of the chapter is organized as follows. In Section 5.2, we review
existing root cause localization research and CI methods. In Section 5.3, we
propose a framework for root cause localization and a detailed introduction of each
method. In Section 5.4, we design experiments from coarse-grained to fine-grained
to evaluate the localization performance of our framework. Finally, discussion and
conclusion are provided in Section 5.5 and Section 5.6.
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5.2 Related works

In recent years, research has developed for root cause localization in distributed
system [79], clouds [240, 247]. Based on data sources, we can categorize these
researches into three groups: log-based, trace-based, and metric-based [209]. Log-
based research [4] mainly localizes root causes based on text logs parsing, which
is hard to work in real time. Trace-based research [121, 240] gathers information
through the complete tracing of the execution paths and then identifies root causes
along those paths. However, trace data only focuses on service level, and it is time-
consuming for developers to understand source code well enough to extract trace
information. In contrast, metrics-based research uses monitoring data collected
from applications and underlying infrastructures to construct causal graphs and
infer root causes. Metric-based research can achieve automated, real-time root
cause localization based on multi-dimensional information.

Most metric-based research is focusing on coarse-grained root cause localiza-
tion [85, 141, 157, 158, 159, 235, 247]. However, fine-grained root cause localiza-
tion was proposed early and has begun to attract the attention of more researchers
in recent years [42, 165, 246]. As for CI methods, we can see that causal structure
learning methods like PC and LiNGAM are applied. At the same time, root cause
inference methods, such as BFS and random walk, are popular. Based on these
works, we consider precise root cause localization is more helpful for microservice
application recovery from performance anomalies. At the same time, the local-
ization accuracy of existing works can be improved; for example, the success rate
of accurately identifying the root cause may be under 20% [141, 235]. Therefore,
we are motivated to explore fine-grained root cause localization with advanced
CI methods.

Causal inference methods, especially causal structure learning, have been re-
searched for several years, and they play a vital role in many areas, such as
genetics [179] and biology [191]. The causal structure learning problem can be
formulated as to learn a directed acyclic graph (DAG) from observational data.
Methods can be classified into constrained-based, score-based, function-based,
and gradient-based. Constrained-based methods, such as PC and FCI [214], use
conditional independence tests to learn the skeleton of the casual graph and then
orient the edges based on pre-defined orientation rules. Score-based methods,
like GES [46], assign scores to di↵erent causal graphs based on a pre-defined score
function and then search over the space of DAGs to find the optimal one. Finally,
function-based methods, like LiNGAM [201, 202], construct a linear Structural
Equation Model (SEM) based on linear and non-Gaussian assumptions, and solve
it to get the DAG. These traditional methods contribute much to causal structure
learning but have limitations. PC usually has ambiguous causal relations in causal
graphs. GES takes a long time to match graphs, which makes it inappropriate
to be applied to large-scale data. LiNGAM has strict linear and non-Gaussian
assumptions, which makes it impractical.
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With the development of deep neural networks, gradient-based methods are
developed. Zheng et al.[282] propose an equality constraint to the linear SEM,
which enables a suite of continuous optimization techniques such as gradient de-
scent. After that, Yu et al.[264] provide a deep generative model and apply a
variant of the structural constraint to learn the DAG. Gradient-based methods
have no limitation of input data, can deal with linear and non-linear causal rela-
tions in data, and can automatically generate a weighted DAG. Gradient-based
methods have been applied to medical [232] and biology [56]. However, to the
best of our knowledge, no research has applied gradient-based methods to root
cause localization of microservice applications.

Based on DAGs generated by causal structure learning methods, researchers
apply graph methods, like BFS [15], random walk [215], and PageRank [188],
for root cause inference. The BFS is to traverse the graph and determine the
abnormal node without descendants or with no abnormal descendants as a root
cause. A random walk is walking through paths and choosing neighbors randomly
in a graph. It determines the node most visited as the root cause. PageRank
improves the random walk by adding the possibility of jumping to a random
node, which will be used in this work.

In conclusion, metric-based research can achieve automated and real-time root
cause localization compared with log- and trace-based research. However, most
existing research is about coarse-grained faulty service localization, while fine-
grained root cause metric localization can be more helpful for rapid recovery and
loss mitigation. CI-based methods are popular, but currently used methods have
their limitations. Therefore, this chapter will mainly focus on fine-grained root
cause localization and explore gradient-based methods to build causal graphs.

5.3 Root cause localization framework

In this section, we propose a root cause localization framework named Causal-
RCA, including causal structure learning and root cause inference, and we will
introduce detailed methods in the framework. All codes and data can be found
in our Github repository CausalRCA5.

5.3.1 Framework overview

The CausalRCA can automatically build anomaly propagation paths and localize
root causes in real-time based on observable metrics. The CausalRCA framework
consists of three components: monitoring metrics, causal structure learning, and
root cause inference, as shown in Figure 5.1.

The CausalRCA works when an anomaly occurs, such as the high latency
of user requests, and it then automatically builds anomaly propagation paths

5https://github.com/AXinx/CausalRCA code.git



5.3. Root cause localization framework 99

Figure 5.1: CausalRCA: details of the root cause localization framework

and localize root causes in real-time based on observable metrics. We first col-
lect monitoring data, including service-level data, that is, service latency, and
resource-level data, such as container CPU/memory usage. We use m

sj

i
to repre-

sent a monitoring metric in the service sj, and all monitoring data is time-series
data as shown in Figure 5.1(a). Based on monitoring data, we then start the
causal structure learning. The causal structure learning will automatically build
a causal graph of metrics, which can be seen as anomaly propagation paths. We
develop the causal structure learning with a gradient-based CI method, which can
output a weighted DAG to represent causal relations between metrics as shown
in Figure 5.1(b). With the DAG, we start root cause inference to localize root
causes. We apply PageRank to the weighted DAG and output a ranked list of all
metrics, as shown in Figure 5.1(c). Depending on the input data, the CausalRCA
can be used for coarse- or fine-grained root cause localization. Coarse-grained
works when input service latency, and CausalRCA will output the faulty service.
Fine-grained works when inputting resource metrics, and CausalRCA will output
the root cause metric. We evaluate the localization performance of CausalRCA
in experiments in Section 5.4.

5.3.2 Causal structure learning

The causal structure learning component aims to build a causal graph of mon-
itoring metrics. The causal graphs can be seen as anomaly propagation paths
between metrics. We can use a DAG to represent the causal graph, in which each
node represents a metric, and each edge represents a cause-e↵ect relationship.
Based on related work, we know that traditional causal structure learning meth-
ods have strict limitations on input data and relations. Therefore, we implement
the causal structure learning in CausalRCA with a gradient-based method, DAG-
GNN [264]. DAG-GNN provides a deep generative model, which is a variational
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autoencoder (VAE) parameterized by a novel graph neural network (GNN) [27],
and applies a variant of the structural constraint to learn DAGs. Unlike other
causal structure learning methods, the gradient-based method has no limitation
of input data, can extract linear or non-linear causal relations between metrics,
and automatically outputs a weighted DAG.

We use X 2 Rm⇥n (m is metrics, n is samples of each metric) to represent
input data. To get a DAG from X, Zheng et al.[282] adopt a linear SEM as a data
generation model, which is X = A

T
X +Z (A 2 Rm⇥m is the weighted adjacency

matrix. Z 2 Rm⇥n is the noise matrix). To ensure the acyclicity of the DAG, a
constraint of A is proposed as:

h(A) = tr [(I + ↵A � A)m]�m = 0 (5.1)

Based on the linear SEM, we can get X = (I�A
T )�1

Z, which can be written
as X = fA(Z). This equation is a general form recognized as an abstraction of
parameterized GNNs [123]. We can also see that X is generated from a latent
representation Z by defining a probabilistic graphical model. The generative
model can be developed based on a VAE, and Z follows a standard Gaussian
distribution [122] as shown in Figure 5.2.

Figure 5.2: Architecture of the causal structure learning method

With latent representation Z, we can define the decoder to reconstruct X as:

X = f2((I � A
T )�1

f1(Z)) (5.2)

Then, the corresponding encoder can be defined as:

Z = f4((I � A
T )f3(X)) (5.3)

Combining with deep neural networks, we use multilayer perceptron (MLP)
to simulate f1, f2, f3, and f4, which all are parameterized functions. Based on
VAE, the output of encoder and decoder are data distributions, so we get Z by
sampling from µZ and �Z , and X̂ by sampling from µX and �X .

For a VAE model, with a variational posterior q(Z|X) to approximate the
actual posterior p(Z|X), evidence lower bound (ELBO) can be represented as:

LELBO = EZ⇠q [log p(X|Z)]�KL(q(Z|X), p(Z))

= EZ⇠q

✓
� 1

2c
kX � X̂k

◆
�KL(q(Z|X), p(Z))

(5.4)
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Thus, the learning problem can be defined as:

min
A,✓

f(A, ✓) = �LELBO

s.t. h(A) = 0
(5.5)

where ✓ is all the parameters of the VAE. For a nonlinear equality-constrained
problem, we can use augmented Lagrangian method [19] to solve it.

Lc(A, ✓,�) = f(A, ✓) + �h(A) +
c

2
|h(A)|2 (5.6)

where � is the Lagrange multiplier and c > 0 is the penalty parameter. The
following update rules are defined:

A
k
,�

k = argmin
A,✓

Lck(A, ✓,�
k)

�
k+1 = �

k + c
k
h(Ak)

c
k+1 =

(
⌘c

k
, if |h(Ak)| > �|h(Ak�1)|

c
k
, otherwise

(5.7)

In the augmented Lagrangian, the penalty parameter c is typically updated
using an exponentially increasing function of the iteration number, and the La-
grange multiplier � is correspondingly updated to converge to the optimal con-
dition. The update rule for the penalty parameter c is important to balance the
trade-o↵ between feasibility and optimality in the optimization problem. The
rule states that if the constraint violation at the next iteration is larger than the
current violation, the value of c should be increased. Conversely, if the constraint
violation at the next iteration is smaller than the current violation, the value
of c should be kept the same. To achieve faster convergence and find optimal
solutions, the update rule depends on two tuning parameters, ⌘ and �. Usually,
we set ⌘ > 1 to induce fast convergence and � < 1 to limit the convergence speed
[264]. If � is set too high, the convergence will be slow, while if ⌘ is set too high,
the convergence will be fast, but the results may oscillate. Parameter analysis is
provided in our experiments in Section 5.4.2.

During training, parameters A and ✓ will be updated after every epoch. After
training, we can get the A, which is the adjacency matrix of a DAG. For root cause
localization in microservice applications, we define X = [ms1

1 ,m
s1
2 , ...,m

sj

i
, ...].

With this causal structure learning method, we can get a weighted DAG (G)
which represent causal relations between metrics as shown in Figure 5.1(b). Each
node in G represent a metric, for example, ms1

1 means a metric in service s1. The
edge from m

s1
1 to m

s1
2 indicates that a change in m

s1
1 will result in a change in

m
s1
2 with the weight w. Weight w represents the degree of the impact. If w is

large, it indicates that a small change in m
s1
1 will result in a large change in m

s1
2 .

Furthermore, w can be either negative or positive, implying that an increase in
m

s1
1 may result in an increase or decrease in m

s1
2 . Based on the weighted DAG,

we then use a root cause inference method to pinpoint the root cause metric.
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5.3.3 Root cause inference

For the weighted DAG (G), we can rank metrics with the PageRank algorithm.
PageRank works according to the number of incoming edges and the probabil-
ity of anomalies spreading through the graph. We define Pij as the transition
probability of node i to j:

Pij =

8
<

:

wijP
j
wij

, if wij 6= 0

0, otherwise
(5.8)

Here, wij is the weight between node i and j. We define P as the transition
probability matrix. Then, we can get the PageRank vector v as proposed by [175]
as:

v = ↵Pv +
1� ↵

n
(5.9)

Here, n is the number of nodes, ↵ 2 (0, 1) is the teleportation probability,
and it means that the random walk will continue with probability ↵ and jump
to a random node with probability 1 � ↵. We use the default setting ↵ = 0.85
[16]. To get results of the root cause inference method better, we first reverse
edges in G and use the absolute value of all weights. After running the root cause
inference method, we rank the PageRank scores of all nodes and get the ranked
list as shown in Figure 5.1(c). The higher the ranking on the list, the more likely
the root cause is.

5.4 Experiments and results

To evaluate the root cause localization framework CausalRCA, we conduct ex-
periments on both coarse-grained and fine-grained root cause localization. As for
coarse-grained root cause localization, we design experiments to identify faulty
services. As for fine-grained root cause localization, we first localize root cause
metrics in the faulty service. In addition, taking into account the lack of under-
standing of services and underlying infrastructures of an application, we provide
another fine-grained experiment to localize the root cause metric with all mon-
itoring metrics in all services. In this section, we will introduce experimental
settings and experimental results.
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5.4.1 Experimental settings

Testbed

To evaluate our framework, we deploy the Sock Shop6, which simulates an e-
commerce website that sells socks. It is widely used as a microservice benchmark
designed to aid demonstration and test microservices and cloudnative technolo-
gies [141, 247, 248]. The Sock Shop consists of 13 services, which are implemented
in heterogeneous technologies and communicate via REST over HTTP. Except
for communication services, it contains 7 functional services, which are, fron-
tend serves as the entry of user requests; catalogue provides product catalogue
and information; carts holds shopping carts; user stores user accounts, including
paymenet cards and addresses; orders place orders of login users from carts, and
it consumes memory a lot; finally, payment and shipping services are provided
for orders, which require network for processing transactions.

We deploy the Sock Shop with Kubernetes on several VMs in the cloud, as
shown in Figure 5.3. In the Kubernetes cluster, we have one master node and
three worker nodes. Their configurations are Ubuntu 18.04, 4vCPU, 16G RAM
Memory, and 80G Disk. On the master node, we deploy open-source monitoring
and visualization tools, Prometheus and Grafana, respectively. Prometheus and
Grafana are widely used for monitoring in microservice applications [172, 237].
Prometheus can keep monitoring the whole system and collecting both service-
level and resource-level data [247]. In addition, we deploy a load generation
tool, Locust7, on the master node to simulate workloads for the microservice
application. On worker nodes, we deploy 13 services of the Sock Shop application,
and they are allocated to di↵erent VMs automatically by Kubernetes.

Anomaly injection

Microservice applications are deployed and distributed in clouds, and their per-
formance is highly dependent on the resources of the underlying infrastructures.
There are several common and widespread real performance anomalies in dis-
tributed systems [161]. Anomalous CPU consumption in VMs due to infinite
loops, busy waits, or deadlocks of competing actions in applications can cause a
slowdown of user requests [196]. Memory leak, one of the most prominent soft-
ware bugs that severely threaten the availability and security of systems [117],
happen when allocated chunks of memory are not freed after their use. Accumu-
lations of unfreed memory may exhaust the system resource and lead to memory
shortage and system failures. In addition, network resources are vulnerable to be-
ing attacked because of the frequent communication between servers and clients.
Network latency anomalies usually originate from queuing or processing delays

6https://github.com/microservices-demo/microservices-demo
7https://locust.io/
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Monitoring Load generation

Kubernete cluster

Master node

Worker node Worker node Worker node

Figure 5.3: The microservice application Sock Shop deployed on VMs with Ku-
bernetes

of packets on gateways [196]. The three anomalies are common and frequent in
microservice application [141, 247], which will be used to evaluate our framework.

Our method can be applied to any anomaly that manifests as increased mi-
croservice response time. In this evaluation, we inject the three common anoma-
lies: CPU hog, memory leak, and network delay. We inject CPU hog by con-
suming CPU resources of each service. For memory leak, we allocate memory
continuously for each service. For network delay, we enable tra�c control to de-
lay the network packets. We implement anomaly injection with the tool Pumba8,
which can emulate network failures and stress-testing resources for Docker con-
tainers. Based on anomaly detection research [104, 111], anomalies usually last
several minutes, so each anomaly of each service we injected lasts 5 minutes, and
the application will have 10 minutes to cool down before another injection.

Data collection

We deploy Prometheus to monitor the microservice application and collect mon-
itoring data in real-time. Prometheus is configured to collect data every 5 sec-
onds. We collect both service-level and resource-level data. At the service level,
we collect the latency of each service. At the resource level, we collect container
resource-related metrics, including CPU usage, memory usage, disk read and
write, and network received and transmitted bytes, as shown in Table 5.1.

Baseline methods

Related work in Section 5.2 shows that CI-based root cause localization uses
di↵erent causal structure learning methods. Our CausalRCA is developed based

8https://github.com/alexei-led/pumba
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Metrics type Metrics
Service-level Service latency

Resource-level

CPU usage
Memory usage
Disk read
Disk write
Network received
Network transmit-
ted

Table 5.1: Collected monitoring metrics

on a gradient-based causal structure learning method. Therefore, to evaluate
the localization performance of our CausalRCA, we design baseline methods by
combining di↵erent causal structure learning methods with PageRank. We chose
the constraint-based method PC, the score-based method GES, and the function-
based method LiNGAM.

For these baseline structure learning methods, we use their default parameter
settings in causal-learn9. In CausalRCA, we use 2-layers MLP in the encoder and
decoder, respectively. We set the learning rate as 1e� 3, and training epochs as
1000. In addition, we train the model with the Adam optimizer. We use ⌘ = 10
and � = 0.25 as default in our experiments, which is proven to work well in [264],
and perform parameter analysis with ⌘ = 100, 1000 and � = 0.5, 0.75. We run
CausalRCA 10 times and take the average as the result of each experiment.

Evaluation metrics

To evaluate localization accuracy, we use two performance metrics: AC@k and
Avg@k, which are the most commonly used metrics to evaluate rank results[247].
AC@k represents the probability that the top k results given by a method in-
clude the real root cause. Avg@k evaluates the overall performance of a method
by computing the average AC@k. Their formulas can be found in Section 3.3.2.
We use AC@1, AC@3, and Avg@5 in our experiments. AC@1 evaluates if the
top localized root cause is the real one, and it is the most restrictive and accu-
rate metric. AC@3 is used to determine if the top three localized results have
the real root cause. This metric is less accurate than AC@1, but it can still
help operators quickly reduce root-cause candidates and localize the real ones.
Finally, Avg@5 represents the average localization ability. The three metrics are
commonly used in the root cause localization task, and they can fairly evaluate
localization performance [165, 247].

9https://github.com/cmu-phil/causal-learn
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Statistical testing

To assess the statistical significance of di↵erent RCA methods, we use the one-way
analysis of variance (ANOVA) to test the di↵erence between all RCA methods
and the t-test to check the pairwise di↵erences [57]. We use Avg@5 as the perfor-
mance score of each RCA method. ANOVA is a hypothesis-testing framework for
determining whether the between-group variation is significant. The F-statistic,
calculated as the ratio of the between-group variation to the within-group varia-
tion, is used in ANOVA. The p-value associated with the F-statistic indicates the
probability of obtaining an F-statistic as extreme as the observed one, assuming
the null hypothesis is true. If the p-value is less than the significance level (usu-
ally 0.05), we reject the null hypothesis and conclude that there is a statistically
significant di↵erence among the RCA methods.

If the ANOVA test indicates a significant performance di↵erence among these
methods, we then use a t-test to determine the di↵erences between each pair of
RCA methods. We calculate the t-value to measure the di↵erence between the
average performance scores of two methods relative to the variability within each
method. If the t-value is less than the critical value, we fail to reject the null hy-
pothesis and conclude that there is insu�cient evidence to suggest a performance
di↵erence between the two methods.

5.4.2 Experimental results

We provide the results of three experiments as below:
• Coarse-grained faulty service localization based on service latency of all
services.

• Fine-grained root cause metric localization in the faulty service based on
system-level metrics in the faulty service.

• Fine-grained root cause metric localization with all monitoring metrics in
all services

We compare the localization performance of CausalRCA with baseline methods
and explain the results.

Coarse-grained faulty service localization

We evaluate the performance of CausalRCA on localizing the faulty service that
initiates performance anomalies. This localization is conducted based on service-
level data, which is the latency of all services. Table 5.2 shows the localization
accuracy compared with baseline methods for di↵erent anomalies. We can see
that, when compared to baseline methods, CausalRCA has improved localiza-
tion accuracy in terms of AC@1, AC@3, and Avg@5 in di↵erent anomalies by
up to 10%. In addition, for CPU hog, causalRCA has the best performance in
terms of AC@1, AC@3, and Avg@5. The AC@3 is 0.718, which means that
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there is a 71.8% chance of finding the root cause in the top three metrics on
the ranked list, which is slightly higher than the LiNGAM-based method. For
memory leak, CausalRCA continues to outperform in terms of AC@1, AC@3,
and Avg@5. There is a 62.1% possibility of localizing the root cause in the top
3 metrics. For network delay, AC@3 is not good enough, but AC@1 and Avg@5
are higher than baseline methods. In general, the average AC@1 of CausalRCA
is 0.2, which means that there is an average 20% possibility that the top 1 metric
on the ranked list can be identified as the root cause. The averages AC@3 and
Avg@5 of CausalRCA for the three anomalies are 0.575 and 0.581, respectively.
The increase of average Avg@5 is 6.7%, showing the improvement in localizing
accuracy compared with baseline methods. We provide statistical testing to show
the significant di↵erence between these RCA methods. We obtained a p-value of
0.0003 using the ANOVA method first, showing a significant performance di↵er-
ence between the four RCA methods. We further utilized t-tests to compare the
performance di↵erences between each pair of methods, and the resulting p-values
are shown in Figure 5.4. We can see that CausalRCA has a significant di↵er-
ence from baseline methods, while PC-based and GES-based methods have no
significant di↵erence.

Table 5.2: Localization accuracy of CI-based methods on localizing faulty services
(Coarse-grained) for di↵erent anomalies

Methods PC-based GES-based LiNGAM-based CausalRCA Increase
CPU hog

AC@1 0.143 0.143 0.143 0.187 4.4%
AC@3 0.286 0.429 0.714 0.718 0.4%
Avg@5 0.429 0.400 0.571 0.624 5.3%

Memory leak
AC@1 0 0 0.143 0.243 10.0%
AC@3 0.429 0.143 0.571 0.621 5.0%
Avg@5 0.429 0.229 0.543 0.614 7.1%

Network delay
AC@1 0.143 0 0.143 0.171 2.8%
AC@3 0.571 0 0.429 0.386 -18.5%
Avg@5 0.486 0.171 0.429 0.506 2.0%

Average Avg@5 0.448 0.267 0.514 0.581 6.7%

We analyze the impact of parameters � and ⌘ in causal structure learning
on the root cause localization performance of CausalRCA. We use � = 0.25 and
eta = 10 as default, and also set � = 0.5, 0.75, and ⌘ = 100, 1000. The results
can be found in Figure 5.5. We can see that � = 0.25, ⌘ = 10 has the best
performance in CPU hog and Network latency, and it also has the best average
performance of di↵erent anomalies. In addition, � = 0.75, ⌘ = 10 performs best
for memory leak, because a high � can prevent too fast convergence and find
better solutions, but it usually takes more time. Furthermore, we can see that
� = 0.25, ⌘ = 1000 performs poorly on CPU hog anomaly, but relatively well
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Figure 5.4: P-value of RCA meth-
ods (Coarse-grained experiment)

Figure 5.5: Localization accuracy with dif-
ferent � and ⌘ (Coarse-grained experiment)

(a) CPU hog (b) Memory leak

(c) Network delay

Figure 5.6: Performance of CausalRCA on localizing faulty services with di↵erent
anomalies



5.4. Experiments and results 109

on memory leak anomaly, suggesting that a high ⌘ can lead to more variance in
localization results.

We then provide a detailed performance of CausalRCA on localizing faulty
services with di↵erent anomalies in Figure 5.6. For CPU hog in Figure 5.6(a),
we can see that localization accuracy performs well on services except payment,
because payment is not a CPU-intensive service. For the memory leak in Figure
5.6(b), we can see that front-end, user, and catalogue perform worse than other
services. The memory leak issues in these services do not a↵ect their service la-
tency much, making it di�cult to identify cause-e↵ect relations between services.
In terms of network delay in Figure 5.6(c), only service payment performs well,
which explains the poor average localization performance of AC@3 in Table 5.2.
Payment service relies heavily on the network, making it easy to localize the
network delay issue. We plot the errorbar for Avg@5 in Figure 5.6 to represent
the variation of our results, and we can see that the standard deviations of many
results are not high.

Fine-grained root cause metric localization in the faulty service

Given the faulty service, we apply CausalRCA to container resource metrics and
evaluate its performance on localization accuracy for di↵erent anomalies. Table
5.3 shows the localization accuracy of CausalRCA on localizing root cause metric
in faulty service compared with baseline methods. For di↵erent anomalies, we can
see that CausalRCA has improved localization accuracy compared with baseline
methods in terms of AC@1, AC@3, and Avg@5 by up to 14.3%. In addition, for
CPU hog, CausalRCA has the best performance in terms of AC@3 and Avg@5,
while the AC@1 is worse than PC-based methods. For memory leak, the AC@1
of CausalRCA is worse than LiNGAM-based method, but it still has the best
AC@3 and Avg@5. Finally, for network delay, CausalRCA outperforms in terms
of AC@1, AC@3, and Avg@5. In general, the average AC@1 of CausalRCA is
0.248, which means there is a 24.8% possibility of determining the top 1 metric on
the ranked list as the root cause. For the three anomalies, the average AC@3 is
0.719, which means there is a 71.9% possibility to localize the root cause metric
in the top 3 metrics on the ranked list, and the average improvement is 10%
compared with baseline methods. The average Avg@5 of CausalRCA is 0.668,
and the average increase is 9.4%. We consider the outperformance of CausalRCA
is because resource metrics, such as CPU/memory usage, a↵ect each other, which
makes it easier to identify anomaly propagation with CI methods.

We also provide statistical testing to show the significant di↵erence of these
RCA methods. We first obtained a p-value of 0.0013 using the ANOVA method,
showing a significant performance di↵erence between the four RCA methods.
The p-values obtained from t-tests are shown in Figure 5.7. We can see that
CausalRCA has a significant di↵erence from baseline methods. In comparison,
GES-based method has no significant di↵erence with PC-based and LiNGAM-
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Table 5.3: Localization accuracy of CI-based methods on localizing root cause
metrics (Fine-grained) in faulty services for di↵erent anomalies

Methods PC-based GES-based LiNGAM-based CausalRCA Increase
CPU hog

AC@1 0.429 0.143 0 0.229 -20.0%
AC@3 0.429 0.571 0.714 0.729 1.5%
Avg@5 0.429 0.600 0.571 0.670 7.0%

Memory leak
AC@1 0 0 0.429 0.271 -15.8%
AC@3 0.143 0.429 0.571 0.714 14.3%
Avg@5 0.343 0.400 0.629 0.677 4.8%

Network delay
AC@1 0 0.143 0.143 0.243 10.0%
AC@3 0.286 0.571 0.429 0.714 14.3%
Avg@5 0.221 0.514 0.521 0.657 13.6%

Average Avg@5 0.331 0.505 0.574 0.668 9.4%

based methods.
We evaluate the impact of parameters � and ⌘ and present the findings in

Figure 5.8. The results indicate that � = 0.25 and ⌘ = 10 perform the best in
identifying CPU hog anomalies, while � = 0.25 and ⌘ = 100 are most e↵ective in
detecting memory leak and network latency anomalies. In addition, � = 0.5 and
⌘ = 10 outperform � = 0.5 and ⌘ = 100 in detecting network latency anomalies
and perform better than � = 0.75 and ⌘ = 10 across all three types of anomalies.
Overall, � = 0.25 and ⌘ = 10 have the highest average localization performance.
However, increasing � and ⌘ could potentially lead to better solutions and improve
localization accuracy.

Figure 5.7: P-value of RCA meth-
ods (Fine-grained experiment)

Figure 5.8: Localization accuracy with dif-
ferent � and ⌘ (Fine-grained experiment)

We then provide the performance of CausalRCA on localizing root cause met-
rics in faulty services with the three anomalies in Figure 5.9. We can see that
Ac@3 and AC@5 have consistent performance. For CPU hog, we can see that
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(a) AC@3 (b) Avg@5

Figure 5.9: Performance of CausalRCA on localizing root cause metrics in faulty
services with di↵erent anomalies

localization accuracy is low for payment and shipping services because they are
insensitive to CPU resources. Because the memory leak issue manifests in multi-
ple resource metrics, all services perform well for the memory leak. Order service
has the best performance because it is highly related to memory usage. For net-
work delay, we can see that payment and shipping have the best performance
because they rely heavily on the network. We plot the errorbar for Avg@5 in
Figure 5.9(b), and we can see there are some variances in the localization results,
maybe caused by the dynamic nature of cloud environments or random fluctua-
tion of resources in services, showing that the generality of CausalRCA can be
explored more in the future.

Fine-grained root cause metric localization with all monitoring metrics

Considering that we do not know services and underlying infrastructures of an
application, we conduct the fine-grained root cause localization with all monitor-
ing metrics. We apply CausalRCA on all monitoring metrics to localize the root
cause metric. We mainly show the ranks of comparison between the LiNGAM-
based method and CausalRCA, because PC sometimes fails to extract causal
relations between metrics, while GES takes too long to build a causal graph with
too many nodes. For this fine-grained root cause localization, it is hard to iden-
tify the root cause metric in the top 1 or top 3 metrics, so we use the rank of
root cause metrics to evaluate localization performance as shown in Figure 5.10.
We can see that the average rank of CausalRCA is about 13, which is lower
than the LiNGAM-based method. The result shows that CausalRCA has bet-
ter localization performance than the LiNGAM-based method. However, it is
still challenging to extract causal relations between metrics and pinpoint the root
cause metric from multiple observable metrics. We apply the t-test to LiNGAM-
based and CausalRCA methods and obtain the p-value of 0.0335, showing the
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(a) CPU hog (b) Memory leak

(c) Network delay

Figure 5.10: Ranks of root cause metrics identified by CI-based methods

Figure 5.11: Ranks of root cause metrics with di↵erent parameters � and ⌘
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significant di↵erence between them. The impact of parameters � and ⌘ is pre-
sented in Figure 5.11. The results indicate that � = 0.25, ⌘ = 10 performs the
best in identifying CPU hog and network latency anomalies. For the memory leak
anomaly, higher � and ⌘ have better localization accuracy, and � = 0.75, ⌘ = 10
is most e↵ective. On average, the � = 0.25, ⌘ = 10 has the best localization
performance, while adjusting � and ⌘ for the memory leak anomaly can improve
localization accuracy e↵ectively.

In conclusion, CausalRCA has a significant di↵erence from baseline methods
and better localization accuracy for coarse-grained and fine-grained root cause
localization. In addition, we find that � = 0.25, ⌘ = 10 in CausalRCA has
the best localization performance on average. However, adjusting parameters
can provide more potential for improving localization accuracy. Based on CI
methods, we can see that anomaly propagation performs di↵erently in di↵erent
services; for example, the payment service is sensitive to the network delay issue
but nonsensitive to the CPU hog issue. As for fine-grained root cause localization,
it is still challenging to pinpoint the root cause metric in all monitoring metrics.
Therefore, it is more practical to consider the drill-down localization, i.e., identify
the faulty service first and then determine the root cause metric in the faulty
service.

5.4.3 Threats to validity

We analyze threats to our framework from the four categories: construct, inter-
nal, conclusion, and external validity based on [242]. The construct threat
to validity mainly lies in the hyperparameters and evaluation metrics. We pro-
vide parameter analysis for two hyperparameters in CausalRCA, and results show
that default parameters works well as provided in [264] but tuning parameters
carefully has the potential of improving localization accuracy. In addition, we
use widely used evaluation metrics and provide statistical testing to evaluate the
performance di↵erence of di↵erent RCA methods.

The internal threat to validity mainly lies in the implementation of the
framework, as errors or bugs in the implementation could a↵ect the accuracy of
the results. To reduce it, we have used established Python packages and con-
ducted thorough testing. We have also repeated the experiments multiple times
to ensure the reliability and consistency of our results. The conclusion threat
to validity of our framework is related to the types of anomalies used in experi-
ments. As microservice applications have a variety of performance anomalies that
can a↵ect the localization results [161], we injected three di↵erent types of com-
mon and frequent anomalies to evaluate the e↵ectiveness of our framework. We
report and discuss the localization results for each individual anomaly type, and
the experimental results demonstrate the superior performance of our framework
on these anomalies.

The external threat relies on the configuration of microservice applications
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and the data collection strategies. In this section, we investigate a specific config-
uration of a microservice application to evaluate the performance of CausalRCA,
which may limit the generality of our framework. However, building complex
infrastructures and repeating the experiments on multiple testbeds is extremely
expensive, which is impractical for our experiments. In addition, the benchmark
microservice application Sock Shop is widely used in academia to aid the testing
of microservices in clouds [141, 247], and it helps us mitigate this threat. On
the other hand, the localization performance of our framework heavily relies on
input data. To mitigate the threat, we adopt Prometheus, an open-source tool
for real-time monitoring, and collect service-level and resource-level metrics that
present the status of a running microservice application. Currently, our frame-
work performs well with anomalies injected over fixed time range anomalies, but
the e↵ect of di↵erent time ranges for CausalRCA can be explored more.

5.5 Discussion

This chapter provides a framework called CausalRCA for root cause localization
of microservice applications. The framework is developed with CI-based methods,
including causal structure learning and root cause inference. We provide coarse-
grained and fine-grained experiments to evaluate the localization performance of
the framework. Our experimental results show that the framework has the best
localization accuracy compared with baseline methods. However, some aspects
can still be improved.

Our experiments show that CausalRCA performs well on localizing faulty
services and root cause metrics in faulty services. However, localizing root cause
metrics from all monitoring metrics is very hard. The average rank of root cause
metrics is outside the top ten. We consider the improvement of localization
accuracy can be researched more. First, data preprocessing, such as feature
reduction, can be considered to reduce training time and improve localization
accuracy. Next, we apply a gradient-based method to learn causal structures.
The gradient-based method is applied to time-series monitoring data, which may
ignore time lags in the original data. We consider that time lags in the data
may help improve causal structure learning. For the root cause inference method
PageRank, a personalized PageRank [112], which considers the preferences of
nodes, can be applied.

This chapter mainly focuses on monitoring data to implement root cause lo-
calization. Monitoring data has multi-dimensional information and is easy to
collect compared with trace and log data. However, trace data and log data con-
tain accurate deployment information and service interactions, which can be used
to calibrate the causal graph generated based on monitoring data. At the same
time, the causal graph generated with CI methods can extract hidden relations
between metrics. Therefore, we can consider combining di↵erent data resources
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to improve localization accuracy in the future.
This chapter mainly focuses on improving localization accuracy of microser-

vices, while e�ciency is also important for achieving fast recovery. For the Sock
Shop benchmark application, we roughly estimate the time spent of our frame-
work takes tens seconds, showing the cost of time may be lower than service
migration [43]. However, for large-scale microservice, e.g., hundreds/thousands
of services, the time cost for building the causality graph may be far greater than
service migration. We will test the scalability and exact time cost of our frame-
work and pay more attention to reducing training time in the future. For now,
we mainly use the data collected in five minutes after the anomaly is detected. In
the future, we will consider testing localization performance with di↵erent time
ranges based on our CausalRCA.

5.6 Conclusion

This chapter tackles the challenge of localizing the root causes of performance
anomalies in microservice applications. Root cause localization can be used to
help operators achieve fast recovery of microservice applications. Therefore, it is
important to guarantee localization accuracy at first. In addition, fine-grained
root cause localization, which means identifying both faulty service and resource-
related metrics in a faulty service, is necessary. With monitoring data, we provide
a CI-based framework named CausalRCA, which can automate localizing root
causes with fine granularity and in real-time. The CausalRCA works with causal
structure learning and root cause inference components. For causal structure
learning, we propose a GNN-based method that uses a deep generative model
and applies a variant of the structural constraint to learn the weighted DAG. The
gradient-based method can extract non-linear causal relations between metrics
compared with other CI methods. For root cause inference, we apply PageRank
to visit the weighted DAG and return a ranked list of all metrics. We then provide
experiments to evaluate the localization performance of CausalRCA.

To evaluate CausalRCA, we conduct three experiments: coarse-grained faulty
service localization, fine-grained root cause metrics localization in faulty services,
and fine-grained root cause metrics localization with all monitoring metrics. Our
experimental results show that CausalRCA has better localization accuracy than
baseline methods. Furthermore, based on CI methods, we can see that anomaly
propagation performs di↵erently between services, which gives operators a better
understanding of microservice applications. In addition, it is di�cult for fine-
grained root cause localization with all monitoring metrics because anomalous
metrics manifest diverse symptoms in di↵erent services. Therefore, fine-grained
root cause localization with all monitoring metrics still needs to be improved.
However, for microservice applications, we can still consider the drill-down local-
ization, first identifying the faulty service, and then pinpointing the root cause
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metric in the faulty service to identify fine-grained causes.
In the future, we will continue to improve the localization performance of

CausalRCA. Hyperparameter tuning can be tested more in the future. The causal
structure learning can consider time lag in monitoring data, and the root cause
inference can be improved by adding the preferences of nodes. In addition, em-
ploying knowledge from trace and log data to calibrate the causal graph may im-
prove localization accuracy and make the causal graph more reasonable. Finally,
localization e�ciency needs to be tested and improved to achieve fast recovery.
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Conclusions

Cloud computing provides elastic and on-demand resources for distributed ap-
plications to deliver high-quality services. However, the dynamism of underly-
ing cloud infrastructures and complex dependencies between services introduce
abnormal performance phenomena, e.g., degradation, which severely a↵ect the
quality of services and the user experience. To make services in applications con-
tinuously operational, performance diagnosis systems are required to detect per-
formance anomalies, such as slow response times, and localize their root causes.
Such kinds of systems have been studied in recent years. A typical performance
diagnosis system comprises components for collecting and preprocessing monitor-
ing data, detecting performance anomalies, and localizing root causes. However,
each component of a performance diagnosis system presents unique challenges.
The data collection and preprocessing components should collect real-time per-
formance data and reduce noise to make it available for subsequent analysis. Ef-
fective detection methods must be accurate for anomaly identification and robust
in fitting di↵erent data distributions in real scenarios. The root cause localiza-
tion component aims to accurately identify the underlying causes of performance
anomalies, such as resource-related metrics in faulty services. However, many
anomalous metrics and complex anomaly propagation paths make it challenging
to determine the root cause.

To tackle the above challenges, we propose a comprehensive performance diag-
nosis system that can e↵ectively detect performance anomalies and localize their
root causes to provide actionable insights to operators. Our contributions include
the following:

• We reviewed the state-of-the-art research and methods for creating a reliable
performance diagnosis system from a technical perspective.

• We developed an e↵ective framework for run-time distributed applications.
We evaluated its monitoring tool, data preprocessing, performance anomaly
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detection, and root cause localization models, presenting its ability for ac-
curate and e↵ective performance diagnosis.

• We developed a weakly-supervised approach that integrates existing de-
tection methods through ensemble learning to improve the accuracy, ro-
bustness, and predictive ability of anomaly detection. We proposed a deep
learning-based unsupervised method to improve the trade-o↵ between de-
tection accuracy and robustness.

• We developed a gradient-based causal structure learning model and a root
cause inference model to build anomaly propagation paths and determine
the root cause e↵ectively.

In this chapter, we conclude the thesis by answering the research questions
proposed in Section 1.1. Then, we provide lessons learned when developing meth-
ods in the performance diagnosis framework.

6.1 Answer to research questions

With the above-mentioned outcomes and the analysis of evaluation results, we
answer our main research question defined in Chapter 1:
RQ: How to e↵ectively diagnose the performance of distributed appli-
cations in cloud environments at runtime?

In the thesis, we concluded that e↵ective diagnosis could be achieved by a
well-designed performance diagnosis framework, including proper data collection
and preprocessing, advanced performance anomaly detection and root cause lo-
calization methods. We completed our research works with several steps: state-of-
the-art technologies review, framework design, and advanced model development.

In Chapter 2, we summarized trustworthiness requirements and existing tech-
nologies of each component for a general performance diagnosis framework. For
example, the robustness requirement is needed for anomaly detection and can be
achieved by ensemble learning. For the performance diagnosis framework, we then
determined the technologies of each component and evaluated the e↵ectiveness of
the framework in Chapter 3. Our results show that data preprocessing can reduce
noise and improve detection accuracy, existing detection methods perform varies
for di↵erent performance data, and localization accuracy needs to be improved.
To meet trustworthiness requirements, specifically accuracy and robustness for
performance anomaly detection, we developed an ensemble-based weakly super-
vised learning method and a deep learning-based unsupervised learning method
in Chapter 4. We concluded that they have superior performance compared with
baseline methods. A concrete explanation of performance anomalies can help
operators take action quickly and mitigate economic loss, requiring accurate root
cause localization methods. Therefore, we proposed the fine-grained root cause
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localization framework with the gradient-based CI method in Chapter 5. We
concluded that the framework has the best coarse- and fine-grained localization
accuracy.

To be more specific, we answer the sub-research questions with details.
RQ1: What are the state-of-the-art technologies for achieving trust-
worthy performance diagnosis systems?

We conducted a thorough, state-of-the-art survey of the research topic to
address this question. We concluded ten trustworthiness requirements and 21 de-
tailed technologies for a performance diagnosis system. Based on existing research
on diagnosis systems, we established a general framework comprising data collec-
tion, preprocessing, anomaly detection, and root cause localization. Furthermore,
we extracted five technical requirements (data privacy, fairness, robustness, ex-
plainability, and human intervention) from seven trustworthy AI requirements
proposed by the EU and integrated them separately into the performance diag-
nosis framework. We reviewed related works for each component in the framework
and presented state-of-the-art technologies that satisfy trustworthiness require-
ments. For example, ensemble learning can be used to enhance the robustness of
performance anomaly detection. This survey work provided us with a compre-
hensive understanding of trustworthy performance diagnosis systems and o↵ered
guidance on developing advanced methods for detection and localization compo-
nents.
RQ2: How can a performance diagnosis framework be developed to
identify performance issues and determine root causes e↵ectively?

We answered this question by designing a performance diagnosis framework,
FIED, including a monitoring tool, data preprocessing, anomaly detection, and
root cause localization methods. The monitoring tool can capture performance
data that reflects the running status of distributed applications. To decrease
data noise and dimensions of collected performance data, we performed metrics
selection in data preprocessing and observed that it could significantly improve
detection accuracy. Furthermore, we employed di↵erent unsupervised detection
methods and concluded that they have varying performances on di↵erent datasets
because they focus on di↵erent characteristics in data. For root cause metrics
localization of detected performance anomalies, we demonstrated the possibility
of metric-level real-time root cause localization.
RQ3: How to improve the accuracy and robustness of detecting per-
formance anomalies?

The improvement of accuracy and robustness for performance anomaly detec-
tion can be achieved by advanced machine learning-based detection methods. In
this thesis, we provided two solutions: weakly-supervised and unsupervised meth-
ods. We developed an Ensemble Learning-Based Detection (ELBD) framework
that integrates classic detection methods instead of enhancing a single model. The
framework includes three classic ensemble methods without training and a deep
ensemble method that requires fewer labels to train a neural network. Based on
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the experiment results, ensemble learning could improve detection accuracy and
robustness by combining extracted information from existing detection methods.
Moreover, the deep ensemble method outperformed other methods in terms of
accuracy and robustness, along with multi-step prediction ability. However, en-
semble learning-based methods have limited improvement in detection accuracy
because it relies heavily on base detection methods. Therefore, we developed
a GNN-based unsupervised detection method which focuses on extracting infor-
mation from both time and feature dimensions and ensures the enhancement of
detection accuracy and robustness with multi-dimensional information extraction
ability.

RQ4: How to localize root causes of detected performance anomalies
at a fine-grained level?

We answered this question by modelling anomaly propagation paths with a
causal structure learning method and determining the root cause by traversing
these paths. We identified that existing CI methods in metric-based research have
limitations due to assumptions about data distribution and inaccurate causal re-
lation extraction. We addressed them by developing a gradient-based CI method
to establish causal relations between metrics and a ranking algorithm to iden-
tify the root cause metric. Through experiments, we evaluated the localization
accuracy of our framework on di↵erent levels of granularity and observed its ef-
fectiveness in fine-grained root cause localization. The gradient-based CI method
outperforms other baseline methods. Furthermore, we found that drill-down lo-
calization is more practical, starting with identifying the faulty service and then
pinpointing the root cause metrics within the service.

6.2 Lesson learned

This section will discuss some of the lessons learned while developing methods in
the performance diagnosis framework.

6.2.1 Performance data

This thesis primarily concerns the performance diagnosis of distributed applica-
tions based on monitoring data, which is multi-dimensional time series data. Sec-
tion 2.3.1 highlighted the abundance of log and trace data available for distributed
applications, which provide valuable insights into application running status and
service interactions. Despite their drawbacks, such as being challenging to parse
and process in real time, we should explore the possibility of integrating these
data sources into our diagnosis framework. We believe that the integration has
the potential to improve detection and localization accuracy significantly.
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6.2.2 Prediction ability

Section 4 introduced the deep ensemble method within the ELBD framework.
Our experiments demonstrated that this method significantly enhances detection
accuracy and robustness and can predict anomalies with remarkable accuracy
up to four minutes in advance. While most detection methods concentrate on
identifying anomalies in historical data as quickly as possible, predicting poten-
tial anomalies and taking preemptive measures to prevent them can lead to re-
duced economic loss and greater user satisfaction. While some existing detection
methods mainly focus on one-step prediction, we believe further exploration of
multi-step prediction of performance anomalies is warranted.

6.2.3 Localization accuracy

We introduced the root cause localization framework in Section 5, , which models
anomaly propagation using CI methods and traverses the propagation to identify
the root cause. Our experiments demonstrate that this framework can success-
fully localize coarse-grained faulty services and fine-grained metrics within faulty
services, outperforming other localization methods. However, we acknowledge
that root cause localization remains challenging, particularly given that the top
1 localization accuracy is currently low. In addition, the fine-grained metrics lo-
calization with all monitoring data performs unsatisfactorily. Consequently, we
believe that further e↵orts to improve localization accuracy are vital. Trace data
provides insights into service interactions, while CI methods extract hidden causal
relationships between services and metrics. Therefore, we suggest exploring trace
data to calibrate causal graphs to improve localization accuracy.
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Future Directions

Our work can be explored in the following directions in the future.

• Di↵erent data sources integration. Utilizing di↵erent performance data from
distributed applications is a promising direction for improving detection and
localization accuracy. Previous research has explored using log and trace
data for the performance diagnosis of distributed applications. For exam-
ple, Zhang et al. [271] combine log and trace data to detect anomalies in
microservices. Integrating multiple data sources can provide more infor-
mation, leading to a better understanding of the application’s behaviour
and identifying root causes. However, several challenges need to be ad-
dressed, such as the heterogeneity of data sources and complex information
alignment. Therefore, we leave the exploration of integrating di↵erent data
sources to improve diagnosis performance as our future work.

• Upcoming performance anomalies detection. While existing methods mainly
focus on detecting past anomalies, predicting future anomalies can provide
proactive insights into application behaviour and help avoid economic loss
in advance. In our deep ensemble method, we implemented the prediction
ability using neural networks. However, we believe that further improve-
ments can be made by using more advanced models such as LSTM, which
can capture long-term dependencies in time series data and are known to
perform well in prediction tasks. Therefore, future research could investi-
gate the use of advanced deep learning methods to improve the prediction
ability of performance diagnosis methods.

• Precise root cause localization. By incorporating trace data, which captures
service interactions, we can fine-tune the causal relations between services
extracted by CI methods. This refinement leads to a more precise causal
graph, thereby significantly enhancing the accuracy of root cause localiza-
tion.
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• E↵ective application adaptation. To e↵ectively address performance anoma-
lies in distributed applications, the diagnosis results should provide action-
able insights to support e↵ective adaptation strategies. For example, if
the root cause of an anomaly is related to high CPU usage, adding more
CPU resources could be a potential adaptation strategy. However, there
may be multiple strategies for the same root cause, and the e↵ectiveness of
each strategy could depend on the specific application and underlying en-
vironment. Therefore, future research could focus on exploring the choice
of appropriate adaptation strategies based on diagnosis results for di↵er-
ent types of performance anomalies in various distributed applications and
evaluation of the e↵ectiveness of these strategies in real-world scenarios.

• Diagnosis framework validation in complex real-time applications. We have
proposed a performance diagnosis framework and evaluated its e↵ective-
ness using performance data collected from benchmark distributed applica-
tions, including a DApp and a sockshop microservice application. However,
real-world distributed applications can be more complex, with hundreds or
thousands of services, large-scale performance data, and intricate service in-
teractions. As a result, our framework may have limitations that need to be
addressed before it can be applied to real-world scenarios. Future research
can focus on enhancing the scalability and adaptability of our framework
to accommodate the complexities of real-world distributed applications.
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[105] Zijie Huang, Yulei Wu, Niccolò Tempini, Hui Lin, and Hao Yin. An energy-e�cient and
trustworthy unsupervised anomaly detection framework (eatu) for iiot. ACM Transac-
tions on Sensor Networks (TOSN), 2022.

[106] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom
Soderstrom. Detecting spacecraft anomalies using lstms and nonparametric dynamic
thresholding. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 387–395, 2018.

[107] Olumuyiwa Ibidunmoye. Performance anomaly detection and resolution for autonomous
clouds. PhD thesis, Ume̊a University, 2017.

[108] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik Elmroth. Performance
anomaly detection and bottleneck identification. ACM Computing Surveys (CSUR),
48(1):1–35, 2015.

[109] Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data augmentation for
time series classification with neural networks. Plos one, 16(7):e0254841, 2021.

[110] Navdeep Jaitly and Geo↵rey E Hinton. Vocal tract length perturbation (vtlp) improves
speech recognition. In Proc. ICML Workshop on Deep Learning for Audio, Speech and
Language, volume 117, page 21, 2013.

[111] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Detecting performance anomalies
in cloud platform applications. IEEE Transactions on Cloud Computing, 8(3):764–777,
2018.

[112] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of the
12th international conference on World Wide Web, pages 271–279, 2003.

[113] Minqi Jiang, Chaochuan Hou, Ao Zheng, Xiyang Hu, Songqiao Han, Hailiang Huang,
Xiangnan He, Philip S Yu, and Yue Zhao. Weakly supervised anomaly detection: A
survey. arXiv preprint arXiv:2302.04549, 2023.

[114] Xiao-Yuan Jing, Xinyu Zhang, Xiaoke Zhu, Fei Wu, Xinge You, Yang Gao, Shiguang
Shan, and Jing-Yu Yang. Multiset feature learning for highly imbalanced data classifi-
cation. IEEE transactions on pattern analysis and machine intelligence, 43(1):139–156,
2019.

[115] Yeon-Jee Jung, Seung-Ho Han, and Ho-Jin Choi. Explaining cnn and rnn using selective
layer-wise relevance propagation. IEEE Access, 9:18670–18681, 2021.
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Summary

Cloud computing provides elastic and on-demand resources, enabling the de-
velopment and operation of distributed applications across multiple machines
and data centers. Distributed cloud applications are typically decomposed into
smaller, specialized services that can be developed, deployed, and scaled inde-
pendently. Nevertheless, complex service dependencies and the dynamic nature
of cloud environments introduce abnormal performance phenomena, such as de-
graded response times due to resource saturation. These issues can significantly
impact service quality and the user experience. Therefore, it is essential to di-
agnose and mitigate performance problems in distributed applications to ensure
continuous operation.

In recent years, research on performance diagnosis systems for distributed ap-
plications has developed. AI-based performance diagnosis systems have gained
popularity for their superior performance over traditional statistical methods,
adaptability to large-scale data, and handling of complex scenarios. These sys-
tems typically consist of four main components: data collection, preprocessing,
anomaly detection, and root cause localization. However, despite significant ad-
vancements, AI-based methods face potential hazards and may lose public trust
due to poor robustness and inexplainability. Therefore, this thesis o↵ers a system-
atic overview of trustworthiness requirements and state-of-the-art technologies in
the development of AI-based trustworthy performance diagnosis systems. In ad-
dition, it is still challenging to:

• enhance performance data quality due to missing data labels and the exis-
tence of data noise and fluctuations.

• perform robust and accurate anomaly detection because of diverse anoma-
lies and data patterns caused by dynamic cloud environments.

• perform precise and fine-grained root cause localization due to large num-
bers of anomalous metrics and complex anomaly propagation paths.

Om de bovenstaande uitdagingen aan te pakken, hebben we onze belangrijkste
onderzoeksvraag geformuleerd als hoe de prestaties van runtime gedistribueerde

145



146 Summary

toepassingen in cloudomgevingen e↵ectief te diagnosticeren. Om deze vraag te
beantwoorden, hebben we een uitgebreid prestatiediagnosesysteem voorgesteld
dat prestatiegegevens e↵ectief kan verwerken, prestatieafwijkingen kan detecteren
en hun oorzaken kan lokaliseren om bruikbare inzichten aan operators te verschaf-
fen.

We first developed a novel FIne-grained pErformance Diagnosis (FIED) frame-
work to achieve e↵ective performance diagnosis of distributed applications. The
FIED framework can collect real-time performance data, handle noise in moni-
toring metrics, e↵ectively detect performance anomalies, and localize root causes
of distributed applications with typical AI methods. To evaluate the framework,
we implemented the deployment and monitoring of a DApp and utilized two pub-
lic datasets. Our experiment results demonstrated the e↵ect of metric selection
on improving detection accuracy, the varying performance of existing detection
methods on di↵erent datasets, and the feasibility of real-time root cause localiza-
tion based on causal inference algorithms.

For anomaly detection, we observed that existing detection methods have
varying detection accuracy and poor robustness. However, e↵ective anomaly de-
tection methods should meet challenging requirements, including high accuracy
in detecting anomalies and robustness to changing data patterns. Therefore,
we developed a weakly-supervised Ensemble Learning-Based Detection (ELBD)
framework that integrates well-selected existing methods to achieve the highest
accuracy and robustness for performance anomaly detection in distributed appli-
cations. Furthermore, we proposed a deep learning-based unsupervised method,
CGNN-MHSA-AR, which leverages temporal and feature information to achieve
superior accuracy and robustness for multivariate time series anomaly detection.

To enhance root cause localization in the performance diagnosis framework,
we identified limitations in current CI methods, such as only extracting linear
causal relations and relying on strict data distribution requirements. Addition-
ally, existing research primarily focuses on coarse-grained localization, which only
identifies faulty services. However, fine-grained root cause localization, pinpoint-
ing specific metrics on the faulty service, is more beneficial for operators. To ad-
dress these issues, we developed the CausalRCA, which generates weighted causal
graphs using a gradient-based causal structure learning method and employs a
root cause inference method to determine root cause metrics. Furthermore, we
conducted coarse- and fine-grained experiments, and results demonstrated that
the CausalRCA outperforms baseline methods and o↵ers fine-grained, automated,
and real-time root cause localization.



Samenvatting

Cloud computing biedt elastische en on-demand middelen, waardoor de ontwikke-
ling en werking van gedistribueerde toepassingen over meerdere machines en dat-
acenters mogelijk is. Gedistribueerde cloudtoepassingen worden doorgaans opge-
splitst in kleinere, gespecialiseerde diensten die onafhankelijk kunnen worden on-
twikkeld, ingezet en geschaald. Desondanks introduceren complexe servicemeth-
odes en de dynamische aard van cloudomgevingen abnormale prestatiefenomenen,
zoals verslechterde responstijden als gevolg van bronverzadiging. Deze problemen
kunnen aanzienlijke invloed hebben op de dienstkwaliteit en de gebruikerservar-
ing. Het is daarom essentieel om prestatieproblemen in gedistribueerde toepassin-
gen te diagnosticeren en te verminderen om continue werking te waarborgen.

De afgelopen jaren heeft het onderzoek naar prestatiediagnosesystemen voor
gedistribueerde toepassingen zich ontwikkeld. Op AI gebaseerde prestatiediag-
nosesystemen hebben aan populariteit gewonnen vanwege hun superieure prestaties
ten opzichte van traditionele statistische methoden, hun aanpasbaarheid aan
grootschalige gegevens en hun vermogen om met complexe scenario’s om te gaan.
Deze systemen bestaan doorgaans uit vier hoofdonderdelen: gegevensverzameling,
voorverwerking, anomaliedetectie en het lokaliseren van de oorzaak van prob-
lemen. Ondanks aanzienlijke vooruitgang kunnen op AI gebaseerde methoden
echter potentiële gevaren tegenkomen en het vertrouwen van het publiek verliezen
vanwege slechte robuustheid en onverklaarbaarheid. Daarom biedt dit proef-
schrift een systematisch overzicht van betrouwbaarheidseisen en state-of-the-art
technologieën in de ontwikkeling van op AI gebaseerde betrouwbare prestatiedi-
agnosesystemen. Bovendien blijft het een uitdaging om:

• de kwaliteit van prestatiegegevens te verbeteren vanwege ontbrekende gegevensla-
bels en het bestaan van gegevensruis en schommelingen.

• voer robuuste en nauwkeurige anomaliedetectie uit vanwege diverse anoma-
lieën en datapatronen veroorzaakt door dynamische cloudomgevingen.

• voer nauwkeurige lokalisatie van de hoofdoorzaak uit vanwege het grote
aantal afwijkende meetgegevens en complexe voortplantingspaden.
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Om deze uitdagingen aan te pakken, hebben we onze belangrijkste onder-
zoeksvraag geformuleerd als hoe de prestaties van runtime gedistribueerde toepassin-
gen in cloudomgevingen e↵ectief te diagnosticeren. Om deze vraag te beant-
woorden, hebben we een uitgebreid prestatiediagnosesysteem voorgesteld dat
prestatiegegevens e↵ectief kan verwerken, prestatieafwijkingen kan detecteren en
hun oorzaken kan lokaliseren om bruikbare inzichten aan operators te verscha↵en.

We hebben eerst een nieuw Fijnmazig Prestatiediagnose (FIED) raamwerk
ontwikkeld om e↵ectieve prestatiediagnose van gedistribueerde toepassingen te
bereiken. Het FIED-raamwerk kan realtime prestatiegegevens verzamelen, ruis
in bewakingsmetingen verwerken, prestatieafwijkingen e↵ectief detecteren en de
oorzaken van problemen in gedistribueerde toepassingen lokaliseren met typische
AI-methoden. Om het raamwerk te evalueren, hebben we de implementatie en
bewaking van een DApp uitgevoerd en twee openbare datasets gebruikt. Onze ex-
perimentele resultaten toonden het e↵ect van metrische selectie op het verbeteren
van de detectie-accurheid, de variabele prestaties van bestaande detectiemetho-
den op verschillende datasets en de haalbaarheid van realtime lokalisatie van de
oorzaken van problemen op basis van causaliteitsinferentiealgoritmen.

Voor anomaliedetectie hebben we waargenomen dat bestaande detectiemeth-
oden variërende detectie-accurheid en zwakke robuustheid hebben. E↵ectieve
anomaliedetectie zou echter aan uitdagende eisen moeten voldoen, waaronder
een hoge accurheid bij het detecteren van afwijkingen en robuustheid tegen veran-
derende gegevenspatronen. Daarom hebben we een zwak-geassisteerd Ensemble
Leer-Gebaseerd Detectie raamwerk ontwikkeld dat goed geselecteerde bestaande
methoden integreert om de hoogste accurheid en robuustheid te bereiken voor het
detecteren van prestatieafwijkingen in gedistribueerde toepassingen. Bovendien
hebben we een op diepgaand leren gebaseerde ongeassisteerde methode voorgesteld,
CGNN-MHSA-AR, die tijds- en kenmerkinformatie benut om uitstekende ac-
curheid en robuustheid te bereiken voor de detectie van afwijkingen in multivari-
ate tijdreeksen.

Om de lokalisatie van de oorzaak van problemen in het prestatiediagnosesys-
teem te verbeteren, hebben we beperkingen gëıdentificeerd in huidige CI-methoden,
zoals het alleen extraheren van lineaire causale relaties en het vertrouwen op
strikte eisen voor gegevensverdeling. Bovendien richt bestaand onderzoek zich
voornamelijk op grofmazige lokalisatie, waarbij alleen defecte services worden
gëıdentificeerd. Echter, fijnmazige lokalisatie van de oorzaak van problemen,
waarbij specifieke metingen op de defecte service worden aangewezen, is nut-
tiger voor operators. Om deze problemen aan te pakken, hebben we de Causal-
RCA ontwikkeld, die gewogen causale grafieken genereert met behulp van een
op gradiënten gebaseerde methode voor causale structuuranalyse en een methode
voor oorzaakinferentie om oorzaakmetingen te bepalen. Bovendien hebben we
grof- en fijnmazige experimenten uitgevoerd, en de resultaten toonden aan dat de
CausalRCA beter presteert dan basismethoden en fijnmazige, geautomatiseerde
en real-time lokalisatie van de oorzaak van problemen biedt.
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