IN-NETWORK CONTROL FOR TRUSTED FLOW STEERING

DR. ANESTIS DALGKITSIS UNIVERSITY OF AMSTERDAM

THE USERS SHOULD BE ASSURED THAT THEIR DATA ARE ROUTED EFFICIENTLY IN TERMS OF QOS THROUGH A TRUSTED COMMUNICATION PATH.

NETWORK ELEMENT TRUST LEVEL

NETWORK ELEMENT TRUST LEVEL

TRUST LEVEL

✓ INTERACTIONS WITH THE OTHER NETWORK ENTITIES
✓ LOCATION
✓ FIRMWARE VERSION
✓ LEVEL OF HARDWARE HARDENING
✓ ETC

PATH TRUST LEVEL

PATH TRUST LEVEL

PATH TRUST LEVEL

IN-BAND NETWORK TELEMETRY

DEMO TOPOLOGY

IN-NETWORK CONTROL FOR TRUSTED FLOW STEERING

DEMO TOPOLOGY Telemetry Collector Ξ lollo - 6 × P4 Software Switches - $1 \times Optical Connection$ о IIII AAAAAAAA 🕟 InfluxDB

TELEMETRY COLLECTOR

Telemetry Server

DEMONSTRATION

CONCLUSION

- Significantly reduces the reaction time by the infrastructure elements
- Improves the accuracy
- Promotes Transparency and Accountability

OUESTIONS?

DR. ANESTIS DALGKITSIS UNIVERSITY OF AMSTERDAM

