Enabling Personalized Interventions

EPI will find a solution for distributed data in healthcare to support patients and providers

Healthcare is lagging behind because it is difficult to make data available for analysis

EPI brings research institutions, healthcare providers and the private sector together

Research institutions

Healthcare providers

Private sector

Solutions to use data in healthcare are developed and translated into practice

Use case 1: A complete overview of data of CVA patients is missing

ISSUE

- Patient data is spread over institutions
- A complete overview of the patient data is missing, which makes prediction of outcomes (survival, functional status, quality of life) difficult

AIM

- Understand how prediction can support shared decision-making and self-management and result in better health outcomes
- · Set up a prediction model for individual patients to inform them on their outcomes
- The tool will be used in shared decision making

METHOD

Using incomplete data to predict outcomes

Use case 2: Data consensus differs between institutions and countries of DIPG patients

ISSUE

- Number of Diffuse Intrinsic Pontine Glioma (DIPG) patients is small
- Patients are spread across different countries with different data consensus
- Which makes it difficult to get results on treatment effects

AIM

- Integrate different data platforms into one communicating data infrastructure
- Find patterns in data that predict (length of) survival and QoL of DIPG patients
- · Create self-learning algorithms that will improve predictive capacities of the DIPG survival prediction model

METHOD

 Use advanced prediction methods and overcome legal issues such as working with consent

Use case 3: Data of psychiatry patients has to stay in its hub complicating integral research

ISSUE

- There is a huge variability between patients in trials.
- Adjust patients to the right medication takes too long
- In daily practice, the variation between patients is even bigger because of strong selection bias in most clinical trials, because data can not be shared

AIM

- Support in decision making about medication and adjustment to medication, which accelerates the process
- Confidence in medication treatment and adherence is increased
- Duration of treatment and suffering are decreased

METHOD

 Developing an algorithm to predict best treatment, while not sharing data, only algorithms and expertise

Research is focused on designing, distributing and saving adaptive data in a secure infrastructure

Analyzing interventions

Develop models that can predict the effectiveness interventions

Data infrastructure

Design an architecture for the data from different sources

Distribution of Data & Algorithm

Making accurate predictions while preserving privacy constraints of remote data sources

Regulatory constraints and data governance

Automating the process of data sharing with different legal constraints

Adaptive health diagnosis

The models should be able to keep learning from new data and treatments

The outcome of the EPI project is a digital health twin for self-/joint management

A methodology to create digital health twin

- · All data will be collected of a patient
- · Inform health decisions and avoiding unnecessary treatment Empower self/joint management of disease

Preconditions creating digital health twin

- Able to perform with data gathered from different sources
- · Deal with the variability, ownership, data protection and privacy issues

To stay informed of the developments of the EPI project please join our LinkedIn group

EPI Linked-in group: Enabling Personalized Interventions (EPI)

For more information please contact:

Marloes Bons bons.marloes@kpmg.nl +31 6 23593759

