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Chapter 1

Introduction

In the scope of medical research, secure data sharing exploiting the programma-
bility of digital infrastructures for healthcare is a powerful catalyst for progress.
That is evident in the substantial advancements achieved over the last century in
preventing, curing, and treating diverse conditions. Notable examples include the
established correlations between smoking and cardiovascular disease (13) and can-
cer (88), along with the identified link between low B vitamin during pregnancy
and the heightened risk of neural tube defects (17). While these instances under-
score the impact of data analysis on healthcare, they represent just a fraction of
its broader contributions to improving the body of medical research.

The increasing volume of health-related data necessitates robust and secure
data-sharing mechanisms, crucial for unlocking its full potential in advancing
personalized medicine and the development of Digital Health Twins (DHT). Ag-
gregating diverse patient data, electronic health records, genomics, medical imag-
ing, wearable devices, and lifestyle information lays the foundation for innovative
data-centric health applications.

Personalized medicine emerges as a transformative paradigm within health-
care, characterized by its focus on tailoring medical treatments and interventions
to the individual characteristics of each patient. This approach recognizes that
variations in genetics, environment, and lifestyle can significantly influence an in-
dividual’s response to treatment, highlighting the importance of a more targeted
and precise approach to healthcare delivery.

Moreover, larger sample sizes not only enable the breakdown of population
heterogeneity into more uniform groups but also hold promise in enhancing the
specificity of understanding the genesis of specific traits or illnesses. This capacity
extends to the development of more individualized models, with larger sample
sizes providing the opportunity to apply sophisticated machine-learning models
to the data, hence moving closer toward personalized medicine.

On the other hand, the lack of data sharing in healthcare significantly hin-
ders medical research, slows the development of new treatments, and reduces the
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2 Chapter 1. Introduction

quality of patient care by limiting access to comprehensive information. This in-
efficiency leads to duplicated efforts, increased costs, and potential misdiagnoses.
It also suppresses innovation in technologies like AI, exacerbates healthcare in-
equalities, and restricts public health responses to epidemics. Legal, ethical, and
privacy concerns further complicate the situation, making it essential to develop
standardized protocols and robust security measures to facilitate data sharing
while protecting patient privacy. By harnessing the power of data sharing and
advanced analytics, personalized medicine holds the potential to revolutionize
healthcare delivery, improving patient outcomes and driving greater efficiencies
across the healthcare systems.

1.1 Digital Health Twins

The concept of Digital Twins (DTs) is not new, and it originally appeared in the
early 1990s (42) under different terminologies, such as the ”Mirror Space Model”
(45), ”Information Mirror Mode”(46), etc. Over the past decade, the idea has
been gaining more and more attention from researchers and industry. Although
DTs have been primarily discussed within engineering and industrial contexts,
medical and health use cases are not excluded from the DTs’ impact.

In theory, a DT is a digital copy of a physical single object, service, or com-
plex system. In practice, a DT is a digitized model that dynamically couples
both virtual and physical twins, and makes use of contemporary technologies like
smart sensors (IoT devices) and data analytics to predict and identify failures,
discover and simulate optimizing opportunities, and improve outcomes (60). A
Digital Health Twin (DHT) can potentially mirror the human body itself (or a
part of it) Subsequently, there exist different types and use cases of DHT that
represent different aggregates of data and algorithms. As an example, we model
a single bodily function by creating a DHT of the digestive system, or model
a healthcare institution DHT, to monitor, optimize, and provide interventions
throughout the treatment cycle. This is pivotal to facilitate medical research
such as drug composition, patient rehabilitation, and treatment plans.

Deploying a DHT utilizes medical data-sharing and patient-generated data
to empower personalized medicine. Personalized medicine is a novel approach to
improving clinical care using an individualized or stratified approach to diagnosis
and treatment rather than a group treatment approach (83). With that in mind,
DHT comes as a natural, complementary approach to implementing personalized
medicine, since it offers the capacity to model a distinct patient with varying
physiological features and genetic differences.

In the context of personalized medicine, data collaboration among health-
care providers is vital for effective medical data and Electronic Health Records
(EHR) sharing. The sensitive nature of this information emphasizes the need
for secure transmission, storage, and processing. This presents a challenge in
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dynamically establishing a collaborative data-sharing environment across diverse
healthcare domains. A comprehensive data-sharing framework is necessary to
unite the efforts of research centres, health institutions, and patient groups, con-
sidering data-sharing policies, infrastructural capabilities, and dynamic matching
of security requirements.

Moreover, recent events emphasize the ethical use of data subjects, promoting
a culture of data sharing while safeguarding individuals’ privacy via policies and
laws, like the GDPR(26) and HIPAA(6). Balancing data protection and sharing
practices varies among institutions and countries, requiring researchers to oper-
ate within legal boundaries. Efficient and secure data sharing among healthcare
providers is pivotal for utilizing the power of vast and diverse data, enabling
advanced machine learning algorithms, artificial intelligence models, predictive
analytics, precision medicine, and the creation of Digital Health Twins. Note
that the term ”data sharing” also includes algorithms and derived knowledge
secure sharing.

The variability of said policies further reinforces the need for an adaptive
framework to dynamically set up this policy-abiding collaborative environment.
On top of that, more challenges arise when considering the framework’s design re-
quirements, such as reliability requirements, network performance requirements,
set-up overhead, and resource limitations. The adoption of DHTs is accompa-
nied and accelerated by maturing and growing computing technologies. This is
led by cloud computing and network virtualization, which offer the means to fa-
cilitate knowledge discovery by provisioning on-demand computing and network
resources. One of the main contributing factors toward the successful and reli-
able deployment of DHTs is the underlying network paradigm connecting all the
data-sharing components to effectively run a use case (82).

1.2 Dynamic Infrastructures

Given the problems above, secure data sharing among healthcare providers is still
unresolved. Programmable and virtualized infrastructure can provide the mech-
anisms to support this. In fact, the present generation of ICT infrastructures
heavily relies on virtualization, given the successful evolution of virtualisation
over the past decades (49). The Network Function Virtualisation (NFV) archi-
tecture, standardized by the European Telecommunications Standards Institute
(ETSI), serves as a foundation for defining the subsequent generation of net-
work infrastructures (1). This architecture is designed to manage and coordinate
network resources for cloud-based applications and the lifecycle of network ser-
vices. Furthermore, the NFV paradigm enables the on-demand implementation
and instantiating of Network Functions (NFs) like firewalls, segmentation, and
Deep Packet Inspection (DPI), which is especially crucial in managing diverse
collaborative domains.
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The emergence of Software-Defined Infrastructures (SDIs) introduces pro-
grammable infrastructures managed by centralized control plane components.
SDI integrates the control and management of varied computing and networking
resources through software, providing ample programmability. This programma-
bility can be leveraged to develop infrastructure-independent NFV frameworks,
enhancing cross-domain innovation through open interfaces. These complemen-
tary technologies offer the potential to construct a dynamic network infrastructure
capable of adapting to diverse healthcare application requests and requirements.

Figure 1.1 illustrates the framework’s general overview developed in the EPI
Enabling Personalised Interventions) project, where the end users interact with
the framework to apply simple to complex workflows. The framework should
adapt to the plethora of requirements, including security considerations, to run
the requested workflow on different types of medical data.

1.3 Research Questions

To tackle the challenges of deploying personalized medicine use cases and medical
data sharing, we formulate the main research question of this manuscript:

RQ: How can we effectively support health data sharing use cases for
heterogeneous parties collaborating within a low-level programmable
virtualizable digital infrastructure?

To answer this question, we delve into a number of sub-questions starting with
first identifying the scope of the project and hindering challenges. The potential
research advancement with medical data sharing has been discussed in the current
body of literature. However, data privacy protection and ethical considerations
that are involved tend to discourage a lot of these efforts, by enforcing data pro-
tection laws and requirements. Chapter 2 introduces the Enabling Personalised
Intervention (EPI) project that aims to advance personalised medicine research
efforts by addressing these challenges on multiple levels. Moreover, we introduce
the data-sharing use cases that are at the centre of our studies. These use cases
serve as exemplary applications, on our road toward DHT deployment.

Chapter 2 primarily focuses on the DHT use cases, data-level challenges, and
study models. This will illustrate the type of data we are dealing with, and the
data flow expected. We build upon this information in Chapter 3 to discuss the
EPI Framework design considerations. This leads to the following sub-question:

• RQ1: ”How can we address open challenges in the context of policy, se-
curity, and computing data sharing via building a dynamic infrastructure
framework to deploy DHT use cases?”

In Chapter 3 we partially answer this question by introducing the EPI framework,
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(b) The EPI framework has four main components: 1) workflow provisioning feature, 2) policy
reasoning feature, 2) security provisioning feature, 3) and lastly, the available resources and
computing nodes that are available for hosting services.

Figure 1.1: This figure illustrates the high-level concept of the dynamic EPI
framework; where on the left side there are the end users that will be utilising the
framework and submitting the workflow they want to run to the EPI framework.
As a result, on the right, the EPI framework should be able to run the workflow
on different types of medical data that are required for successful processing. This
needs to be done securely.
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an adaptive medical data-sharing framework. We define the different components
of the EPI framework; including the policy reasoner, the workflow orchestrator,
and the infrastructure orchestrator. The policy reasoner introduces automated
policy interpretation, management, and enforcement. This allows us to formulate
a wide range of data-sharing policies and translate that into setup actions that
could be considered by the framework. Furthermore, the workflow orchestrator
(the BRANE orchestrator) provides the means to formulate workflows to run
the use cases via mapping the request to the available computing, storage, and
network resources and orchestrating the workflow after checking and planning
with the policy reasoner. Lastly, at a network level, the network and security
requirements are enforced via instantiating on-the-fly services. This is done in
compliance with the policy and planned workflow deployment. Chapter 3 serves
as an overview of the EPI Framework, and discusses the proof of concept deployed
as part of the EPI project efforts. We further elaborate on the different features
of the framework in later chapters; namely, the distinction between high-level
policies and low-level capabilities.

In Chapter 4, we make a distinction between high-level policies dictating al-
lowed data flows and low-level available infrastructure requirements. This dis-
tinction is made to map what is ideally required by the policies, and what is
possible while setting up the collaborative data-sharing infrastructure. In this
chapter, we consider ”secure” data flows as permissible flows. We address the
challenge of automatically managing these policies, and adapting the underly-
ing infrastructure accordingly. We formulate the security area logic model to
automate policy aggregation with feasible routes. We evaluate the framework’s
performance by measuring setup overhead with highly sparse security area dis-
tributions, which will indicate more setup actions needed. The EPI framework is
based on the main design feature which is the capability of managing data traffic
and redirecting data flow routes. This brings us to the following sub-question:

• RQ2: ”What are the performance tradeoffs when deploying different pack-
ets’ redirection methods and virtual network functions to enforce network
policy-compliant routes under different workloads?”

A major design consideration of the EPI Framework is the timely setup of the
collaborative infrastructures. Some DHT use cases could be time-sensitive, and
minimising network overhead is one way of addressing this. For example, if the
use case requires real-time patient status monitoring. Chapter 5 focuses on the
traffic redirection feature implementation employing SOCKS-based and NGINX-
based proxies. This empowers policies since the EPI Framework can enforce
that by setting up extra security and bridging functions (such as access control
portals) and re-routing traffic via those functions. We analyse the network traffic
with different proxies to pinpoint the source of delays with each one. We base
the recommendation for utilising the proxy on the benchmarking study we have.
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Other than the proxy, the extra security and bridging functions instantiated could
be the point of failure affecting the EPI framework’s reliability and performance.

In Chapter 6, we implement several Bridging Functions Chains (BFCs), and
this serves as the different security and network functions we will be deploying
with our use cases. We, then, build profiles of resource consumption of different
combinations of chains. We consider high-load use cases (like data streaming)
and lower-load use cases, in an effort to stress-test the infrastructure setup. After
building these profiles, we gain some insights into the different BFCs’ resource
requirements, and then we ask:

• RQ3: ”How can we automate an adaptive Service Function Chain Pro-
visioning on available network Points of Placement candidates to run a
data-sharing request under different use cases’ requirements?”

The previous chapters look into formulating policies, aggregating policies, and
enforcing them by adaptable re-routing traffic via BFCs. In Chapter 7, we start
looking into efficient methods for BFC provisioning. We introduce the problem
statement of the BFC provisioning and conclude that it is a constrained search
problem, such that we are searching for the optimal placement of BFC while con-
sidering multiple constraints. These constraints are namely resource availability,
time-out, and chainability (whether a path exists between functions in a chain)
limitations. We employ different provisioning methods: greedy heuristic, Deep
Q-learning (DQL), and heuristic-boosted DQL placement methods. We evaluate
and compare these methods and build our recommendation accordingly.

Lastly, we provide a holistic overview of the EPI framework, and we evalu-
ate whether it can provide secure and private medical data sharing, so we ask
ourselves:

• RQ4: ”How can we orchestrate the EPI framework services according to
privacy-by-design principles by comprehensively modelling privacy proba-
bilities and mitigating risks of DHT data-sharing workflows according to
privacy-defined attributes?”

In Chapter 8, we discuss again the EPI Framework in the context of privacy-
by-design considerations. We define the privacy risk assessment model to quantify
privacy risk and highlight the benefits of utilising our framework in minimising
privacy risk. We list important privacy attributes, and we also address the effect
of maximising data privacy on data utilisation (data quality).

1.4 Key Contributions

• In Chapter 3, we design and implement a Kubernetes-based data-sharing
framework that enables running distributed workflows securely and pri-
vately, compliant with specific policies.
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• In Chapter 4, we propose a methodology to automatically aggregate allowed
data flow with feasible data flow based on the infrastructure resources and
policies within the EPI use cases.

• In Chapters 5 and 6, we implement the EPI traffic redirection and function
chaining features, and we provide benchmarks and performance profiles.

• In chapter 7, we build adaptive BFC provisioning techniques based on
Heuristic, deep Q-learning, and heuristic-boosted deep Q-learning deployed
running the EPI use cases.

• In chapter 8, we provide a new type of risk model that is based on security
and privacy considerations and relates that to relevant threats, data utility,
and mitigation techniques.

1.5 Publications

Listed below are the published and submitted papers that were used in the chap-
ters, in addition to the author’s contributions.

• J. A. Kassem, C. Allaart, S. Amiri, M. Kebede, T. Müller, R. Turner, A.
Belloum, L. T. v. Binsbergen, P. Grunwald, A. v. Halteren, P. Grosso,
C. d. Laat, and S. Klous. Building a Digital Health Twin for Personalized
Intervention: The EPI Project. In Commit2Data. Open Access Series in In-
formatics (OASIcs), Volume 124, pp. 2:1-2:18, Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2024) https://doi.org/10.4230/OASIcs.Commit2Da
ta.2

J.A.K. wrote the distributed analysis infrastructure subsection, organised
the writing, consolidated the work and did the final editing. C.A. wrote the
subsection relating to the Personalized predictions for stroke rehabilitation
use cases. S.A. wrote the subsection relating to the distributed data analy-
sis. M.K. wrote the policy formalisation and management part. T.M. wrote
the subsection relating to the workflow orchestrator and the EPI proof of
concept. R.T. wrote the real-time response for the Psychiatry use case part.
The remaining co-authors edited and supervised the written work.

• J. A. Kassem, C. de Laat, A. Taal and P. Grosso, ”The EPI Framework: A
Dynamic Data Sharing Framework for Healthcare Use Cases,” in IEEE Ac-
cess, vol. 8, pp. 179909-179920, 2020, doi: 10.1109/ACCESS.2020.3028051.

J.A.K. worked on conceptualizing and designing the EPI infrastructure
orchestrator, worked on the methodologies and developed the area logic
model. J.A.K. ran the experiments and the evaluation method. The re-
maining co-authors consulted the study, and supervised, and edited the
written work.
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• J. A. Kassem, O. Valkering, A. Belloum and P. Grosso, ”EPI Framework:
Approach for Traffic Redirection Through Containerised Network Func-
tions,” 2021 IEEE 17th International Conference on eScience (eScience),
Innsbruck, Austria, 2021, pp. 80-89, doi: 10.1109/eScience51609.2021.00018.

J.A.K. and O.V. worked on implementing the redirection proxies and the
benchmark experiments. J.A.K. and O.V. ran the experiments and pro-
vided data analysis and evaluation. The remaining co-authors consulted
the study, edited the work, and supervised.

• J. A. Kassem, A. Belloum, T. Müller and P. Grosso, ”Utilisation Profiles
of Bridging Function Chain for Healthcare Use Cases,” 2022 IEEE 18th
International Conference on e-Science (e-Science), Salt Lake City, UT, USA,
2022, pp. 475-480, doi: 10.1109/eScience55777.2022.00085.

J.A.K. worked on developing the Bridging functions, the Kubernetes envi-
ronment, and the chaining of functions. J.A.K. ran the experiments, built
the profiles, and provided data analysis. The remaining co-authors con-
sulted, edited, and supervised the work.

• J. A. Kassem, L. Zhong, A. Taal and P. Grosso, ”Adaptive Services Func-
tion Chain Orchestration For Digital Health Twin Use Cases: Heuristic-
boosted Q-Learning Approach,” 2023 IEEE 9th International Conference
on Network Softwarization (NetSoft), Madrid, Spain, 2023, pp. 187-191,
doi: 10.1109/NetSoft57336.2023.10175506.

J.A.K. conceptualised the service function chaining problem statement and
the study methodology. J.A.K. and L.Z. worked on the algorithm imple-
mentations. J.A.K. ran the experiments, provided data analysis, and con-
solidated the work. The remaining co-authors consulted the study, edited
the work, and supervised.

• J. A. Kassem, T. Müller, C. A. Esterhuyse, M. G. Kebede, C. de Laat, A.
Osseyran and P. Grosso, The EPI framework: A data privacy by design
framework to support healthcare use cases, Future Generation Computer
Systems, 2024, 107550, ISSN 0167-739X, https://doi.org/10.1016/j.future.20
24.107550.

J.A.K. worked on the privacy by design study, in addition to the privacy
risk model formalisation. J.A.K. worked on the infrastructure orchestrator
design, the walk-through, and the evaluation subsection. J.A.K. consoli-
dated the work and did the final editing. T.M. worked on the workflow
orchestrator design. C.A.E. and M.G.K. worked on the policy part. The
remaining co-authors edited and supervised the work.
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1.5.1 Code repositories

• https://github.com/epi-project/brane

• https://github.com/epi-project/proxy-bench

• https://github.com/epi-project/Netsoft2023

1.6 Thesis Overview

Figure 1.2 visualizes the thesis organisation. This thesis contains 9 chapters,
including the introduction and conclusion. The figure depicts the major points
discussed in each chapter, and the research questions addressed.
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Figure 1.2: The thesis chapter overview including chapters’ organisation, key
points, and research questions.





Chapter 2

The Enabling Personalized Intervention
(EPI) Project: An Introduction

The Enabling Personalized Interventions (EPI) project (2), which ran from 2019-
2024, brings together research on data science, software-defined network infras-
tructure, and secure data sharing, deployed within the healthcare domain. The
project explores the digital twin paradigm, in which data science-driven algo-
rithms monitor and perform functions on a digital counterpart of a real-world
entity, to enable proactive responses based on predicted outcomes. The EPI
project applies this paradigm in the healthcare context by developing and test-
ing applications that can act as personalized digital health twins for self/ joint
healthcare management.

This chapter gives an introduction to the EPI project, and we report on the
use cases the project references as a basis to develop possible solutions to the
data-centric advancement challenges. In particular, we describe algorithms and
tools for algorithmic real-time response and analysis of distributed data at scale.

This chapter is based on:

• Jamila Alsayed Kassem, Corinne Allaart, Saba Amiri, Milen
Kebede, Tim Müller, Rosanne Turner, Adam Belloum, L. Thomas
van Binsbergen, Peter Grunwald, Aart van Halteren, Paola Grosso,
Cees de Laat, and Sander Klous. Building a Digital Health Twin
for Personalized Intervention: The EPI Project. In Commit2Data.
Open Access Series in Informatics (OASIcs), Volume 124, pp. 2:1-
2:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/OASIcs.Commit2Data.2

13
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2.1 Introduction

Recent breakthroughs in healthcare have been greatly influenced by improved
technologies that enable early diagnosis. Data analytic technologies have strong
potential to help solve complex problems in many industries: knowledge is power
– and in healthcare, that holds in particular. Yet, for an industry that is under
financial stress, the increasing complexity of disease and comorbidity, data-centric
advances in health have been burdened by capability constraints – why has data
analysis not been healthcare’s saviour? Several challenges have inhibited this. For
example, data is not accessible and remains (predominantly) in silos; data is not
widely analysed to derive meaningful clinical insights; insights are not accessible
as actionable information for healthcare providers or patients to self/joint manage
the patient’s condition. The project described in this publication - EPI - Enabling
Personalized Intervention1 - addresses these challenges with the ultimate objective
of improving cost efficiency, quality, and outcomes of care, while ensuring patient
and public health data and results are processed safely and with respect for the
digital (privacy) rights of patients.

The EPI project vision is structured around the concept of the digital health
twin (DHT) as defined by (19). “Digital Twins stand for a specific engineering
paradigm, where individual physical artefacts are paired with digital models that
dynamically reflect the status of those artefacts.” This leads to the hypothesis
that with a DHT: “one would be in the possession of very detailed bio-physical and
lifestyle information of a person over time. This perspective redefines the concept
of ‘normality’ or ‘health’ as a set of regular patterns for a particular individual,
against the backdrop patterns observed in the population.” The development
of personalized digital health twin algorithms will inherently benefit from the
ability to collect as much relevant data as possible to cluster patient groups better
and cater diagnosis treatment and outcome prediction according to the patient’s
genetic makeup and medical history. Given the emphasis on the individual and
the dynamic nature of a DHT, our main research question is if the existence
of a DHT indeed enables instant (real-time), effective, personalized guidance to
prevent health-related incidents and/or helps improve intervention effectiveness.

The paper starts by going over the project organization in Section 2.2, and
then we introduce the DHT use cases investigated in Section 2.3. We address the
challenges of building a real-time algorithmic response to enable collecting and
analysing patients’ data within a DHT use case in Section 2.4. On the other hand,
data is often distributed and hosted across healthcare domains, and we discuss
the methods to analyse data at scale utilizing distributed learning algorithms and
privacy-preserving machine learning in Section 2.5.

1https://enablingpersonalizedinterventions.nl/
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2.2 Project organization: partners roles and part-

ners interactions

The EPI project was funded by the Commit2Data Data2Person call from NWO,
the Dutch national funding agency. The project partners started their work in
2019 and concluded their collaboration in 2024.

Already in the preparation phase of the project, it was clear to all involved
that the only chance to develop a working solution was to create a cooperation of
an interdisciplinary team of medical specialists, data scientists, ICT infrastructure
experts as well as experts in artificial intelligence and law. This is what in the
end occurred: in fact, the EPI project brings together academic and research
partners, healthcare providers and the private sector to tackle the challenges
related to enabling personalized intervention.

The University of Amsterdam (UvA), the CentrumWiskunde and Informatica
(CWI) and the Vrije University Amsterdam (VUA) provide their scientific exper-
tise and employ PhD researchers to work closely with the other project partners.
The three hospitals within the consortium, St. Antonius, Princess Maxima Cen-
ter, and University Medical Center Utrecht (UMCU) provide three representative
health-related case studies. The use cases all have their requirements for the op-
erational analysis environment. It is not scalable nor desirable to have to manage
yet another environment for each use case: the infrastructure developed as part
of EPI solves that problem. To accomplish this, the medical institutions have put
their domain experts in contact with the researchers at the universities and cre-
ated close collaborations on the individual use cases. SURF, also involved in the
project, provides the infrastructural components; it fulfils the role of platform
manager, established to manage the operation of the platform and to monitor
and enforce that its participants behave as expected. Finally, KPMG and Philips
as commercial partners in the project contribute insightful direction towards the
long-term sustainability of the EPI results. During the whole duration of the
project, all partners have maintained very close interactions, even in periods of
Covid lockdowns.

As the project is now in its concluding phase, the partners are actively work-
ing for the results to see broader adoption, beyond the time span of the project.
EPI offers models, tools, and software that are also broadly applicable, not just
to the medical field. A first and concrete outcome of these efforts is the collabo-
ration of EPI with the Amsterdam Data Exchange (AMdEX) project 2. AMdEX
is an innovation field lab initiated by AMS-IX, SURF, UvA, DEXES and the
Amsterdam Economic Board and co-funded by the European Regional Develop-
ment Fund. The EPI partners have already acquired funding for integration of the
EPI result in AMdEX, and are looking for further commercialization possibilities.

2This work is partially funded through the AMdEX Fieldlab project supported by Kansen
Voor West EFRO (KVW00309) and the province of Noord-Holland.https://amdex.eu
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2.3 Use Cases

2.3.1 Personalized predictions for stroke rehabilitation (St.
Antonius Hospital)

The goal of this use case is to provide personalized outcome predictions for the
rehabilitation of patients who suffered from a cerebrovascular accident (CVA),
utilizing the data of these patients that is distributed among different care insti-
tutions, in a privacy-preserving manner.

Outcome predictions based on the complete care path:

Following acute care for a cerebrovascular accident (CVA) in the hospital, patients
commonly undergo therapy through either inpatient or outpatient rehabilitation.
Given the diverse conditions and life stages of CVA patients, rehabilitation treat-
ments and long-term health outcomes post-rehabilitation vary significantly (77).
Despite the shared belief in the importance of personalized prognoses among
healthcare professionals, limited knowledge exists regarding these outcomes upon
hospital discharge.

To address the need for personalized outcome predictions and to establish an
overview of the care continuum, this project aims to develop a DHT encompass-
ing the entire care trajectory of CVA patients. However, this task is complex due
to the involvement of multiple healthcare institutions—hospitals, rehabilitation
clinics, and nursing homes—each housing a portion of the patient’s data. Orga-
nizational, compatibility, and privacy concerns frequently arise in this scenario.
The objective is to generate personalized outcome predictions while safeguarding
data privacy through a distributed approach that constructs prediction models
while preserving the privacy of data from participating clinics.

Clinical interface to assist with shared decision-making:

In the healthcare sector, there has been a movement towards Shared Decision-
Making (SDM) (33)), whereby healthcare professionals devise a care plan not
solely based on clinical expertise but also by actively considering the personal pref-
erences and needs of each patient. For individuals who have suffered a cerebrovas-
cular accident (CVA), a diverse and extensive patient population, post-acute care
rehabilitation presents an opportunity where SDM can prove advantageous (74).

To facilitate the SDM process, our objective is to develop a clinical inter-
face that offers personalized insights into patient prognosis based on various care
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paths. This interface will be founded on distributed prediction models, delin-
eating the anticipated outcomes of distinct individual care trajectories to assist
clinicians in the SDM process.

2.3.2 Personalized recommendations in Psychiatry

The goal is to provide personal and explainable treatment recommendations to
accelerate the process of finding the right treatment for individual psychiatry pa-
tients.

Determining the information that the clinical interface should display:

Our objective is to design a clinical interface where patients and their clinicians,
based on their DHT records from the psychiatry department, receive insightful
treatment recommendations and prognostications (Section 2.4). However, de-
termining the most beneficial nature of these recommendations for patients and
clinicians remains unclear. Within psychiatry, there exists no consensus regarding
the optimal methods for assessing and forecasting treatment effects, particularly
for diverse patient populations with multiple comorbidities. Presently, clinical
trials utilize numerous symptom rating scales, which may not be suitable for het-
erogeneous patient groups, alongside quality of life assessments and measures of
autonomy, social engagement, and side effects (102).

To address this issue, interviews were conducted with patients and clinicians
at participating mental health hubs to identify the most valuable treatment out-
comes for prediction and presentation. Additionally, the feasibility of extracting
proposed outcome measures from the digital health twin was explored, includ-
ing the extraction of information from both structured and unstructured data.
Moreover, the potential for real-time extraction, wherein new patient outcome
data, such as reported side effects during clinical visits, could be transferred to
the DHT records and utilized by the recommender system to adjust predictions,
was investigated. Detailed findings of this study can be found in (102).

Developing personalized recommender systems for psychiatry patients:

Psychiatric syndromes exhibit considerable heterogeneity, and the occurrence of
side effects significantly influences treatment adherence and outcomes. Thus,
tailoring the predicted outcomes of the recommender algorithm could substan-
tially enhance the efficiency of finding the appropriate treatment. One patient
may prioritize minimizing side effects, while another may prioritize a swift re-
turn to work. In a third scenario, a clinician may identify a convergence of two
syndromes, where understanding the interaction between two symptoms is piv-
otal in the progression of the disease, prompting early targeting of these specific
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symptoms during treatment.

To facilitate this customization, our objective is to develop and train a rec-
ommender algorithm capable of predicting the most suitable treatment for indi-
vidual patients, considering either a single outcome or a combination of outcome
measures. Within the clinical user interface, both the clinician and patient will
collaboratively determine the weighted combination before receiving recommen-
dations.

Sharing recommender systems between mental health hubs:

Once a recommender system has undergone training and validation, it will be
shared with other mental health hubs for two primary purposes. Firstly, it is
imperative to demonstrate the generalizability of medical recommender systems
by validating them in independent patient cohorts before their implementation
in clinical practice. Secondly, post-validation, the algorithm should be shared to
enhance the records across various mental health hubs.

To facilitate the exchange of the algorithm, a secure infrastructure must be
established to enforce the policies of all participating mental health hubs. This
infrastructure should regulate access to different components of the recommender
system, ensuring that individual patient data cannot be accessed through requests
to the shared algorithm. Additionally, the sharing platform should integrate the
diverse informed consent systems utilized by each mental health hub.

A significant challenge, not currently addressed in this project, is the poten-
tial disparity in the structure of data employed by each hub. This discrepancy
becomes problematic when the recommender system processes structured data as
input or output. For instance, one hub may store a patient’s previous medication
in a structured format managed by the pharmacist, while another hub may record
previous medication as free text in the electronic health records documented by
clinicians. As a result, when our system is implemented in the first hub, it
may struggle to locate the relevant information in the second hub. Preprocess-
ing the data of digital health twins at each hub may necessitate automation for
future real-time applications, possibly through the introduction of a meta-layer
surrounding the recommender algorithm.

2.3.3 Princess Maxima Center

The EPI project’s goal for this use case is to enable compliant data-sharing by au-
tomating privacy policies from privacy legislation and contractual agreements on
data-sharing to facilitate stakeholder collaboration in discovering new treatments
and prognosis factors for the Diffuse Intrinsic Pontine Gliomas (DIPG) disease,
a rare and deadly childhood malignancy(56).
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A Data sharing agreement specification for compliance and interoper-
ability of access to data:

Despite nearly four decades of single-centre and non-randomized trials, there has
been minimal improvement in the survival rates of patients with Diffuse Intrinsic
Pontine Glioma (DIPG) (51). Consequently, there is an urgent need for interna-
tional collaborations to share data and explore new treatments, prognostic factors,
and other significant advancements. To address this need, the European Society
for Paediatric Oncology (SIOPE) Brain Tumour Group established a DIPG reg-
istry and image repository to collect data on DIPG patients (15). However, strin-
gent privacy regulations and high non-compliance fees pose obstacles to seamless
data sharing among stakeholders. The automation and enforcement of privacy
policies could potentially mitigate non-compliance resulting from intentional or
unintentional violations of these rules. Unfortunately, current data-sharing infras-
tructures and policy reasoning mechanisms somewhat fall short of providing the
necessary languages and methods to enforce privacy rules, particularly concern-
ing legal norms such as Data Sharing Agreements (DSAs) and privacy regulations
(e.g., the GDPR).

In this project, we utilize a domain-specific language called eFLINT to ar-
ticulate data-sharing policies expressed in DSAs (109). The eFLINT language,
developed to formalize legal norms, proves suitable for specifying data-sharing
rules, conditions, and obligations outlined in DSAs and privacy regulations. The
extensions made to the eFLINT language enable the connection of higher-level
and abstract privacy policies to lower-level system policies, such as read and write
access rights (108).

A purpose-based access control mechanism:

Existing conventional access control models do not possess the required mecha-
nisms to articulate and enforce data access and usage policies outlined in privacy
laws and contractual agreements. In our research, we introduce an access control
model designed to streamline the granting of researchers’ access to datasets based
on their research objectives. At the core of this model lies the definition of ab-
stract purposes at a higher level, represented as system-level actions or sequences
of actions, which form the foundation for purpose-based access control policies.

Develop a user interface :

The current user interface for the DIPG use case was developed by the AMdEX
field lab project. The prototype can be used by all stakeholders, a researcher and
the DIPG executive committee to submit project proposals and approve project
proposals respectively. Additionally, our main objective, to allow researcher ac-
cess to data based on the approval of a project proposal, has been implemented
on the prototype.
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2.4 Algorithmic real-time response

A DHT involves collecting and analysing patient data in real-time. Predictions
of treatment effects for individual patients can be improved in real-time as the
amount of available information keeps increasing. For these predictions to be
useful, adequate information about their uncertainty and rationale should be
provided to patients and clinicians.

Unfortunately, there are currently many challenges with the way statistical
learning and hypothesis testing techniques can be applied in healthcare, and
merging real-time response with an adequate confidence measure is one of them.
When we peek continuously at our results throughout an experiment (“real-time”
analysis), biased and misleading results are retrieved with classical hypothesis
testing methods (113). Similar problems arise when we want to combine insights
collected over multiple healthcare facilities, or when we want to adapt our exper-
iments post-hoc (48; 100).

A novel framework designed to address these challenges effectively is known as
Safe Anytime-Valid Inference (SAVI) (94). This framework enables the dynamic
analysis of studies, accommodating changes in their designs during data collec-
tion and analysis, thereby avoiding the previously mentioned issue of producing
misleading results. SAVI tests can also be extended to estimation, providing
anytime-valid confidence intervals that ensure robustness at any point during a
study (52).

Furthermore, the combination of multiple SAVI tests into a comprehensive test
is straightforward, particularly useful when researchers opt to share only summary
statistics instead of an entire dataset. SAVI tests demonstrate flexibility in han-
dling heterogeneous datasets collected from various institutions, accommodating
dynamic changes such as switching outcome measures or predictors when data
sources evolve.

Our ongoing work involves developing models capable of capturing the con-
fidence of intervention outcomes for small patient groups, ensuring guaranteed
error bounds on the model (103; 104). The resulting patient-tailored advice can
be presented through an application integrated into the clinical user interface.
This application allows dynamic adaptation of input and outcome measures by
all key stakeholders: the patient, clinician, and researcher. Notably, the SAVI test
or confidence results from such an application can be seamlessly combined with
SAVI results from other healthcare centres without compromising the reliability
of the estimates.

Thus far, we have addressed inferential models for ongoing studies conducted
in real-time, but we also acknowledge the significance of historical observational
data in constructing adaptable models. As advancements in data infrastructure
and data sharing within healthcare continue, a wealth of such data will become
increasingly available. Nevertheless, when working with observational data, the
identification of treatment effects may be obscured by confounding variables or
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biases stemming from potential fallacies in study design, which extend beyond
simple statistical significance. This underscores the necessity for learning models
to offer a level of explainability, where the rationale behind the model’s decisions
is transparent to clinicians, healthcare researchers, and patients (31).

To address this requirement, we explore the utilization of more intricate meth-
ods that also possess robust explainability characteristics, such as constraint-
based Bayesian networks (18). These models can incorporate multiple predictors
and outcome variables of interest, presenting the associations between them in
the form of a directed acyclic graph. Through this resulting network, groups or
even individual patients who are more likely to respond favourably to specific
treatment strategies can be identified and highlighted.

In summary, our aim for the algorithmic real-time response within the DHT
is to develop relatively straightforward and transparent mathematical models.
These models are designed to offer robust recommendations and insights to sup-
port decision-making processes and to enhance understanding of clinical diagnos-
tic methods and therapies. The SAVI tests for inference and the network-based
models incorporate prior knowledge drawn from expert insights and pre-training
of the models, resulting in low computational costs when deploying the algorithms
in real-time settings.

Both proposed models offer significant flexibility, allowing for the incorpora-
tion of new insights gained during real-time analysis to dynamically update the
models. This adaptability permits adjustments to hypotheses tested and pre-
dictions made while maintaining the robustness and ensuring estimation error
bounds. Additionally, this dynamic nature enables the modification of predic-
tor variables (in cases of missing data) and outcome variables for each case, fa-
cilitating the modelling of individual patients rather than relying on a generic
”statistical patient model.”

2.5 Analysing distributed data at scale

In addition to the imperative for real-time response, another significant challenge
confronting DHTs pertains to scalability. Specifically, for more sophisticated
machine learning and deep learning methods to achieve accuracy, substantial
volumes of data are requisite for training and assessment (120). However, in
the healthcare domain, extensive aggregated medical datasets are rarely available
due to data being dispersed and stored across numerous independent institutions.
Moreover, stringent privacy laws and policies govern data sharing to safeguard
both dataset privacy and patient confidentiality.

A viable solution entails decentralizing computation to where the data re-
sides. To accommodate this paradigm shift, two primary adjustments are es-
sential. Firstly, algorithms themselves must undergo modification to facilitate
self-training on distributed data. How data is distributed influences the adapta-
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tion required by the algorithm. Secondly, the machine learning mechanism itself
must embody inherent privacy-preserving capabilities to prevent inadvertent leak-
age of information through model predictions or other outputs. These two topics
constitute the focal points of our discussion in this section.

2.5.1 Distributed learning algorithms

Data can be partitioned either horizontally or vertically among involved parties.
In horizontal partitions, each partition encompasses a set of instances, each pos-
sessing all the features associated with that instance, exemplified in section 2.3.3.
In this scenario, the dataset encompasses patients from diverse hospitals across
multiple countries, where each patient’s data is solely recorded within one hos-
pital. Conversely, vertical partitions entail instances where features of a single
instance are dispersed across various parties, as observed in the CVA use case,
where a patient’s data is distributed across different healthcare institutions they
visited.

The challenges of distributed learning have been addressed by developing
methods that contend with this data parallelism, where collaborative models are
trained on distributed data while the individual parties retain ownership of their
local data. A significant development in this realm is federated learning (71),
where local parties construct their models that, through iterative model parame-
ter sharing, converge to a single central model. Models developed for horizontal
learning exhibit comparable predictive performance to those trained on fully cen-
tralized data (59). However, distributed learning on vertically partitioned data
remains relatively underexplored (59), as it occurs less frequently and entails
additional complexity: the participating parties have differing feature sets, thus
hindering the ability to train the same model and exchange parameters uniformly.
Notably, in vertically partitioned data, only one party typically possesses the label
that the model seeks to predict. While recent studies have introduced methods
to leverage vertically partitioned data for deep learning, these distributed learn-
ing solutions encounter challenges related to predictive performance, privacy, and
efficiency (22; 50)

For this project, we implemented and assessed Vertical Split Learning, a
method where a neural network is distributed across locations like the data dis-
tribution (22), across a range of medical and other applications. Our findings
indicated significant variability in predictive performance depending on the spe-
cific use case, feature distribution, and models employed (12). This underscores
the crucial importance of thorough testing of vertically distributed learning tech-
niques and underscores the ongoing necessity for more resilient vertically federated
learning methods. Achieving this entails not only adapting distributed learning
approaches to maintain predictive accuracy but also integrating effective privacy
and security measures.



2.5. Analysing distributed data at scale 23

Given that this project aims to enhance the broad applicability of Digital
Health Twins (DHTs), it is imperative to meet the demands posed by various
forms of vertically partitioned data, such as those encountered in the stroke re-
habilitation use case. Consequently, our objective is to further refine and tailor
distributed learning methods capable of leveraging vertically partitioned data
while upholding robust predictive performance, as well as privacy and efficiency
standards.

2.5.2 Privacy Preserving Machine Learning

In recent years, distributed machine learning methods have gained significant
attention for their ability to address core concerns in data analysis, namely privacy
and scalability. Moreover, there has been a notable shift in large-scale, big-data
computation toward distributed and cloud systems (57). The growing maturity of
these methods in other domains makes their application in healthcare particularly
compelling, given the sector’s inherent requirements for privacy and extensive
data processing (93).

A new research area, Privacy-Preserving Machine Learning (PPML), has
emerged to investigate privacy aspects within machine learning. PPML-based
models typically employ techniques based on Cryptography and/or Perturbation
to safeguard the privacy of data and/or models. Cryptography-based approaches
in PPML utilize cryptographic methods and protocols to encrypt data, while
perturbation-based methods involve transforming the data, often by introducing
noise to the training data, algorithm parameters, or the algorithm output. Addi-
tionally, other less explored methods do not fit neatly into these categories, such
as Synthetic Data (121) and private aggregation of Teacher Ensembles (89).

While various PPML methods have demonstrated their effectiveness, each
comes with its limitations. To make these methods viable, machine learning
models must be adapted to operate on encrypted, perturbed, or otherwise trans-
formed data, while ensuring that the model trained on altered data maintains
similar performance and generalizability as a model trained on unprotected data.
The additional computational overhead resulting from these measures is a notable
downside, particularly in healthcare, where alongside the critical need for preserv-
ing privacy, model accuracy and computational efficiency are crucial factors for
adoption in the field.

Our objective is twofold: to offer privacy-preserving machine learning meth-
ods tailored for medical applications and to establish a framework for construct-
ing a PPML pipeline customized to the requirements of our stakeholders. This
framework is designed to ensure privacy preservation in distributed or federated
machine learning scenarios. The distributed nature of the data presents new chal-
lenges, including bias, class imbalance, potential unreliability of learning parties,
and communication costs, all of which necessitate specific attention for our tar-
get use cases. This approach facilitates the execution of algorithms detailed in
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the next chapter in a distributed, privacy-preserving manner. Simultaneously,
it is intricately integrated into a decentralized distributed scheme encompassing
policy specification, infrastructure, and orchestration layers to ensure adherence
to governing rules and regulations, as well as accurate setup and deployment at
stakeholders’ sites.

The adoption of PPML within a DHT aligns with the remaining recommen-
dations outlined in (30) regarding mathematical modelling. PPML facilitates the
simultaneous processing of disparate, distributed private datasets without com-
promising privacy. It enables the establishment of private online repositories,
including those containing sensitive individual patient data, while ensuring that
data processing remains privacy-preserving regardless of the analytical models de-
veloped on top. A framework providing a unified PPML foundation facilitates the
seamless integration of phenomenological and mechanistic models by shifting the
focus from data leak prevention to the development of hybrid integration methods
and strategies. Furthermore, it mitigates privacy incidents when identifying rela-
tions across scales, potentially leading to the development of homogenization and
distribution strategies for the construction of a theoretical framework for scale
separation analysis.

2.6 Conclusion

In the EPI project, we shed light on some of the data-sharing challenges. We focus
on solving three use cases involving consortium members. The use cases serve as
exemplary applications of personalized medicine and help us to build applicable
solutions. Subsequently, we introduced health data processing solutions (real-time
response statistical learning) to provide robust personalized recommendations.
Data in the real world is distributed, so we investigated distributed learning and
various methods to include privacy-preserving techniques.

In the next chapter, we will introduce automated policy interpretation, man-
agement, and enforcement to enable data usage abiding by set policies and defined
purposes. On a lower level, we will focus on addressing infrastructural hetero-
geneity and security-based challenges by formalizing the data-sharing framework
built with BRANE, and the security service orchestrator. Additionally, we will
implement BRANE PoC; which is a distributed research platform; to build and
run said workflows irrespective of the heterogeneous nature of the underlying
computing resources. This is further detailed in the next chapter, where we dis-
cuss all the EPI Framework’s components; including BRANE. We will discuss
related work and data-sharing framework efforts in the later chapters.

Altogether, the EPI project efforts bring us closer to the creation of Health
Digital Twins, a necessary component in enabling personalized interventions.
Still, the EPI experiences and insights transcend the medical domain. A major
ambition of the EPI project, and in general of the Commit2Data funding scheme
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to which the project belongs, was to create long-term and broadly applicable
results.





Chapter 3

An overview of the EPI Framework

Robust security frameworks, encrypted communication channels, and advanced
access controls are essential components in building a secure data-sharing ecosys-
tem that fosters collaboration while safeguarding patient interests. In this chap-
ter, we develop a framework to combine data analytics, and health decision sup-
port algorithms to create personalised insights for prevention, management, and
intervention to providers and patients. We design the framework to dynamically
provision workflow requests of different healthcare use cases according to set data
policy, and network and security requirements. The framework proposed provides
the means to build and run distributed frameworks across healthcare institutions
within the consortium while reasoning about policies and enforcing network rules.
We showcase the EPI Framework’s components and discuss the PoC built to de-
ploy the EPI Framework functionality. In this chapter, we partially answer the
question:

RQ1: ”How can we address open challenges in the context of pol-
icy, security, and computing data sharing via building a dynamic
infrastructure framework to deploy DHT use cases”

This chapter is based on:

• Jamila Alsayed Kassem, Corinne Allaart, Saba Amiri, Milen
Kebede, Tim Müller, Rosanne Turner, Adam Belloum, L. Thomas
van Binsbergen, Peter Grunwald, Aart van Halteren, Paola Grosso,
Cees de Laat, and Sander Klous. Building a Digital Health Twin
for Personalized Intervention: The EPI Project. In Commit2Data.
Open Access Series in Informatics (OASIcs), Volume 124, pp. 2:1-
2:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/OASIcs.Commit2Data.2
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3.1 Introduction

With the exponential growth of health-related data, there is a pressing need for
secure data-sharing mechanisms to unlock its full potential in advancing person-
alized medicine and the development of Digital Health Twins (DHT). The accu-
mulation of diverse patient data, including electronic health records, genomics,
medical imaging, wearable devices, and lifestyle information, has paved the way
for data-centric health applications. However, harnessing the power of this vast
and varied data requires secure and efficient mechanisms for data sharing among
healthcare providers, researchers, and other stakeholders. Additionally, secure
and efficient data sharing allows researchers and developers to train advanced
machine learning algorithms and artificial intelligence models, enabling predic-
tive analytics, precision medicine, and the creation of DHT.

In the rapidly evolving landscape of data-driven innovations and collaborative
research, the need for robust frameworks that facilitate efficient data sharing and
interoperability has become crucial. This chapter introduces the design of the
EPI Framework – an innovative and comprehensive solution aimed at addressing
the challenges associated with seamless data exchange across diverse domains.
The EPI framework addresses several challenges to digital twin applications in
the healthcare domain, such as: 1) strict health data sharing policies often lead
to data being locked in silos, 2) legal, policy and privacy requirements make data
processing increasingly more complex, and 3) significant limitations on infrastruc-
ture resources may apply. The framework comprises three pivotal components,
each meticulously crafted to streamline the data-sharing process.

The first cornerstone of the EPI Framework is the Policy Reasoning Tool, an
automated approach to formalize, interpret, and manage data-sharing policies.
The EPI framework leverages eFlint’s capabilities, and the Policy Reasoning Tool
empowers users to navigate the complex landscape of data sharing with an em-
phasis on adherence to policies, ensuring ethical, legal, and regulatory compliance.
This tool serves as the governance backbone, fostering a secure and accountable
environment for data exchange within the framework. We expand more on this
in Section 3.2.

Complementing the Policy Reasoning Tool, the second component is BRANE
– a Pipeline Computing Orchestrator. Engineered to define and manage dis-
tributed workflow pipelines, BRANE optimizes computational resources, enhances
data processing efficiency, and does so in compliance with set policies. Section 3.3,
introduces BRANE’s key features and functionalities, in addition to implemen-
tation efforts. The third and final pillar is the Bridging Function Chain (BFC)
Orchestrator – a virtual security and network functions orchestrator designed to
bridge the gap between security areas across data-sharing endpoints. Alongside
BRANE, the BFC orchestrator is utilized to enforce security policies and ensure
endpoint reachability for a successful data-sharing use case deployment. We in-
troduce the BFC orchestrator in more detail in Section 3.4. In this chapter, we
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lay the groundwork for a robust, flexible, and scalable data-sharing framework
that caters to the evolving needs of modern collaborative research, governance,
and decision-making.

3.2 Automated policy interpretation, manage-

ment and enforcement

Current approaches to accessing healthcare data for research purposes can be
complicated due to strict privacy regulations and contractual agreements such
as data sharing agreements. Privacy regulations and data sharing agreements
are usually written in natural language, which can lead to ambiguous and incon-
sistent interpretations (11). Resolving these challenges demands suitable policy
specification languages to specify policies. The main objective of this work is
to automate data access requirements from privacy regulations and data sharing
agreements (DSAs) to reduce the complexity of data access for research purposes
and enable the enforcement of different sources of legal norms via access control
mechanisms.

3.2.1 Data sharing agreements and access control

The General Data Protection Regulation (GDPR) states the principles and rights
that must be met for processing any personal data (26). These principles are law-
fulness, fairness and transparency; purpose limitation; data minimization; accu-
racy; storage limitation; security and accountability. The GDPR provides strict
privacy norms and there is no (access control) mechanism that enables the enforce-
ment of all such norms. These challenges become more prevalent when several
sources of legal norms (e.g., GDPR and DSAs) are simultaneously applicable, as
is often the case with medical research. Additionally, when data is merged from
several sources and different controllers are allowed to author their own policies
that dictate for each source, it can cause policy conflicts. The gap between legal
requirements and their technical realization is due to the lack of machine-readable
representation of privacy policies.

The goal is to formalize privacy policies and to enable their enforcement via
(novel or existing) access control mechanisms. In the initial stage of this work,
different policy specification languages were analysed to determine which of them
met the privacy policy requirements from GDPR and DSA of the DIPG Registry
use case. The Open Digital Rights Language (ODRL) (54) and the eXtensi-
ble Access Control Markup Language (XACML) (99) were concluded not to be
sufficiently expressive. The analysis of ODRL is reported in (70). Instead, we
are applying the eFLINT language, originally developed within the SSPDDP
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project1, to formalize GDPR and DSA articles relevant to the Diffuse Intrinsic
Pontine Glioma (DIPG) use case.

The eFLINT language is a domain-specific language that was specifically de-
signed to formalize legal norms (109). The eFLINT language extensions enabled
us to interconnect higher-level privacy policies such as those expressed by the
GDPR and DSAs with system-level policies such as those specified by access con-
trol policies (108). Additionally, we formalized the access request workflow of the
DIPG registry use-case, a researcher submitting project proposals and approv-
ing proposals and the duties that follow as a result of these transitions. Finally,
we demonstrate how actions described by the GDPR such as “collecting per-
sonal data” can be synchronized with actions from DSA such as “making data
available” to the registry. This approach allows for the modular specification of
norms by permitting re-use between specifications as well as defining alternative
specifications.

3.2.2 Purpose Based Access control mechanism

Within the EPI Framework, we propose an access control model that simplifies
the process of granting researchers access to datasets based on research purposes.
Article 5(1(b)) states that personal data shall be collected for specified, explicit
and legitimate purposes and not further processed in a manner that is incompat-
ible with those purposes. Additionally, If personal data is collected for more than
one purpose and these purposes are related, then the GDPR allows for process-
ing to take place under an “overall purpose” under which a number of separate
processing operations can take place. Therefore, the purpose limitation principle
minimizes the risk that might arise when personal data is processed by confining
the possibilities of its usage by limiting instances of lawful processing.

Our purpose-based model is based on these requirements. The main compo-
nent of this model is the specification of higher level abstract purposes as system
level action or sequences of actions which are the basis for defining purpose-
based access control policy. We model action relationships based on the purpose
specification requirements from the GDPR and express constraints over these
relationships using the eFLINT language. The goal of this work is to design
and implement an access control model that allows access to data based on the
purpose of research plans.

1The SSPDDP project (628.009.014) is part of the NWO program Big Data: Real-Time ICT
for Logistics
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3.3 BRANE - A heterogeneous, distributed re-

search platform

Different DHT functionality requires different physical infrastructures to be de-
ployed. On a software level, they have different hardware- and software require-
ments, such as dependencies on accelerators or specific software packages; and
on an application level, they need different data flows and might impose dif-
ferent security requirements. Therefore, there is a need to dynamically map a
logical infrastructure dictated by a DHT functionality onto a physical pool of
resources. This pool of physical resources is often heterogeneous and dispersed as
well. The exact composition varies but may consist of resources in the cloud, high-
performant grid computers or even small, embedded system devices that operate
only locally. This variety introduces interoperability issues on the software level
(different software stacks, transfer protocols or granted system privileges), hard-
ware level (processor architectures, availability of accelerators, networking capa-
bilities) and administration level (different costs, usage quotes or service-level
agreements). Furthermore, heterogeneous trust relationships between resource
providers may exist (86). This restricts how data can flow between resources,
or sometimes even if the provider of a resource is willing to do a task at all if
this violates their own trust- or security policies. This issue becomes even harder
when some of the policies involved are sensitive themselves and must thus be
kept private; it may be, for example, that a dataset can only be processed by a
resource if a patient has given consent to do so, where this consent itself already
reveals sensitive information about the patient.

Traditionally, the mapping of a logical infrastructure on a physical pool of re-
sources is done (semi-)manually. However, this approach does not scale in the case
of DHTs, as both ends of the mapping are dynamic: new DHT functionality may
be introduced or adapted, resources may be introduced or removed and the poli-
cies of existing resources may change. Hence, a mechanism is required to perform
this mapping automatically and dynamically. To solve the software and hardware
interoperability issues, the BRANE Framework (106) is introduced as the mech-
anism to provide the logical infrastructure to a physical resource pool mapping.
It frames DHT functionality as workflows, which are compositions of elementary
functions to form (data) pipelines that implement the desired behaviour. These
elementary functions, in turn, are implemented by packages, which are container-
ized pieces of software such as data preprocessing steps or (parts of) algorithms
that are executed on the resource pool. The runtime of the framework can then
orchestrate these containers based on the requirements and dependencies laid out
by the workflow and provide the mapping; this act is called planning a workflow.
A visualization of this process is given in Figure 3.1.

To handle the administrative-, privacy- and trust-related interoperability is-
sues, the BRANE framework is extended with a notion of policy (36). These
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Figure 3.1: Conceptual role of BRANE. During the implementation of a use
case, a scientist writes a workflow that composes elementary functions (f, g and
h in this example). These elementary functions are implemented by packages,
which are written beforehand and made publicly available by software engineers.
At runtime, the BRANE runtime understands the dependencies between the func-
tions and can map them onto a physical pool of resources.

policies are expressed on a per-resource level, which effectively makes policies
representative of a resource owner’s wishes within the system. By consulting
with the policy both during the planning of a workflow and during execution, the
policies restrict what a resource is used for and what happens to the resource’s
data, as well as express administrative limits or costs on the resource. A key
feature of this notion of policy is that the policies are abstracted away behind a
service, the checker service (Figure 3.2). Using an interface like this allows re-
source owners to make their policies arbitrarily complex since the system has no
requirements on how they are implemented. For example, they can use languages
like eFLINT (109) that can capture norms, allowing policies to express legal con-
cepts like GDPR. Moreover, addressing the need for private policies, the interface
allows every participant to hide as much of their policy as desired. This can range
from ”metadata” of a policy, such as the name of the person who gave consent,
to the policy rules themselves; although the latter requires advanced reasoning
about what policy information is leaked through the interface. This ability to
keep policies private is what sets BRANE apart from similar workflow systems,
like (110) or (29).

In summary, we present an automatic mapping of the logical infrastructure
dictated by DHT functionality to a physical pool of resources using the BRANE
infrastructure. It frames the functionality as workflows and packages and com-
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plements that with high-level constraints on that mapping by introducing (po-
tentially private) policies that are hosted on the resources themselves. To enforce
lower-level policies related to (network) security, a more complex extension to
BRANE is required and described in the following section.

Figure 3.2: Policy enforcement in BRANE. There are two phases when exe-
cuting a workflow: in the first, the planning phase, the runtime maps tasks in a
workflow to resources that will execute the tasks. Here, checker services (and thus
policies) act as filters to separate plans they would allow from plans they would
deny, preventing the system from having to execute every possible plan. Then,
during the execution phase, the runtime starts traversing the planned workflow
and attempts to execute each task on the resource it was planned on. The checker
of that specific resource examines the task again, to prevent any staleness intro-
duced by the arbitrarily long delay between the planning check and the execution
of that specific task.

3.4 Distributed Analysis Infrastructure

Currently, “working in silos” is still dominating the healthcare industry, but data-
sharing between health domains is key on the road towards DHT. We aim to lay
the foundation of distributed infrastructure and utilize it in deploying the previ-
ously mentioned use cases. In the context of this project, we define a data-sharing
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framework that allows parties in specific (research) networks to share patient in-
formation securely in an ad-hoc way in the course of treatment or a specific
research question, as well as structurally for long-term studies while maintaining
control and tractability/suitability to data controllers and subjects at the source.

Developing a generic solution to comply with the dynamic security policies is
difficult, mainly because the infrastructure between different healthcare domains
is heterogeneous in terms of computing, networking and storage functionalities.
Moreover, when various use cases have to be deployed (e.g. for running an ML
algorithm, monitoring, sharing EHRs, etc.), different requirements or rule sets
(policies) apply (e.g. privacy related) and have to be enforced to ensure proper
control over the data flow/ usage. The infrastructure and security models need
to support these different applications and therefore need to be adaptive to be
able to support dynamic and often application-specific sets of requirements.

The main design properties we consider while setting up a secure, collaborative
networked environment (63) between different EPI parties are:

1) the low-level security and network policies formalizing and enforcement,

2) compatibility with higher-level policies, and dynamic workflow schemas,

3) evaluating data-sharing domains, and adaptively provision network service
chain to maintain security and quality of service,

4) reacting to any policy change while flexibly trading and routing packets via
the chain via proxies (different implementation presented in (67)).

The proposed framework considers the intended data-sharing use case, and the
policies associated. We map the mandated network services to the defined en-
forcement primitives: filter traffic and/or transform traffic. The framework dy-
namically provisions these services by placing the functions on available N-PoPs
(Network Points of Placements), assigning the service requests to the running
function, and routing traffic along the function’s chain to enforce a policy. We
optimize provisioning decisions to maximize the quality of service based on the
infrastructure state, the use case’s requirements, and the CPU profiles of ser-
vices (61). The hyperparameters are tuned to prioritize resource utilization or
latency in an effort to comply with the performance requirements. Three pro-
visioning tools are used: a greedy heuristic approach, Deep Q-Learning (DQL),
and a Heuristic-boosted DQL (HDQL).

We manage and orchestrate virtualized networked services on top of the ex-
isting client’s infrastructure to increase the security level of the communication
channels and enforce policies. A cloud-native network orchestrator is defined on
top of a multi-node cluster mesh infrastructure for flexible and dynamic con-
tainerized function scheduling. The expected challenges include verification of
rules with laws and international policies, integration with legacy systems, and
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acceptability of the framework by health institutions. The latter includes provid-
ing the health institutions with sufficient oversight and control over the sharing
and usage of their data so that they are confident that this exchange is compliant
and controllable. We address these challenges by working closely together with
the responsible entities (IT departments, ethical boards, and data privacy offi-
cers) in the associated hospitals. The approach we will be taking is to formalize
a logic to automate infrastructure setup per application scenario by utilizing vir-
tualized services hosted by a bridging node. The framework runs a middleware
in a virtualized manner and offers network services to secure data sharing and
consider policies.

3.5 The EPI Proof of Concept

In order to experimentally validate the work presented in this paper, a proof-
of-concept (PoC) has been deployed in cooperation with various organizations
in the EPI consortium. The goal of the PoC is to create an environment in
which federated applications may be executed which involve one or more ‘local’
processing steps followed by a centralized ‘global’ step that aggregates the local
results. In the PoC, local steps are executed by St. Antonius and UMC Utrecht,
each having a part of a horizontally split dataset. To test the EPI use cases, as
well as our methods of analysing distributed data at scale, we use a dataset that
has been previously collected in both hospitals with characteristics and treatment
outcomes of patients who received electroconvulsive therapy. Results of the local
computations on this dataset are sent to SURF, which plays the role of a trusted
third party that can aggregate the results (see figure 3.3). SURF also hosts the
BRANE runtime that acts as an orchestrator.

The PoC is used to assert that the framework discussed in sections 3.3 and
3.4 can support the resource pool hosted by the three participating organizations.
Specifically, the resources provided are heterogeneous in three of the aforemen-
tioned dimensions: they differ in hardware capabilities, software stacks and trust
relations. Regarding trust: only the hospitals are allowed to see only their own
ECT dataset. SURF is only allowed to see the local results produced on each
site and the global results they produce. These rules are ideal for experiment-
ing with automated policy enforcement (section 3.2). The setup also validates
whether the framework can operate within the administrative and security re-
strictions imposed by the security requirements of the hospitals. Most notably,
virtual private networks (VPNs) (112) are used to safeguard the data as it travels
over the public network, network access is restricted to the outside world and
some domains only offer restricted rights to the framework runtime.
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Figure 3.3: Schematic overview of the PoC setup. Three domains partic-
ipate in the proof-of-concept, each of which has its own resources hosting their
part of the framework: each hospital (UMC Utrecht and St. Antonius) has local
instances of the ECT dataset, and hosts a worker node to perform local computa-
tions; SURF, meanwhile, acts as an entry point, and hosts a worker to aggregate
the local results into a global one. Domains are contained in each dotted sphere,
where each sphere shows the relevant components for that domain. The arrows
indicate network traffic between the domains, where the direction of the arrow
indicates the direction of the initial message.

3.6 Conclusion

In this chapter, we highlighted the EPI Framework functionalities, components,
and how these interact. We defined the EPI Framework that runs the EPI health-
care use cases, adhering to a set of policies. To do that, we delegate different
functions into three components: eFLINT policy reasoner, BRANE workflow or-
chestrator, and Bridging Function Chain (BFC) orchestrator which handles repro-
gramming the infrastructure/request. The EPI components are put in a collabo-
rative architecture to address data-sharing challenges on many levels: application
level where we need to run different workflows (potentially distributively) regard-
less of the heterogenous computing capabilities of the node, policy level where
we need to manage and adhere to data-sharing agreements and laws, and repro-
gramming the overlay network of services to enforce some obligations and rules.
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The set of policy and security rules are use case dependent. Hence, in the next
chapter, we propose the area logic model that aims to automate infrastructure
orchestration.

The alignment between allowed, and feasible data flows at the infrastruc-
tural level may not always be straightforward. Theoretically, policies dictate the
permissible actions on data, while at the practical infrastructural level (specifi-
cally within the BRANE and BFC orchestrator domains), the workflow of data
pipelines actually is deployed. In the next chapter, we delve deeper into this dy-
namic by introducing the Area Logic Model. This model serves as an automated
framework for reasoning about the intersection between allowed and feasible data
flows, bridging the gap between policy-driven ideals and the operational pipelines.
We will present related work, and draw comparisons between similar data-sharing
framework efforts in the next chapters.





Chapter 4

EPI Policy Resolution: Area Logic
Model

The EPI services run over adaptive infrastructures, which provide more flexibility
to accommodate different data-sharing requests. This chapter introduces the logic
model behind it, intending to support novel health services over programmable
infrastructures. A single static infrastructure cannot support different healthcare
applications and collaborate data between stakeholders. This infeasibility is asso-
ciated with the heterogeneity of infrastructures/ healthcare domains, namely the
fact that computing/ networking/ storage capabilities differ from one domain to
the other. We propose a dynamic programmable infrastructure that can bridge
functionality gaps, hence providing data availability and interoperability when
sharing data between heterogeneous infrastructures.

We define the formalism of the logic model to deduce feasible data movements
between EPI endpoints and possibly satisfy a data collaboration request. We re-
inforce the infrastructure orchestrator’s logic model by introducing the algorithm
running on this federated system and further provide three healthcare use cases’
walk-throughs. We evaluate our model according to three relevant parameters,
performance, feasibility, and aggregation power, and we can conclude that our
model supports the required interoperability between the EPI partners. The
framework assigns nodes into a hierarchy of areas, initializes channels, considers
collaboration rules and aggregates bridging functions to control the information
flow in a sub-infrastructure. In this chapter, we partially answer the question:

RQ1: ”How can we address open challenges in the context of pol-
icy, security, and computing data sharing via building a dynamic
infrastructure framework to deploy DHT use cases?”

39
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This chapter is based on:

• J. A. Kassem, C. de Laat, A. Taal and P. Grosso, ”The EPI
Framework: A Dynamic Data Sharing Framework for Healthcare
Use Cases,” in IEEE Access, vol. 8, pp. 179909-179920, 2020, doi:
10.1109/ACCESS.2020.3028051.

4.1 Introduction

In the landscape of health data-sharing frameworks, the convergence of policy-
driven ideals and the operational realities of data pipelines within dynamic in-
frastructures often presents a challenge. While policies theoretically define the
allowed data flow, the practical execution within infrastructural domains, espe-
cially within BRANE and BFC orchestrators, can introduce complexities that
impact the alignment of allowed and feasible data flows. This chapter takes a
closer look at this by introducing the Area Logic Model.

This chapter contributes to the existing literature by introducing a novel
methodology designed to determine achievable data-sharing workflow archetypes
within dynamic infrastructure landscapes. Our approach defines the EPI areas,
an abstract grouping of EPI endpoints according to security and infrastructural
attributes. Around that, In Section 4.3 we build an area logic model that aligns
with and maps to possible data flow within complex and dynamic infrastructural
settings.

To operationalize our methodology, in Section 4.4 we implement a robust
algorithm dedicated to the creation of EPI areas. The evaluation of our algorithm
is a crucial aspect of this chapter, as we assess in Section 4.5 the performance
against relevant parameters. In Section 4.6 we analyse the effectiveness of our
proposed methodology and the practical implications of achieving data sharing
within heterogeneous health data ecosystems.

Furthermore, in Section 4.7 the application of our methodology is demon-
strated through the utilization of a logic model, specifically tailored for EPI areas,
in addressing EPI use cases. By applying the logic model to real-world scenarios,
we seek to illustrate the adaptability and efficacy of our methodology in diverse
health data-sharing contexts. As a result, in this chapter, on the road towards
secure medical data sharing, we automate the aggregation of high-level policy
with low-level infrastructure capabilities for seamless and compliant workflows.

4.2 Related Work

The latest advancements in the field of informatics inspired much of the research
utilising said technologies in the healthcare domain. Such development is cur-
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rently essential due to the impractical traditional data-sharing methods. Accord-
ing to surveys (90), roughly 15% of patients visiting a doctor were asked to supply
their radiology report personally (like on a DVD), and another 5% had to redo
their tests leading to more radiation.

Healthcare providers realise that and are migrating towards the usage of elec-
tronic medical records (EHR). There is a broad consensus that sharing data in the
medical spectrum can be beneficial in terms of cost-efficiency, preventing redun-
dancies, cooperation between stakeholders, and reliable research by accelerating
innovations and discoveries. Achieving secure health data sharing can result in
an efficient and effective healthcare cycle managed by the patients/healthcare
stakeholders.

Health data-sharing frameworks exist, but they are catered to satisfy a single,
specific use case, which makes the architecture rigid and less suited to support
different applications. These frameworks do not address the different capabilities
present in all network endpoints and assume identical operational possibilities on
all participating nodes. This is far from the current state-of-the-art in computing
infrastructures.

In this section, we aim to highlight some of the literature. The way that we
gathered the literature is as follows. For each query on Google Scholar, we selected
the top result. We queried ”secure sharing infrastructure”, and the top result was
(96). The search results were further filtered with a 2018+ time frame to represent
more recent research (91). We queried ”secure data sharing infrastructure”, and
the top result was (95), then added a time filter of 2018 which gave the top result
(91). We queried again ”health data secure monitoring” with top result (101),
and got (47) as a top result for the results published after 2018. The mentioned
papers referenced interesting literature like (117) (39) (14) (81).

Some frameworks provide interoperability of data but for a single use case.
Roelofs et al. (95) discuss an open-source infrastructure to share medical data
internationally for radiotherapy studies. They provide interoperability of data by
running a multicentric data mining. While Sartipi et al. (96) introduce an in-
frastructure that integrates PACS (Picture archiving and communication system)
and HL7 (Health level 7) and aims to have a homogeneous, and internationally
accepted EHR (Electronic health records).

Other frameworks rely on static and specific technologies or devices. In more
recent papers, frameworks leverage blockchain as a single infrastructural data-
sharing solution. Patel (91) favours an established consensus on a blockchain
ledger over third-party intermediates. Another framework utilising the same tools
is MeDShare (117). The system integrates smart contracts and access control pro-
tocols to provide a tamper-proof ledger of health data. MedBlock (39) compares
with the MeDShare system, and shares data via blockchain. Unlike MeDShare,
MedBlock does not maintain a ledger of audited behaviour, instead, it provides an
information management system. Moreover, Thilakanathan et al. (101) proposes
a platform that is based on cloud data services. The platform adds a layer of
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security by proposing a security protocol with ElGamal and proxy re-encryption
key exchange schemes.

A different application of medical data sharing is secure monitoring. Anoop et
al. (14) propose streaming an enormous chunk of medical data collected through
wearables using BSN (Body Sensor Network) to provide real-time monitoring of
the patient’s health status. Manogaran et al. (81) design a new architecture
of IoT environment to store, process, and share big data. Griggs et al. (47)
build a blockchain-based system to remotely monitor the patient’s status. The
system uses smart contracts on a private Ethereum network to handle medical
information.

Roelofs et al. (95) propose an open-source infrastructure to share medical
data internationally for radiotherapy studies. The endpoints of the system are
the international institutes to run multicentric data mining for radiotherapy re-
search. They built a research data model, queried needed data, and then ran a
pseudonymisation code. SNOMED is used as a medical dictionary and is further
synchronized by the DICOM (Digital Imaging and Communications in Medicine)
mechanism in a central model. DICOM is the international standard to trans-
mit, store, retrieve, print, process, and display medical imaging information. The
security is addressed by setting up a private VPN to share data. Sartipi et al.
(96) introduce an infrastructure that integrates PACS and HL7 to provide an
internationally accepted EHR. They use the XDS-i protocol to cooperate multi
healthcare agents and OpenID-0Auth for authorisation and authentication. In
their proposal, the cooperation of agents supplies action-based mechanisms for
access control. Moreover, security is also addressed using a policy that detects
behaviour patterns.

Patel (91) leverage an established consensus on a blockchain ledger over third-
party intermediates. This development provisioned a radiology research ledger
with cross-domain image sharing. The system security and privacy rely on the
asymmetric key-pair mechanism and patient access permission. MeDShare (117)
is another framework utilising blockchain tools by providing a trustless sharing
of medical data between cloud service providers. The system integrates smart
contracts and access control protocols to provide a tamper-proof ledger of data
behaviour. MeDShare infrastructure monitors entities and provides an auditing
ledger. Based on what has been done, offending or suspicious entities are revoked
access to medical data on cloud repositories. MeDShare assumes that medical
data is stored on a cloud and runs on top of that to supply data provenance,
monitoring and auditing, and access rights and control.

MedBlock (39) compares with the MeDShare system, and shares data via
blockchain. Unlike MeDShare, MedBlock does not maintain a ledger of audited
behaviour, instead, it provides an information management system. The architec-
ture of the systems includes the user uploading his medical data to a processing
layer of hospital servers. After that, the encrypted medical records are added to
the ledger, from which the user can query/retrieve data. Securely communicat-
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ing with the help of a certificate authority that will distribute keys. The security
and privacy of the system are delegated to the blockchain security and consensus
mechanism, CA, and the access control mechanism.

More infrastructure papers covered a different application of medical data
sharing and secure monitoring, e.g. (14). The application is concerned with
streaming an enormous chunk of medical data collected through wearable using
BSN in the effort of real-time monitoring of the patient’s health status. (101)
proposes a platform that is based on cloud data services, but adds a layer of
security by proposing a security protocol with ElGamal and proxy re-encryption
key exchange schemes. The paper seems to address the problem of retracting
authorisation of the health stakeholder by the user at any time. That is done by
simply retracting the ”data consumer” key entry from the user key database. Due
to that, the user’s right to receive or access data is revoked optimally without any
delays and puts on the user too much responsibility by re-assigning new keys to
all users and having the users up to date with the valid keys. It seems that the
security protocol depends on Cloud and encryption algorithms, which by itself
can cause some security issues. Other than that, the framework seems to assume
that the DSS (Data-Sharing Service) is trusted, which begs the question, will
that be enough for hospitals and other health stakeholders to share their data
and collaborate?

(81) designed a new architecture of IoT environment to store, process, and
share big data. “Meta fog redirection” and “grouping and choosing” are men-
tioned to be two sub-architectures of the design. The first is using Apache Pig
and Apache HBase to store collected sensor data. The latter is then used to in-
tegrate fog and cloud computing. The integration of fog computing has security
implications for the system. It utilises the bandwidth, response time, and scala-
bility. It relies on the PKI key management scheme to secure data sharing and
control access.

(47) build a blockchain-based system to securely and remotely monitor the
patient’s status. The system uses smart contracts on a private Ethereum network
to handle medical information in a fast and secure manner. The communication
starts with the medical sensor streaming into a smart device that calls the function
of a smart contract that processes the data. If the data retrieved is worrying, an
alert is sent to the user and the hospital. If not, the system continues to audit and
commit all activities to the ledger. The system delegates security to traditional
encryption and IP protocols, and the consensus of signatures.

Table 4.1 shows a comparison between these frameworks according to a set
of considered features. In light of the frameworks discussed, some elements, or
combinations of elements, might be lacking. For instance, some proposals con-
sider security on the one hand but don’t address relevant laws and auditing. On
the other hand, other frameworks address interoperability and data model usage
across different sectors, hence pre-process heterogeneous resources, but don’t of-
fer access control and security to protect the sensitive data. More importantly,
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all these frameworks are catered to satisfy a specific use case, which makes the
architecture rigid and hard to support different use cases.

Framework Tools Use Case Security considered Access control Data audit Laws Dynamic Interoperability

(96) PACS, XDS, OpenID Medical images sharing ✓ ✓ ✓ × × ✓
(95) SQL, DICOM, Key scheme Radiotherapy research data × × × ✓ × ✓
(91) Blockchain Medical images consensus ✓ ✓ × × × ×
(117) Blockchain, Cloud Medical data sharing ✓ ✓ ✓ × × ×
(101) Cloud Monitoring and sharing data ✓ ✓ × ✓ × ×
(39) Blockchain Medical data sharing ✓ ✓ ✓ × × ×
(81) Cloud, Fog computing Smart healthcare monitoring ✓ ✓ × × × ×
(14) WBANs Secure monitoring ✓ ✓ × × × ×
(47) Blockchain smart contracts Remote patient monitoring ✓ ✓ ✓ × × ×

Table 4.1: Comparison between frameworks

The majority of the proposed work is application-specific, and all shared re-
sources are exclusively data. These infrastructures are mainly static and offer a
”one fits all” standard. None of these frameworks address the data movement re-
quirements for generic use cases. In EPI, we formalise a methodology to support
data-sharing requests across providers with heterogeneous resources, which relies
on the programmability of the infrastructure.

4.3 The EPI Framework: The Infrastructure Or-

chestrator

The EPI infrastructure is the collection of all networking, computing, and storage
nodes provided by EPI parties. The EPI infrastructure orchestrator will cater to
any application scenario by building a sub-infrastructure.

Figure 4.1 illustrates a high-level view of the proposed infrastructure orches-
trator. An application scenario specifies the resources needed, and the data col-
laboration goals, and is initiated by the collaborating parties (1).

The Information Sharing Agreement (ISA) describes the data sharing policy
between parties, i.e. a policy is the group of rules governing data movemen-
t/usage (98). The EPI infrastructure orchestrator queries ISA from the policy
management system (2). The received ISA is further translated to a set of rules
(3) that are recorded into a log.

The orchestrator uses a logic model (Section 4.3.1) to group nodes into
areas that describe feasible data movements between them (4). On top of feasible
data movements, the framework also considers the information flow rules log to
determine possible archetype mapping (5). The model describing the pattern of
data movement is named collaboration archetype (119).

An application request is the actual-requested data movement between parties.
After building the sub-infrastructure, application requests are introduced (6). A
single application scenario can refer to multiple application requests, and the
aggregation of all possible data movements are represented by archetypes. When
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an application request maps to an existing collaboration archetype (7), it can be
further applied in the sub-infrastructure (8).

An auditing log of the data movement behaviour is maintained (9). The audit
log is compared to the rules log, hence providing accountability. (10).
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Figure 4.1: A high-level view of the EPI orchestrator architecture after an appli-
cation setup is initiated.

4.3.1 The Area Logic Model

This section explains the logical model of creating and assigning area nodes, hence
creating a distinction of nodes’ capabilities. Initially, there exists a clear view of
all possible parties (e.g. hospital, research centre, rehabilitation centre) that can
partake in or initiate an application scenario setup. We assume that a tool on
a higher level of framework fills out an ISA when a set of parties (healthcare
domains) initiates an application scenario. The ISA is assumed to consider all
requirements under which data collaboration is allowed, and it gives back a set of
permission rules. That is further translated into rules, which leaves the issue of
actually moving the data. The issue arises due to the data movement, depending
on the compatibility and data interoperability between parties.

4.3.2 Sub-infrastructure Initialising

A health domain/provider party assigns a number of nodes which are the end-
points of physical/virtual resources. The first step is to establish ”who” can
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offer ”what”. We represent all resource endpoints included in the underlying EPI
infrastructure by the set N of nodes:

N = {ni | i = 1, ...,m}, (4.1)

Where ni represents a single node in the infrastructure and m is the total
number of nodes.

Attributes refer to what a node can support in terms of networking, com-
puting, and storage functionalities. Possible attributes can specify software and
computing resources: software tools, response scalability, and CPUs. It can also
specify security and network resources: identity and access control mechanisms in
place, data encryption and key management, data anonymisation, firewalls, and
scalable network links. Attributes for storage resources can be maximum data
storage, database tools, or structured EHR/ unstructured. Let A be the set of
all possible attributes that could apply to a node:

A = {ak | k = 1, ..., d}, (4.2)

Where ak represents a distinct attribute, and d is the total number of at-
tributes.

Once the application scenario is made clear, then the sub-infrastructure is
initialised to support it. A sub-infrastructure is a set of nodes supporting a
specific application for a duration of time. Let NApp be the set of mentioned
nodes, such that:

NApp ⊆ N (4.3)

While as, N is the collection of all the nodes of all parties, NApp specifies
subset nodes the collaborating parties use in the application scenario. The nodes
needed to support the application are determined and the larger set N is filtered
down. Each node’s capabilities are described by a set of infrastructural attributes,
which can be any subset of A. Subsequently, every node nj in NApp is assigned
Aj ⊆ A.

The model inspects nodes within NApp and queries the attributes associated
with each node. We define a mapping fApp between the set of nodes NApp and the
power set ℘(A) of A, such that fApp(nj) = Aj. Eq. (7.4) notates the many-to-one
relation between nodes and attribute sets:

fApp : NApp → ℘(A). (4.4)

fApp is used to determine µ, where µ is the set of attribute sets related to
nodes in NApp:

µ = {Aj | j = 1, ..., ||NApp||} = {fApp(nj) | nj ∈ NApp}. (4.5)
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4.3.3 Creation of Areas

The area abstraction is used to spot heterogeneity between nodes and deduce
what movement is supported.

Let ΘApp be the set of all areas grouping NApp within the sub-infrastructure:

ΘApp = {θp | p = 1, ..., l}, (4.6)

Where θp is a single area associated with a distinct set of attributes, and ΘApp

is a partitioning on the set NApp.

An equivalence relation on NApp is defined such that ng ∼ nh if ng and nh

belong to the same θp and with nh ∼ ng denoting fApp(ng) = fApp(nh) or Ag = Ah.
As in Eq. (4.7), deterministic function α gives the area set ΘApp having NApp and
µ as an input:

α(NApp, µ) = ΘApp. (4.7)

As a result, areas map to the total resources and endpoints per application
setup within a sub-infrastructure and the differences between said nodes. Based
on that, supported data movement channels can be deduced from this mapping.

4.3.4 Supported Channels Within a Sub-infrastructure

The logic dictates that data movement is supported when Eq. (4.8) is satisfied,
where ng ⇒ nh represents a one data movement support between nodes ng and
nh. That means that a directional movement from ng to nh is supported when
the capabilities of nh (Ah) is the same or a superset of that of ng (Ag)

ng ⇒ nh, iffAg ⊆ Ah. (4.8)

Supported/unsupported movements are represented by channels that can be
utilised via collaboration between nodes. The α output is further processed and
translated into a channel matrix by function β

β ◦ α(NApp, µ) = C. (4.9)

An adjacency matrix represents all nodes connected by a channel, where a
single entry cij is the channel between the sender node ni and the receiver node
nj, such that C is a s× s square matrix with s = ||NApp||. A single entry cij is a
Boolean value where 0, 1 represent the existence of a channel or the lack thereof,
respectively.
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4.3.5 Applying Flow Rules

To determine and set up the channels, it is not sufficient by itself to control the
information flow within the infrastructure. The application scenario’s policy fur-
ther uses the channels in place to regulate and dictate data movement. The data
flow rules R are set in the light of ISA that are placed by a policy and manage-
ment system. The rules describe all required data movements of an application
scenario mindful of the policy. R represents the allowed/denied data movement
the application needs to run. Rules are translated into a matrix form to make it
easier to aggregate with other variables:

γ(ISA) = R (4.10)

All the rules between the nodes are represented in an adjacency matrix R,
such that a single entry rij refers to the rule between the sender node ni and the
receiver node nj, such that R is a s × s square matrix. A single entry rij is a
Boolean value where 0, and 1 represent the denied and allowed data movement
rules, respectively.

We differentiate between allowed/denied and supported/unsupported data
movements. Ideally, rules restrict further supported movements. As an exam-
ple, when ni ⇒ nj is supported, this means that cij = 1. Moreover, if data
movement utilising cij is also allowed, this means rij = 1, hence the rule set
aligns with channels.

4.3.6 Bridge Attribute Gaps

In other cases, rules and channels might not necessarily align, which can be an
issue in running an application successfully.

The condition Ag ⊆ Ah supports data movement from node ng to nh. Other-
wise, Ag is not a subset of Ah. In Eq. (4.11), ϵgh indicates the missing attributes

ϵgh = Ah ∩ Ag. (4.11)

A bridging function is introduced to apply the missing attributes ϵgh and by
that create the previously missing channel, if possible. There is a known set of
bridgeable attributes Aδ. Aδ is set a priori. Virtualised functionalities provide
bridges on top of existing sub-infrastructure resources, and they are dependent on
the capabilities of the infrastructure. The bridging function applies the missing
attribute if ϵgh ⊆ Aδ. This supports the data movement and ensures compatibility
and interoperability within collaborating nodes. The bridging function δ works
as follows:

δ(C) = B, (4.12)



4.3. The EPI Framework: The Infrastructure Orchestrator 49

Where δ takes as an input the matrix of channels, and returns matrix B of
bridged channels. B is represented as a s× s square matrix. A single entry bij is
a Boolean value, where 0 can mean either a none bridgeable channel or ϵij = ϕ
(the channel already exists), and 1 means a bridgeable channel cij.

In case an entry cij = 0, and ϵij ⊆ Aδ, this means that δ(cij) = bij = 1. The
two concerns that arise dealing with bridging functions are as follows:

• The cost associated with the bridging function offered in terms of time and
complexity,

• There exists an infeasibility ratio that needs to be considered in case ϵij ̸⊂
Aδ; an unsupported data movement is unbridgeable.

The three matrices serve as dependable variables that control the information
flow. The aggregation of the channels, rules, and bridgeable channels results in
the Information Flow Control (IFC). IFC is calculated by Eq. (4.13):

IFC = (R ∧ C) ∨B. (4.13)

IFC is a square matrix of the same dimensions s × s. A single entry f is
a Boolean value where 0, 1 represent no flow/flow of information, respectively,
where fij = (rij ∧ cij) ∨ bij. IFC is the adjacency matrix that describes the
aggregated directed graph of all possible archetypes in an application scenario. A
single application request Q is met when Q and IFC overlap, hence the archetype
mapping exists. All matrices we mentioned C, R, B, IFC, Q have the same size
s× s.

4.3.7 Application Requests

Once a sub-infrastructure is initialised, application request Q utilises the built
framework with collaboration instances. An application request is the matrix of
requested data movements among nodes in an application scenario sub-infrastructure.

A single entry qij is a Boolean value that describes a single requested data
flow from ni to nj, such that 0, 1 maps to an absence or existence of a requested
directional flow. To satisfy an application request Q, Q should overlap with the
matrix of supported, allowed, and bridgeable flows IFC.

The previously discussed functions interact as shown in Figure 4.2. NApp and
µ are the input to create the sub-infrastructure’s EPI areas ΘApp. Next, the
output is used to translate the channels into a matrix using β. Meanwhile, the
requirements turned rules are also translated into a matrix of allowed/denied flows
by γ. Rules ∧ channels output true in case of alignment, else false. In case of a
false, the bridging function is introduced to apply ϵ. After that, the IFC matrix
is determined by the aligned and bridged channels, where IFC = (R ∧ C) ∨ B.
A set of Qs is then considered by applying the ”XNOR” logic gate with IFC to
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Figure 4.2: The different functions in the EPI infrastructure orchestrator and
their relation with the application request.

determine the matches between the two matrices. The ”XNOR” output is 1 in
case of an overlap between qij and fij, and 0 is a mismatch. After that, the logic
”AND” is applied to apply (1) or reject (0) a single data movement qij in an
application request Q. That is further clarified in the truth table below, where
qij = 1 is applied only when it overlaps with fij = 1, otherwise, the request is
rejected.

f q overlap apply

0 0 1 0
0 1 0 0
1 0 0 0
1 1 1 1

4.4 EPI Aggregation Algorithm

After discussing the architecture in section 4.3, we simulate the logic model by
running the EPI algorithm. The algorithm works by creating different areas asso-
ciated with distinct attribute sets, such that NApp is an input. It appends nodes
with the exact matching attribute set to the same area, as shown in Algorithm 1.

The first lines (3-4) are looping over all the nodes in the NApp set and querying
the node’s attribute set. There are two cases that this algorithm deals with. Lines
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Algorithm 1 Algorithm to assign nodes to areas

1: procedure createAreas(NApp)
2: Θ←− ϕ ▷ initialise the set of areas
3: for all n ∈ NApp do ▷ loop over all nodes
4: An ←− getAttributes(n)
5: flag ←− 0
6: for all θ ∈ Θ do
7: θ ←− getAttributes(θ) ▷ retrieve attributes
8: if An = Aθ then
9: θ ←− θ ∪ {n}
10: flag ←− 1
11: break

12: end if
13: end for
14: if flag = 0 then
15: θ ←− {n} ▷ create new area with node n
16: Θ←− Θ ∪ {θ}
17: end if
18: end for
19: return Θ
20: end procedure

8-11 check whether the area that is associated with this node’s attribute set is
already there, then it appends it to that area’s node set. In the second case coded
in lines 14-16, the node belongs to a new area that doesn’t already exist.

Once all the nodes are assigned to areas, the algorithm also searches for subset
relations between areas (included or distinct), as shown in Algorithm 2. With sub-
sets initialised it is easier to search for supported channels between nodes within
the areas. This relation is determined according to the attribute set associated
with each area.

In Algorithm 2, we loop over created areas twice (lines 1-3) to compare the
two area’s associated attribute sets. The algorithm sets a subset-superset relation
between areas (lines 7-11).

The model’s logic dictates that if an area is a subset (with fewer attributes) of
another area, it means that supported channels exist between this area’s nodes to
the nodes in all superset areas (with more attribute characteristics). Algorithm
3 processes the created areas and deduces channels, as follows.

Algorithm 3 loops over nodes in each area (lines 2-3), and initialises existing
channels between nodes within the same area (lines 4-6). In lines 9-12, the al-
gorithm checks whether a node’s area has a subset-superset relation area, if so
channels between this node and the nodes in the other area are initialised by
setting the corresponding entry in matrix C to true.
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Algorithm 2 Algorithm to assign subsets to areas

1: for all θi ∈ Θ do ▷ loop over areas
2: superseti ←− ϕ ▷ The set of all supersets to area
3: holder ←− ϕ
4: for θj ∈ Θ do ▷ compare with other areas
5: Ai ←− getAttributes(θi)
6: Aj ←− getAttributes(θj)
7: if Ai ⊂ Aj and i ̸= j then ▷ i is a subset to j
8: holder ←− holder ∪ {θj}
9: end if
10: end for
11: superseti ←− superseti ∪ {holder}
12: end for

Algorithm 3 Algorithm to deduce channels between nodes

1: procedure checkChannels(Θ)
2: Let C = {cij} be a new sxs matrix with ∀cij = 0
3: for θi ∈ Θ do ▷ loop over areas
4: for ni ∈ θi do ▷ loop over nodes in each area
5: for nj ∈ θi do ▷ nodes in the same area
6: if i ̸= j then
7: cij ←− 1 ▷ channel exists
8: end if
9: end for
10: if supersetsi ∈ ϕ then ▷ θi has supersets
11: for θj ∈ supersetsi do
12: for nz ∈ θj do
13: ciz ←− 1
14: end for
15: end for
16: end if
17: end for
18: end for
19: return C ▷ the matrix of all channels
20: end procedure

After creating areas and deducing their channels, we consider the rules. We
assume that the rule matrix was set by the policy management system involved,
and then translated with γ. Then, take into account the possible bridging func-
tions that can compensate for missing attributes and add to supported channels
C. Function δ(C) results with the matrix B, where bij = 0 in case channel already
exists ϵij = ϕ or isn’t satisfied by Aδ.



4.5. Evaluation 53

The algorithm checking for available bridges (matrix B) and matching it to
the missing channels between nodes is as in Algorithm 4.

Algorithm 4 Algorithm to add bridges

1: procedure checkBridges(C)
2: for ni ∈ NApp do
3: Ai ←− getAttributes(ni)
4: for nj ∈ NApp do
5: Aj ←− getAttributes(nj)
6: if cij = 1 then
7: Channel already exists

8: else
9: ϵij ←− Aj ∩ Ai ▷ the missing attributes
10: Aδ ←− getBridges() ▷ retrieve bridges
11: if ϵij ∈ Aδ then ▷ bridgeable attributes
12: Apply bridging functions

13: cij ←− 1
14: end if
15: end if
16: end for
17: end for
18: return C ▷ updated channels
19: end procedure

In Algorithm 4, the algorithm in line 2 loops over all nodes in NApp and checks
if it has supported channels to other nodes in lines 6-7. In case the channels
to other nodes are missing, the algorithm in lines 11-13 checks if the attribute
difference between the two nodes is bridgeable. As a result, the algorithm returns
the matrix of updated channels with the added bridges.

The IFC matrix is pushed into the sub-infrastructure to set it up for possible
application requests. Application requests are successful when Q overlaps with
IFC. Otherwise, not all data movements within this request might be possible.
We deploy the algorithm on the server to emulate the orchestrator prototype.

4.5 Evaluation

In this section, we introduce an orchestrator prototype (Figure 4.3) that uses the
above methodology, and we use that to measure the algorithm’s performance.
Moreover, we propose the formulas to evaluate the infrastructural properties that
affect the feasibility and cost of different application requests.
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4.5.1 Performance

We set up a server to run the algorithm in the back-end and maintain a database
of all possible nodes. Then we initiate an application scenario with the specify-
ing nodes relevant for this request NApp (step 1 in Figure 4.3). The framework
redirects the application query to the policy management system to query the
regulating rules R of the information flow within this scenario (steps 1.1 and
1.2).

The server runs the logic model and lists the areas ΘApp, estimate B, and
aggregates it with R (step 2). IFC is deduced with all possible archetype models,
and the setup cost is estimated (step 3). After the confirmation of the user (parties
initiating the application) (step 4), the IFC setup is pushed to the infrastructural
level (step 5). Ultimately, application requests (Q) are then initiated to utilise
the sub-infrastructure (step 6), and requests are applied or rejected accordingly.

1. Application scenario setup

Middleware system

1.1. Query policy Policy management system

2. Area logic model

3. IFC and cost

1.2. Rules

4. Confirm | New request

5. Push the set up
6. App requests

Figure 4.3: The EPI infrastructure orchestrator prototype and an illustration of
the operational workflow interacting with the middleware system.

We further evaluate step 2 in Figure 4.3 that runs the area logic model algo-
rithm, and we estimate the performance of the infrastructure orchestrator (Al-
gorithms 1, 2, 3, and 4). This measurement is important to test how would the
algorithm scale with large input nodes in case of time-critical application requests.
The objective is to measure the performance as the number of nodes increases
and becomes more distinct (heterogeneous attribute sets).

The performance variables that we measure are execution time and CPU time.
The execution time is measured by the elapsed real-time between the invocation
of the script and its termination, and the CPU time is measured by the processing
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time of the instructions. This describes the scaling of the delay between sending
an application scenario setup request (step 1) and receiving an answer to the IFC
matrix (step 4), which is relevant in the case of time-critical requests.

The algorithm’s complexity also determines the performance of the orches-
trator. The plot in Figure 4.4 shows the scaling of response time in real-time
and CPU time. The time is measured as the input size increases (number of
nodes increases) and as the heterogeneity of the input increases (number of ar-
eas increases). In the following plot, we keep the heterogeneity as a constant
(AHR = 0), and we increase the number of nodes. Notice that a third-degree
polynomial nicely fits the data, demonstrating time complexity O(n3). Figure 4.4
provides proof of our algorithm scales, where the time recorded follows the O(n3)
with negligible errors.
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Figure 4.4: Script execution time depending on increasing input

To calculate the average intersection rate AIR for µ, we consider the inter-
section rate of all distinct pairs in µ, as in Eq. (4.14).

AIR =

∑n
i,j;i<j

||Ai∩Aj ||
||Ai∪Aj ||(

n
2

) (4.14)

To determine the average heterogeneity rate AHR of the nodes’ attribute sets,
we calculate AHR, such that:

AHR = 1− AIR (4.15)

The plot in Figure 4.5 shows the scalability of real and CPU time as AHR
increases, where n = 20. Notice that a second-degree polynomial nicely fits the
scatter plot, indicating a scaling as O(n2) with negligible error margin. The plot
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trend is explained by the complexity of the implemented algorithm due to the
number of loops needed.
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Figure 4.5: Script execution time depending on increasing AHR

4.5.2 Infrastructural Properties

The percentage of aggregated nodes within the same area indicates the setup cost
of any sub-infrastructure. As an example, if the aggregation power percentage is
100%, that means that no extra bridging functions need to be in place before the
movement of information between nodes is possible. The opposite is also true,
the lower the aggregation power, the higher the setup cost might be estimated.
Moreover, aggregation is directly proportional to the probability of satisfiable
application requests. As an example, if the aggregation power is 100% (all areas
on 1 node) then the probability that supported channels exist (data movement is
possible) is 1.

Eq. (4.16) calculates the number of possible attribute subsets, given that d is
the number of all possible distinct attributes.

||℘(A)|| = 2d − 1 (4.16)

The result of Eq. (4.17) shows the percentage of nodes being aggregation into
distinct areas. The value might differ with different infrastructures. Aggregation
power is calculated as follows, where Θ is the set of all areas grouping N .

Aggregation =
||℘(A)|| − ||Θ||+ 1

||℘(A)||
× 100 (4.17)
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The infrastructure also has a property of setup success ratio, where the bridg-
ing functions can satisfy all possible missing channels, hence attributes ϵij. The
fewer attributes that are bridgeable, the higher the failure ratio is. The success
ratio is calculated as follows:

Success =
||Aδ||
||A||

(4.18)

4.6 Discussion

The orchestrator provides a clear identification of missing attributes per node and
matches it to a bridging function. The available bridging functions directly affect
the application request feasibility and success rate, as defined by the infrastruc-
tural properties. The infrastructural properties rely on the infrastructure itself,
and to accomplish a complete success rate, the infrastructure should be ready
to bridge any missing attribute. Moreover, the success rate also depends on the
heterogeneity of the infrastructure, which the aggregation power value reflects.
The aggregation power is 100% if the areas created are equal to 1 (all nodes are
characterised by the same attribute sets). Subsequently, upgrading the infras-
tructure improves the success rate of an application request and the aggregation
power of areas.

The algorithm of the logic model scales under the complexity of O(n3). The
algorithm performance is interpreted as a one-time run delay before pushing the
setup instructions into the infrastructure level. After that, the complexity and
time cost are inversely proportionate to the aggregation power and average inter-
section rate. In other words, as the heterogeneity in the infrastructure increases,
the time cost increases. That can be explained by the extra steps of intermedi-
ate bridging functions that are associated with higher heterogeneity and a larger
number of areas.

The previously discussed measurements foresee the probability of an applica-
tion request failure, high setup costs, and delays. Those values are dependent on
the infrastructure and can be improved by tailoring the infrastructure resources.
The properties can be evaluated before introducing any application to estimate
a future upgrade or to customise the requests accordingly.

Existing health data sharing frameworks focus on primarily security and access
control, as shown in Table 4.1. The two features can be addressed within the EPI
framework by considering security and access control attributes, hence channels
exist to support data movements to nodes that offer the same security function-
alities (same area) or more (area superset). Our proposed framework addresses
other features by defining attributes (for example: structured data storage) that
ensure interoperability, and delegating the definition of data-sharing rules to the
policy management system. Data auditing is also a proposed feature considered
by the EPI architecture, as shown in Figure 4.1. The EPI infrastructure orches-
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trator adds the logic model to the infrastructural programmability and provides a
dynamic and heterogeneous infrastructure. As a result, we contribute to existing
frameworks by offering the dynamicity feature.

4.7 EPI use cases

In Figure 4.6, we show an example network topology with the middleware con-
troller running on top. At the bottom layer, we have the physical topology of the
network nodes. The EPI infrastructure orchestrator creates the logical topology
by grouping the nodes into areas. To communicate between areas, the middleware
set up the proxy nodes with Area-Area proxy commands (specified by δ). The
proxy will connect the node to the NFVI and bridge the incompatible attributes.
Note that in the following use cases, the attributes that we considered are charac-
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Figure 4.6: The network topology in an EPI use case.

teristic of the nodes’ low-level communication attributes, such as the IP version
and data encryption. In this section, we introduce these use cases, apply the logic
model to determine the IFC, and set up the bridging functions proxies in an at-
tempt to satisfy the requested data movements. Each node is identified as follows
ni(Ai, IP ), and the possible attributes are the set A = {Encrypted data (a1),
IPv4 (a2), IPv6 (a3)}. If a node has a1 as an attribute, that means that this node
store, maintain, and communicates the data in an encrypted form. Attributes
a1 and a2 mean that this node supports IPv4 and IPv6 addressing, respectively.
Any incompatibilities between these attributes can result in an unsupported data
movement, hence data sharing failure.
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The first use case is proposed to share an ML model and train it over different
nodes. That is described in Figure 4.7. n1 is the ML model owner and wants
to train the model on the different medical data sets stored on n2, n3, and n4

and representing potential hospital parties. Figure 4.7 shows n1 initiating the
application scenario setup and identifying relevant nodes for this application. In
this case, NApp = {n1, n2, n3, n4}, and A1 = {a2} A2 = {a1, a3} A3 = {a1, a3}
A4 = {a1, a2} respectively. The middleware system runs the logic model, assigns
areas based on these nodes’ attributes, deduces IFC and sets up the area-area
proxies. We assume that the policy allows all data movements and the R matrix

Figure 4.7: The EPI set up for the ML model sharing use case.

entries are initialised all to 1. The bridging functions utilised are the IPv4-to-IPv6
tunnelling and data decryption functions. In case of an unsupported movement
between nodes, the middleware system sets up a proxy that connects to the NFVI
through a virtual link to apply the bridging functions.

The proxy’s functionalities (δ) can be shown in this use case in Figure 4.7.
As an example, with the incompatibility between θ1 and θ2, ϵ12 = {a1, a3}. The
proxy manages bridging previously unsupported channel with δ(c12) = decrypt ◦
tunnel(c12). After applying these functions, the node can successfully receive and
process the data communicated.

Figure 4.7 shows the supported channels, checks bridgeable channels, and
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calculates IFC as follows:

IFC =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ∧

1 0 0 1
0 1 1 0
0 1 1 0
0 0 0 1


 ∨


0 1 1 0
1 0 0 1
1 0 0 1
1 1 1 0


Data movement requests Q is applied once it overlaps with the IFC matrix. That
is determined as follows, ⊗ operates as a logic XOR:

¬

IFC ⊗

1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


 ∧


1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


The second EPI use case is maintaining an EHR storage node with multiple data
sources. In this case, we have data sources of doctors running on n1 and n2 nodes.
The EHR storage is maintained on n3, and n4 acts as a backup. n1 and n2 want
to have a full story of the patient’s medical records on n3, and n3 will update n4

accordingly. In this case, NApp = {n1, n2, n3, n4}, and A1 = {a1, a2} A2 = {a1, a3}
A3 = {a1, a2, a3} A4 = {a1, a2, a3} respectively. Figure 4.8 illustrates this use case
and sub-infrastructure setup. In this case, the encryption/decryption of data is
supported on all nodes. Subsequently, the bridging functions that are managed by
the proxy are IPv4-to-IPv6/IPv6-to-IPv4 tunnelling to support data movements
between these incompatible nodes. As an example, c12 = 0 indicate unsupported
data movement, then the proxy performs δ(c12) = tunnel(c12) = b12 = 1.

Figure 4.8: The EPI set up for EHR storage and backup use case.
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Figure 4.8 shows the supported channels, assumes all rules’ entries are set to
1, checks bridgeable channels, and calculates IFC as follows:

IFC =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ∧

1 0 1 1
0 1 1 1
0 0 1 1
0 0 1 1


 ∨


0 1 0 0
1 0 0 0
1 1 0 0
1 1 0 0


Data movement requests Q is applied once it overlaps with the IFC matrix. That
is determined as follows:

¬

IFC ⊗

0 0 1 0
0 0 1 0
1 1 0 1
0 0 0 0


 ∧


0 0 1 0
0 0 1 0
1 1 0 1
0 0 0 0


The third EPI use case is patient data streaming and personalised diagnosis.

Nodes 1, 2, and 3 simulate the behaviour of patients running on n1, n2, and n3. n3

has a trained model and aims to receive the monitoring data and reply with a di-
agnosis. In this case, NApp = {n1, n2, n3, n4}, and, A1 = {a1, a4} A2 = {a1, a2, a4}
A3 = {a1, a2, a3, a4} A4 = {a1, a2, a3, a4} respectively. Figure 9 illustrates this
use case and infrastructure setup.

Figure 4.9: The EPI set up for EHR storage and backup use case.

Figure 4.9 shows the supported channels, checks bridgeable channels, and



62 Chapter 4. EPI Policy Resolution: Area Logic Model

calculates IFC as follows:

IFC =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ∧

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 1


 ∨


0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 0


Data movement requests Q is applied once it overlaps with the IFC matrix. That
is determined as follows:

¬

IFC ⊗

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 1


 ∧


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 1


As a result, the EPI orchestrator provides the previously missing support to
effectively share data between EPI parties in different use case scenarios. It is
important to highlight that other attributes might not be bridgeable, where a /∈
Aδ. As an example, when we consider more attributes like the TLS version, then
abiding with the model’s requirement ensures that nodes with only compatible
versions can communicate which ensures enhanced security. On the other hand,
in the case of TLS version incompatibilities, non-existing channels between nodes
are non-bridgeable in practice.

4.8 Conclusion

In this chapter, we defined the logic model and provided the mathematical nota-
tions to follow to reason about infrastructure setup automation. Then we simu-
lated the Area logic algorithm and designed a prototype to use it. This approach
gives us the guidelines for the framework, which can be used further to run a
healthcare application or any other application with sensitive data constraints.
The performance measurement formulas of the infrastructure aggregation and
success rate are used to define the infrastructural properties, and then estimate
failure and cost. We evaluated the performance of the algorithm and estimated
that it scales with O(n3) as an upper limit, which is the time complexity of the
operational workflow interacting with the framework. This chapter lays out the
infrastructure orchestrator’s logic model, and we plan to extend possible Bridging
Function (BF) implementations, we implement different traffic proxying methods,
and investigate the tradeoffs of each to efficiently bridge a security gap in com-
pliance with governing policies.



Chapter 5

Bridging Function Chains Orchestrator:
Feature Implementation

In efforts towards feature implementation of the EPI infrastructure orchestrator,
one of the main challenges is to manage and proxy traffic to enforce security
and network low-level policies and secure data-sharing. The proposed dynamic
orchestration framework defines the topology of the service chains to enforce
network and security policies by instantiating Service Function Chains (SFC’s)
on the fly via lightweight and easily deployable containers.

The design choice of container-based Network Functions (NFs), encapsulated
in lightweight Docker containers, ensures platform independence and efficient re-
source utilization. The chapter evaluates packet redirecting tools, crucial for
enforcing policies through Bridging Functions (BFs) containers responsible for
network and security services. The investigation includes benchmarking reverse
proxy and SOCKS-based implementations, considering latency overhead, pro-
cessing rate throughput, and defined parameters. The benchmarking results in a
comparative analysis with broader applicability. We analyse the results according
to the expected traffic movement with each tool, and we base our recommenda-
tion on what tool to utilise within the EPI framework under different use case
scenarios’ performance requirements. This chapter partially answers the question:

RQ2: ”What are the performance tradeoffs when employing dif-
ferent packets’ redirection methods and bridging functions to enforce
network policy-compliant routes under different workloads?”

63
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This chapter is based on:

• J. A. Kassem, O. Valkering, A. Belloum and P. Grosso, ”EPI
Framework: Approach for Traffic Redirection Through Container-
ised Network Functions,” 2021 IEEE 17th International Conference
on eScience (eScience), Innsbruck, Austria, 2021, pp. 80-89, doi:
10.1109/eScience51609.2021.00018.

5.1 Introduction

Effectively processing and sharing healthcare data securely remains a complex
challenge, prompting the exploration of dynamic network infrastructures within
the EPI project. This chapter emphasizes the pivotal role of proxying and re-
routing traffic in ensuring secure health data-sharing across diverse domains. By
leveraging the principles of Software-defined Infrastructures (SDI) and container-
based Network Functions (NFs) encapsulation, the EPI Framework (EPIF) seeks
to empower patients through personalised interventions.

Central to our investigation is the deployment of lightweight Docker containers
encapsulating NFs, specifically focusing on bridging functions (BFs). These BFs
play a critical role in enforcing network and security services by redirecting and
controlling traffic. The chapter is dedicated to evaluating various packet redirect-
ing tools and exploring their impact on network performance. Our objective is to
understand the trade-offs involved in dynamic traffic re-routing and its influence
on infrastructure responsiveness.

In addition to addressing the technical intricacies of proxy implementations,
the chapter introduces a novel data-sharing framework supporting healthcare ap-
plications. A significant aspect of our contribution lies in the benchmarking of
different redirection tools, providing insights into their performance metrics, over-
head, and processing rates. By examining the implications of traffic re-routing on
network performance, we aim to enhance the understanding of these mechanisms
for secure healthcare data-sharing.

In this paper, we evaluate packet redirecting tools that would serve as a build-
ing block of the proposed EPI framework - EPIF (2). We implement several
methods to effectively control traffic routing and redirection. That will be used
to force traffic through Bridging Functions (BF’s) containers (network and secu-
rity services).

At a lower level, we need appropriate technologies to implement efficient traffic
redirection functionality. We expect that the infrastructure’s dynamicity comes
at a price of network performance and overhead. We aim to experiment and
investigate the impact of introducing different redirection proxies in the middle
of a data-sharing session. Note that, aside from data records, sharing algorithms
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and sharing processed data are also considered.
This chapter is organized as follows: In Sec. 8.8, we introduce the EPIF in

the context of personalized medicine. In Sec. 5.2, we elaborate on the concept
of bridging functions and the area logic model employed in the EPIF. In Sec.
5.3, we touch on the implementation designs of the proxy component utilizing a
traffic redirection functionality. In Sec. 5.4, we illustrate the protocol traffic of
each proxy in order to estimate the connection setup time of each. In Sec. 5.5 we
detail the evaluation of the implementations with some insights. In Sec. 5.6, we
compare the proxies according to a number of parameters. Lastly, we showcase
related work in Sec. 8.2 and conclude our work and introduce potential future
work in Sec. 5.8.

5.1.1 The EPI framework

EPIF is a dynamic health data sharing framework that accommodates different
domains’ infrastructural capabilities by shipping and managing containerised se-
curity and network services called bridging functions, which run at special proxy
nodes. We will describe in detail these capabilities in Sec. 5.2. An automated
setup of the infrastructure is required to achieve:

• Reachability of the end-points nodes;

• Optimal security across collaborating domains;

• Reasonable network performance;

• Bridging services availability;

• Hardware selection and scalability (horizontal vs vertical scaling);

• At a higher level, abiding and enforcing policy management requirements.

As shown in Fig.5.1, EPIF has different components that are crucial to auto-
mate the data-sharing processes between participating parties. The main com-
ponents of the framework are the orchestrators (both at the application level
and infrastructural level); the policy management system and the components
required to be present at the participating institutions, namely the resource pro-
visioner and the authorizers.

5.1.1.1 Orchestrators

EPIF employs a dual orchestrator design. There is an application-focused or-
chestrator and an infrastructure-focused orchestrator. The two orchestrators, in
principle, operate independently but exchange runtime information so they can
collaboratively enforce policies and give insight into the functioning of the com-
bined deployment.



66 Chapter 5. Bridging Function Chains Orchestrator: Feature Implementation
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Figure 5.1: A high-level view of the different EPIF components and their inter-
actions after an application request.

• The application orchestrator is the EPIF starting point for executing
applications. After receiving an application submission (step 1 - Submit -
in Fig.5.1), it first sends a request to the infrastructure orchestrator (step
2 - Submit) to streamline any discrepancies between the targeted infras-
tructure domains. This streamlining, described in detail in Sec. 5.2, is
done transparently to the application orchestrator. The final result of the
communication with the infrastructural orchestrator is the receipt of confir-
mation of setup (step 7 - Ready). At this point, the application orchestra-
tor considers the targeted infrastructure domains as ready and that there
is an interconnected execution environment. The application orchestrator
will handle the heterogeneity of the made-available resources, i.e. compute
nodes by direct interactions (step 8 - Orchestrate Application).

• The infrastructure orchestrator arranges all aspects related to the
multi-domain target environment. The orchestrator requests access to the
domain resources (step 3 - Request Access); after being granted access it
requests specific nodes (step 4 - Request Nodes); finally, it manages the
required bridging functions (BF) that are needed based on the area logic
model (Sec. 5.2.1) via step 6 - Orchestrate Networking.

Decoupling the two orchestration concerns into separate systems increases the
applicability of the EPIF. That is apparent with the infrastructure orchestrator’s
independent operation that makes it possible to support alternative application
orchestrators, such as Vantage6 (84) which is a privacy-preserving federated learn-
ing infrastructure. On the other hand, implementers targeting the EPIF can
deploy the application orchestrator independently for development and testing
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purposes to improve productivity.

Brane (106), a framework for programmable orchestration, is at the core of
both orchestrators. Programmability is an essential aspect of enabling dynamic
adaption to heterogeneity across infrastructure domains.

5.1.1.2 Policy management system

The policy management system captures allowed and denied data flows. It consid-
ers different constraints such as GDPR, patients’ consent, and the intended goal
of the application scenario. The system can deduce extra setup requirements
and communicate them to the infrastructure orchestrator via specific Domain-
Specific Languages. The communicated policy is estimated to be dynamic, as it
can change during an application request, and the EPIF is asked to adapt and
comply with any policy change.

5.1.1.3 Domain components

At all the participating organizations a resource provisioner and authoriser com-
ponents are required. They might be implemented directly by the domain, in
which case they have to implement the proper APIs to interact with the EPIF,
or they can be provided as pluggable components from the EPIF itself, in which
case they are compatible with the infrastructure orchestrator.

In the specific case of one single domain, an EPI client can run an application
on (physical/virtual) node(s) within one healthcare domain by only submitting
a request via Brane. This is illustrated in Fig. 5.1 with steps 1 and 8. In all
other cases, we need multi-domain communication and this is taken care of by
the EPIF components in steps 2-7.

5.2 Bridging policies and infrastructural resources

A core element of the EPIF operations is the need to match the policy constraints
provided by the policy management system with the underlying capabilities of
the infrastructure. To support this, we defined in (2) two core concepts: security
areas and bridging functions.

The area logic model works on grouping end-point nodes partaking in a data-
sharing application according to the associated network and security functions
that are supported and applied by the node itself into security areas. After that,
the logic model deduces which bridging functions need to be instantiated to move
data between nodes in different areas.
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5.2.1 Area logic model

A health domain party has a number of nodes which are the endpoints of physi-
cal/virtual resources. We represent all resource endpoints included in the infras-
tructure by the set N of nodes:

N = {ni | i = 1, ...,m}, (5.1)

where ni represents a single node in the infrastructure and m is the total number
of nodes.

To evaluate the security and network capabilities of a node with a domain, we
consider the associated attributes set. Attributes refer to the node’s supported
and applied network and security functionality within a network, such as segmen-
tation, data encryption and key management, firewalls, scalable network links,
etc. Let A be the set of all possible attributes:

A = {ak | k = 1, ..., d}, (5.2)

where ak represents a distinct attribute and d is the total number of attributes.
Once the application scenario is made clear, the infrastructure is initialised to

support it. Let NApp be the set of nodes relevant to an application scenario, such
that:

NApp ⊆ N, (5.3)

where N is the silo of resources (physical/virtual nodes) of all parties and NApp

specifies the nodes collaborating in a specific application scenario. Each node’s
capabilities are described by a set of attributes, which can be any subset of A.
Subsequently, every node nj in NApp is assigned Aj ⊆ A.

After we define NApp and its associated attributes, we can evaluate these
nodes’ security and reachability across domains. The area abstraction is used
to identify heterogeneity between nodes and deduce which data movements are
supported and feasible: we call such supported communication between nodes
in different areas channels. The logic dictates that data movement is supported
when Eq. (7.4) is satisfied, where ng ⇒ nh represents a one data movement
support between nodes ng and nh. That means that a directional movement from
ng to nh is supported when the capabilities of nh (Ah) is the same or a superset
of that of ng (Ag)

ng ⇒ nh, iffAg ⊆ Ah. (5.4)

5.2.2 Bridge attribute gaps

Application requests, policy rules, and available channels might not necessarily be
compatible, and this can be an issue to run an application successfully. Continuing
with our formalism, we can see that condition Ag ⊆ Ah supports data movement
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from node ng to nh. Otherwise, Ag is not a subset of Ah and communication is
in principle not possible.

As shown in Fig. 5.2, BF’s are introduced to bridge attribute gaps and subse-
quently enable communication that wasn’t previously supported across different
areas and domains. Concretely, a bridging function is introduced to apply the
missing attributes ϵgh and by that enable the previously missing communication,
if possible. In Eq. (5.5), ϵgh indicates the missing attributes

ϵgh = Ah ∩ Ag. (5.5)

There is a known set of bridgeable attributes Aδ. Aδ is set a priori. Aδ is
bridged by associated BF’s that are containerised and shipped to be pooled on
the proxy nodes. BF’s are independent of the capabilities of the infrastructure.
The bridging function applies the missing attribute if ϵgh ⊆ Aδ. This supports the
data movement and ensures reachability and security within collaborating nodes
across different domains.

The BF’s images are provisioned and maintained in proxy nodes. As illus-
trated in Fig. 5.3, there exists a proxy per network, which allows the proxy to act
as a single mini-orchestrator. The proxy intercepts, controls, and manipulates
traffic. The EPIF employs redirection tools to enforce traffic through the proxy
and consequently through the BF. Note that it is sometimes needed to have a
number of cascading bridging functions, ie function chains, to put two areas in
communication.

The architecture in Fig. 5.3 shows how the proxy components fit with previ-
ously defined components in Sec. 8.8.

Three main concerns arise when dealing with bridging functions:

• infeasible bridges: There exists an unfeasibility ratio that needs to be con-
sidered in case ϵij not ⊂ Aδ; an unsupported data movement is unbridgeable.

• costs: There is a cost associated with the bridging function in terms of time
and complexity to set it up;

• redirection tools: There is the need to identify and test the appropriate
tools to effectively intercept and redirect traffic through the instantiated
BF’s running on the proxy.

The EPIF manufactures by software network and security container-based
functionalities, and host it on the proxy node. The newly introduced functionali-
ties are flexibly and dynamically traded and provisioned by the orchestrators. As
a result, the EPIF adapts the underlying infrastructure to support health appli-
cations (e.g. medical data streaming, EHR and backup, machine learning model
training) with different archetypes.

In the next sections, we address the last concern and introduce the different
proxy implementation approaches and the performance of the redirection tools.
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Figure 5.3: A figure showing the EPIF architecture with different EPIF compo-
nents running (including the proxy node).

5.3 Proxy implementations

We evaluate two proxy implementation candidates for the EPIF. The first can-
didate that we consider is a reverse proxy. The second candidate is a SOCKS-
compatible proxy. Nodes route outgoing network traffic through a separate proxy
node. On the proxy node, the appropriate BF chain processes the network traffic
before the proxy implementation sends the network traffic to the destination.

5.3.1 Reverse proxy

The reverse proxy approach implements the NGINX reverse proxy tool (9). This
proxy tool is widely used to balance load through multiple servers, display content
from multiple websites in a seamless manner, or transfer requests for handling to
application servers using protocols other than HTTP. The reverse proxy works by
proxying a request, redirecting it to the specified server, retrieving an answer, and
sending back the reply to the client. The proxy acts as the middleman handling
requests, redirecting them, and forwarding back the reply. The proxy can handle
requests to non-HTTP servers (for example, PHP or Python) using a specified
protocol. The implementation of the reverse proxy is illustrated in Fig. 5.4. The
redirection table is customised and initialised at the proxy VM, and each port is
coupled to identify a different destination server. This approach is very simple
and effective, but it is vital to know the exact port to reach beforehand. Moreover,
several reverse proxies can be required to handle BF chaining, however, the route
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must be static or reconfiguration is needed.

HTTP server 
running on 

VM1

HTTP server 
running on 

VM2

Proxy running 
on VM3 Client

Port Redirection server

8080 VM1

8081 VM2

8082 Google

8083 MNS website

X.X.X.X:8080
X.X.X.X:80

X.X.X.X:80

MNS server

X.X.X.X:80

Figure 5.4: Reverse proxy implementation, showing the redirection mechanism
for data flow redirection through the proxy.

5.3.2 SOCKS compatible proxy

SOCKS is a standardised proxy protocol for TCP and UDP connections. Our
SOCKS-compatible proxy implements the latest version of the protocol 5 (78)
and the latest draft of its next iteration 6 (87), currently under development. A
major latency bottleneck of the latest version is the number of required round-
trip times (RTTs) during connection setup (handshake). In total, this may be up
to 5 RTTs. The next iteration reduces the number of required RTTs, introduces
minor tweaks to the protocol, and specifies how SOCKS implementations can,
optionally, utilise Multipath TCP (41) and TCP Fast Open (24).

Our SOCKS-compatible proxy implementation, illustrated in Figure 5.5, relies
on a redirector component running on all nodes that will be used by the EPIF
in the various domains (Section 8.8). Using iptables, a packet filtering utility
for the Linux kernel1, the redirector component intercepts all outgoing network
connections and redirects them to the proxy. As specified by the SOCKS protocol,
the redirector will also communicate the intended destination of connections with
the proxy. Based on the source, intended destination, and the area logic model
(Section 5.2.1), the proxy can correctly process and forward the connections.

1https://www.netfilter.org

https://www.netfilter.org
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Proxy node

Source node Destination node
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2. Redirect 4. Forward

Redirector

3. Process

Figure 5.5: The SOCKS-compatible proxy receives redirected connections that
the redirector on the client node intercepts.

For the proxy, processing connections include applying the appropriate BFs
(Sec. 5.2). The SOCKS protocol can also function as a template for the described
BF chain mechanism (Sec. 5.2.2). Specifically, SOCKS proxies are chainable
and the intended destination of connections can easily be preserved. BFs can
share metadata during SOCKS connection setup(s), i.e., chain establishment, to
enable inter-BF coordination. Furthermore, BFs with a uniform interface make
dynamic and arbitrary chain compositions straightforward. The accumulative
latency bottleneck of SOCKS is reduced using the latest iteration of the protocol
and becomes negligible when the entire BF chain runs on the same proxy node.

5.4 Communication with Proxy

To understand the effect of simulating varying network topology distances, we
take a closer look at the sequence of communication per each proxy implementa-
tion approach. Fig. 5.6 illustrates typical sequence communication steps between
a client C and a server S in a no-proxy scenario. Throughout this section, we
assume that this is an HTTP request over TCP: SYN/ACK+SYN packets are
from TCP and the Request/ Response represents HTTP messages. We formalise
Eq. 5.6 to estimate the communication setup time in a no-proxy scenario, such
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C S

SYN

ACK + SYN

Request

Response

Figure 5.6: A sequence diagram showing the communication steps in a no-proxy
scenario.

that:
TNo−proxy ≈ 2RTTCS + tserver, (5.6)

where RTTCS is the time of a single round-trip time from C to S, and tserver is the
server request processing time. We use the same server container in all scenarios
so tserver does not change throughout this paper. TNo−proxy is dependent on the
CS distance, and it is used as a base reference to calculate ∆t in other scenarios
involving a proxy.

Fig. 5.7 focuses on the NGINX communication sequence between client C,
proxy P, and server S. In this diagram we have node P running between C and
S, which introduces extra SYN and ACK traffic. Subsequently, we estimate the

C P S

SYN

ACK + SYN

Request

SYN

ACK + SYN

Request

Response

Figure 5.7: A sequence diagram showing the communication steps in a scenario
including NGINX-based proxy.

setup time of communication passing through an NGINX-based proxy with:

TNGINX ≈ 2RTTCP + 2RTTPS + tserver + tproxy, (5.7)

where RTTCP and RTTPS are the round-trip time between C-P, and P-S, respec-
tively, and tproxy is the processing time of an NGINX proxy.
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Moreover, we illustrate a similar communication sequence for SOCKS5-based
proxies in Fig. 5.8, where we introduce the redirector element. The redirector
always runs on the same host (as shown in Sec. 5.3.2), meaning that the round-
trip time from C to redirector is negligible.

There are extra steps of authentication in this proxy implementation, which
implies higher overhead, and an overall higher setup time due to additional round-
trips.

C Redirector P S

SYN

ACK + SYN

SYN

ACK + SYN

Auth. methods

Method
Auth. request

Auth. response

CONNECT

SYN

ACK + SYN

Connected
Request

Response

Figure 5.8: A sequence diagram showing the communication steps in a scenario
including SOCKS5-based proxy.

The notation of the setup time for a request passing through a SOCK5-based
proxy is TSOCKS5, and we estimate it with:

TSOCKS5 ≈ 5RTTCP + 2RTTPS + tredirector + tproxy + tserver, (5.8)

such that, RTTCP is the round-trip time from C to P (passing through the redi-
rector), and RTTPS from P to S. tproxy is the SOCKS5 proxy processing time,
and tredirector is the redirector processing time.

Similarly, Fig. 5.9 shows the communication steps with SOCKS6-based proxy.
This proxy implementation optimises the required RTTs, which is apparent com-
pared to the SOCKS5 proxy. The notation of the setup time for a request passing
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Figure 5.9: A sequence diagram showing the communication steps in a scenario
including SOCKS6-based proxy.

through SOCKS6 proxy is TSOCKS6, and we approximate it with:

TSOCKS6 ≈ 3RTTCP + 2RTTPS + tredirector + tproxy + tserver, (5.9)

where tproxy is the time for the SOCKS6 proxy to process an upcoming forwarding
request.

Implementing different proxies implies a different overhead compared to a no-
proxy scenario. The evaluation of the two implementations will be detailed in the
next section.

5.5 Evaluation

To determine which implementation should be adopted, and under which condi-
tions, we benchmark the two approaches (Sec. 5.3) to evaluate their performance
in terms of time overhead and the rate of processed transactions. In our ex-
periments, we fully containerise and automate the benchmark setup in Docker
containers for reproducible results. Our benchmark implementation is publicly
available online 2.

2https://github.com/epi-project/proxy-bench

https://github.com/epi-project/proxy-bench
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5.5.1 Experiment topologies

We run three different application containers: client, web server and proxy. We
generate request traffic from the client to the server passing through the proxy and
use the no-proxy scenario as the baseline for this benchmark, using two network
tools: httping (3) and wrk (5). We are interested in the additional time that
packets take to go through the proxy and give it the ∆t notation.

In an attempt to have a controlled environment with reproducible results,
we dockerise everything and run it all the application components on a single
VM machine. We configure different network configuration combinations; we
accomplish this by varying the distance/latency between containers using tc. By
doing this, we mimic a real network with changing distances between nodes.

We run several network typologies scenarios on a basic Debian version 10
VMs, with 2 cores, 2 GB of RAM, and 20 GB of storage. In one topology,
the proxy is placed between the client and the server; we call this the proxy-in-
between topology. In a second topology, the proxy is placed at a location that is
equidistant from the client and server; we call this the triangular topology. The
two types of setup are illustrated in Fig. 5.10. Namely, CP represents the client-
proxy distance, PS the proxy-server distance, and CS the client-server distance
(as defined in Sec. 5.4).

The Triangular network topology:

The Proxy-in-between topology:

C P S
CP PS

CS

C

P S

CP

PS

CS

Figure 5.10: The different network distance/latency typologies with C represent-
ing the client node, P the proxy node, and S the server node.

The tc tool, a network control utility for the Linux kernel, is used to simulate
different distances between the nodes to evaluate the effect of varying delays on
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the time overhead. Table 5.1 shows the six different latency configurations we
have adopted.

Topology Name CP (ms) PS (ms) CS (ms)

Proxy-in-between
DOCKER 1 5 5 10
DOCKER 2 5 10 15
DOCKER 3 10 5 15

Triangular
DOCKER 4 1 1 1
DOCKER 5 5 5 5
DOCKER 6 10 10 10

Table 5.1: The six network configurations used in our experiments and the re-
spective latencies; three topologies (1-3) are related to proxy-in-between setup
and three topologies (4-6) are related to the triangular setup

5.5.2 Proxy-in-between topology experiments

In the first experiment, we place the proxy in between and on the direct path of
C and S, and simulate distance differences between the nodes according to the
values in Table 5.1: DOCKER1, DOCKER2, DOCKER3. We instantiate the
client, proxy, and server containers on a VM and we generate HTTP traffic via the
httping tool. Then, we measure the average round-trip time of 120 consecutive
requests.

The results of the measured round-trip time (ms) and the associated overhead
∆t are plotted in Fig. 5.11: 5.11a and 5.11b, respectively. As the total distance
between client and server increases, so does the total round trip time (Fig. 5.11a).

In Fig. 5.11b the observed ∆t of NGINX is < 1ms when it is deployed in
between the client and server. If the SOCKS6 proxy is halfway of the distance,
then the ∆t is ≃ 6ms. As for SOCKS5 proxy, ∆t is ≃ 12ms and it increases
rapidly with the CP distance.

5.5.3 Triangular topology experiments

In this experiment, we simulate equidistant triangular topologies with CP/PS/CS
values shown in Table 5.1: DOCKER 4, DOCKER5, and DOCKER6.

The plots in Fig. 5.12 show the resulting round-trip time and ∆t with 5.12a
and 5.12b, respectively. We observe that the resulting overhead of the proxies
implementations increases with distance. The overhead values are higher than
the values recorded with the proxy-in-between scenarios, ranging from 2 ms to 21
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(a) The average of the client to server 120 consecutive requests round-trip time (ms) with
changing configured distances between nodes.

(b) The overhead of ∆t (ms) of different proxy implementations compared to no proxy with
changing configured distances.

Figure 5.11: The variation of round-trip time (ms) and overhead ∆t (ms) of
proxied HTTPING requests with proxy-in-between network topologies.

ms for NGINX, from 5 ms to 42 ms for SOCKS5, and 4 ms to 32 ms for SOCKS6
(as shown in 5.12b).

5.5.4 Rate of processed transactions

To test the rate of processed transactions of each proxy implementation we set up
a third experiment. In this case, we utilise 3 different VMs each running an appli-
cation container (client—proxy—server). The reason that we don’t containerise
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(a) The average of the client to server 120 consecutive requests round-trip time (ms) generated
via HTTPING with changing configured distances between nodes.

(b) The overhead of ∆t (ms) of different proxy implementations compared to no proxy with
changing configured distances.

Figure 5.12: The round-trip time (ms) and overhead ∆t (ms) of proxied
HTTPING requests with triangular network topologies.

this setup is that with the wrk tool, applications will compete for resources and
we’ll end up with lower rate results.

Fig. 5.13 shows the rate of processed transactions of each proxy implementa-
tion measured with wrk as the number of concurrent HTTP connections increase
(Fig. 5.13a) and the reduction of this rate compared to the no-proxy output (Fig.
5.13b). The network setup behind this plot simulates no varying distances.

Similar to the no-proxy plot, the rate of processed requests of all three imple-
mentations increases with the increasing number of connections, but it flattens
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(a) The rate of processed transactions resulting via wrk of different proxy implementations with
increasing concurrent connections.

(b) The reduction of processed requests per second of different proxy implementations compared
to no-proxy.

Figure 5.13: The number of HTTP requests that are processed per second (rps)
and the associated reduction with the increasing number of concurrent requests.

when it hits 8 concurrent connections. That might be explained due to the proxy
reaching a bottleneck of resource consumption.

The bottleneck is further reflected in the second plot in Fig. 5.13b, the reduc-
tion of the rate compared to the no-proxy rate decreases initially to show that
the processing rate of the three proxy implementations is growing at a higher
rate. When we reach 8 concurrent connections, the processing rate flattens out
while the no-proxy rate is still increasing. Subsequently, the reduction rate of the
proxies starts to increase slightly afterwards.

We can concur from this plot that next to no-proxy, the SOCKS6 approach
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results in the highest processing rate with increasing connections. Moreover,
the SOCKS5 approach has the lowest processing rate and doesn’t scale as well
compared to SOCKS6 and NGINX.

5.5.5 Discussion

In Fig. 5.11b The proxies’ overhead increases with the increasing distance be-
tween the proxy and the client, while it does not noticeably differ with increasing
distance between the proxy and server. Such a behaviour is logical and expected
given the contributions to the total overhead of the various components as ex-
plained in Sec. 5.4.

While in Fig. 5.12b we notice that the NGINX proxy performs better in terms
of ∆t in both setups. However, the SOCKS-based proxies imply more overhead,
which is expected since they need more authentication steps during connection
setup (handshakes), while the NGINX proxy simply forwards requests.

The overhead resulting from these experiments varies according to ∆t =
TNGINX|SOCKS5|SOCKS6 − TNo−proxy. This explains the smaller overhead in the
proxy-in-between topologies that implies higher RTTCS time compared to trian-
gular topologies.

Experiments in Sec. 5.5.2 and 5.5.3 show that the placement of the proxy
node has a noticeable effect in terms of overhead. Moreover, it is proven to be a
way of minimising the inevitable latency of introducing proxies.

5.6 Comparison

There are other evaluation performance parameters of each proxy that we want
to consider. Here we look at the port scalability, optimisation, portability and
reconfiguration, dynamicity, complexity and security.

Table 5.2 shows the comparison between different proxy implementations ac-
cording to the previously defined parameters.

5.6.1 Port scalability

Due to their different mechanisms, different numbers of ports need to be opened on
a proxy server. As an example, we need one port for each proxy for SOCKS(5|6),
while one port per node pair of nodes for NGINX. This reflects on the hardware
scalability of the proxy with higher requesting nodes.

5.6.2 Optimisation

NGINX is optimised for HTTP (more optimised in general as well), while SOCKS
works on top of the TCP/UDP transport layer. This is reflected in the results of
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Parameters NGINX SOCKS5 SOCKS6

∆t ✓
Processing rate ✓
Port scalability ✓ ✓
Reconfiguration ✓ ✓
Dynamicity ✓ ✓
Security ✓ ✓

Table 5.2: The comparison between different proxy implementations according
to six performance parameters; where the ✓represents an advantage over other
proxies.

the experiments illustrated in Fig. 5.12 and 5.11.

5.6.3 Reconfiguration

NGINX is configured through configuration files, and subsequently, reconfigura-
tion of the service might require a restart (downtime might be avoided through
canary (re)deployment). On the other hand, SOCKS configuration is dynamic/
programmable, and it is updateable without restart/ downtime, e.g. database
entry update.

5.6.4 Dynamicity

NGINX paths are static (based on the incoming port used), thus BF chains
are static as well. Separate BF chains (x containers) need to be deployed per
node pair, thus scaling is also done per node pair BF chain. With SOCKS the
destination is communicated as part of the connection setup, thus BF containers
can remain stateless (assuming a BF implements a SOCKS interface). Meaning
that one BF container can be part of multiple BF chains e.g. through dynamic
function composition g(f(x)) based on SOCKS chaining. Scaling can be done per
BF across different node pair paths. (i.e. scale per number of connections to the
proxy, instead of the number of connections per node pair.)

5.6.5 Security

From a security perspective, SOCKS authentication is part of the protocol. Whitelist,
mutual TLS, and/or shared secret are supported. That is not part of SOCKS but
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is possible and handled by the redirector component. On the other hand, with
NGINX whitelist and mutual TLS are supported, but it is not transparent to the
client app.

5.7 Related work

Different redirection tools have been implemented in the past to fulfil a number of
different purposes. In (40) they propose a dynamic hybrid honeypot system based
on a transparent traffic redirection mechanism to address the identical fingerprint
problem. They implement the Honeybrid gateway to capture data and control
traffic. The Honeybrid gateway includes a Decision Engine and a Redirection
Engine, which are in charge of orchestrating the filtering and the redirection
between frontends and backends. The Decision Engine is used to select interesting
traffic, and the Redirection Engine is used to transparently redirect the traffic.
They employ a traditional TCP proxy that applies the TCP relay mechanism. In
our case, redirection relies on the logic area generator, which has deep knowledge
and integration with the policy engine; the Decision Engine in (40) would not be
easy to adopt. Likewise, the Redirection Engine also provides an orchestration
function, which in the EPIF are already integral components of the application
and infrastructure orchestrators.

For similar security reasons to ours, (4) employs a Subscriber Traffic Redirec-
tion software to redirect HTTPS requests via a redirection server. Similar to our
proposed implementation, the server redirects traffic to a previously configured
web server with a Secure Sockets Layer certificate (SSL). This tool is evaluated
according to security parameters, such as security against DDoS attacks. In our
case though, we need a proxy that is capable of redirecting all kinds of application
traffic, not only HTTPS.

Finally, (72) evaluates the high availability of two proxy implementations:
reverse proxy and SDN-based proxy, based on OpenFlow. The conclusion is that
the SDN proxy proves to be robust against link failure due to its ability to monitor
network interfaces. The idea of using an SDN-based proxy is certainly relevant to
our effort to exploit programmable infrastructures. Still, OpenFlow is no longer
the main SDN technology, and it must be noted that most of the current EPI
infrastructures would not have OpenFlow devices running in them. We foresee
to evaluate data plane programmable solutions such as P4.

5.8 Conclusion & Future work

Interception and redirection of traffic is a core feature of the EPIF. In this chapter,
we evaluated and benchmarked the setup time of two different approaches; an
NGINX-based reverse proxy method and a SOCKS-based method.
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We determined that the overhead of the EPIF proxies differs in the various
implementations, and it relates directly to the positioning of the proxy within a
network topology. Other than overhead, we also considered different performance
parameters in evaluating the proxies implementations. We can conclude that the
SOCKS6-based proxy offers the highest processing rate (indicative in throughput
with the proxy intercepting and forwarding traffic), and it supports all traffic
type redirection. In addition to that, SOCKS proxies have advantages in terms of
reconfiguration, dynamicity, security, and scales better in employing open ports.
On the other hand, the NGINX-based approach processes forwarding requests
with lower overhead.

Subsequently, to make a design decision on which proxy implementation should
be used, we need to consider the type of application being served. Namely, the
choice depends on the application requirements and the specific relevance of per-
formance parameters. For example, a data streaming application would benefit
from a SOCKS6-based proxy because of the higher processing rate. Subsequently,
this will lead to minimal overhead

In the next chapter, we will be implementing more EPIF functionalities like
BF chaining and offering uniform interfaces of bridging functions. This would
enable programmability. Our focus will therefore be put on the extra plug-ins
needed in the redirection tools needed for BF’s chaining. We will focus our
work on computing efficiency, and build the CPU profiles of different BFCs to
recommend optimal chaining and placement.





Chapter 6

Bridging Function Chains: Resource
Profiles

Different use cases require different network configurations, different performance
requirements, and computing resources. Addressing the broader challenges of net-
work performance and resource limitations within healthcare data sharing, this
chapter systematically profiles the resource utilization of SFCs to enable data
movement across different healthcare use cases. We provide example configura-
tions that map to a couple of use cases (e-Health record query and heath data
streaming), and then we monitor and collect CPU utilization of the different CNF
(Containerised Network Function) compositions. In the considered policies, we
can: discard flow, protect (encrypt) and transmit, or allow with no protection.
To enforce each policy, we deploy a firewall function (relatively heavy-weight
function), an encryption function, and a decryption function (light-weight stream
cypher). We analyse the behaviour of the SFC microservices with various setups,
and we aim to further use this analysis to build the placement heuristic according
to available and trusted cluster resources. Subsequently, these profiles will be
utilized in the next chapter to recommend heuristic-based placement based on
collected profiling data of resource usage and limits for high availability, optimal
performance, and minimal resource waste. This chapter helps in answering the
question:

RQ2: ”What are the performance tradeoffs when deploying differ-
ent packets’ redirection methods and bridging functions to enforce
network policy-compliant routes under different workloads?”

87
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This chapter is based on:

• J. A. Kassem, A. Belloum, T. Müller and P. Grosso, ”Utilisa-
tion Profiles of Bridging Function Chain for Healthcare Use Cases,”
2022 IEEE 18th International Conference on e-Science (e-Science),
Salt Lake City, UT, USA, 2022, pp. 475-480, doi: 10.1109/e-
Science55777.2022.00085.

6.1 Introduction

In line with Next-generation networks, network functions are getting increasingly
virtualized and highly programmable. NFV decouples functions; such as packet
encryption and firewalling; from specialized hardware to make services deploy-
able on general-use virtual servers (115). This allows on-demand management,
dynamic shipment and placement of services, and can potentially provide reliable
network performance.

NFV offers the framework to configure, chain, manage, and orchestrate func-
tions according to agreed network policies. Furthermore, containerizing these
functions can accomplish fast deployment, high reusability, and low setup over-
head (28). The controlled service scheduling and placement, namely containerized
NFV-based (CNFV) services, is a functionality that aligns with what we are try-
ing to accomplish in supporting different health use cases. We simulate two of
the use cases by simulating different workloads and profiling resources:

• Use case 1: Hosting a centralized health data registry and maintaining
health data entries of different healthcare institutions, and the user can
query an entry in the dataset.

• Use case 2: Streaming data via IoT devices and wearable to monitor the
users’ health and provide timely intervention.

The BFC orchestrator employs CNFV to implement network service chains,
and we configure the setup to adapt to different healthcare use cases’ policies
and requirements. The policies describe the communication constraints, traffic
filtering rules, trust, and the required Network Functions that need to be instan-
tiated and deployed. The framework can also be used with use cases other than
healthcare by using the same framework’s handles to generally translate and map
policies to the VNF chain. To implement the security services, we need middle-
boxes hosting the NF’s; known as proxies. The proxied services can vary from
lightweight to heavyweight functions, depending on the type of function and the
implementation’s optimization. Moreover, the resource consumption behaviour
also depends on the expected workload whilst running a specific use case. Hence,
we need to build a profile of the resources required under labelled use cases and
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the associated network policy. Furthermore, we have to allocate sufficient com-
puting resources to ensure smooth deployment and high availability throughout
the execution of the application. The challenge that still remains is the optimal
and adaptive placement and configuration of these services to available resources
across trusted clusters of proxy nodes.

6.2 Related Work

With similar research efforts, (16) (27) propose policy enforcement systems using
SDN tools (OpenFlow), to ”steer traffic” through a policy-defined service chain.
To reduce the resources needed by the middleboxes, they define ways to optimise
the switch table sizes and flow control rules. On the other hand, employing
OpenFlow switches can potentially introduce new challenges, such as dedicating
specialised hardware and having to configure and add SDN components to the
infrastructure.

Subsequently, adding virtualisation capabilities is needed, and resource alloca-
tion must be effectively orchestrated and managed in order to avoid over/under-
provisioning, and to maintain end-to-end latency that is equivalent to those seen
in conventional networks. It is crucial to ensure the network service’s resilience,
knowing that the implementation can get increasingly complex (like firewalling
with intensive rules, capturing application-level semantics, and potentially deep
packet inspections). According to (43), overloading middle boxes (e.g. proxies)
is a typical reason for service failure.

A plethora of work is done on NFV chaining and placement, but different
strategies are employed. As an example, the MIDAS (10) framework places the
services chain according to the cross-border on-path strategy, where each service
is location-specific (e.g. a web proxy needs to be placed near the end-client).
On the other hand, when the path is loosely controlled, then the placement
really depends on the hardware resources available, and that is implemented using
varying algorithms (e.g. the least busy host placement algorithm (25)). Others
consider QoS-driven optimisation placement of the NFV. The used methods vary
from using heuristic algorithms (55), Linear programming, and ML-based tools
(e.g. Reinforcement learning).

In an effort to optimally deploy and maintain the CNFV chains, we add with
this work-in-progress to existing literature the defined deployment stages after
a network policy is formalised. The placement is decided based on available
trusted proxy clusters matched with the profiled data, knowing the labelled use
case running. We showcase the exploratory profiling results for designing the
heuristic algorithm.
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6.3 The Function Chains Deployment

In previous work (68), we proposed the EPI framework (EPIF), a dynamic frame-
work that automates the programming of the underlying networks to secure health
data-sharing. Data-sharing is secured by orchestrating and managing CNFV;
called Bridging Functions (BF); to add security value to each communicating
node, irrespective of each node’s computing capabilities. The BFs can be in-
stantiated and chained to form a Bridging Function Chain (BFC) and enforce
increasingly complex policies.

The adaptation of the underlying networks is done after querying network
policies and translating them into setup actions, for example, party A can talk to
party B if A is able to encrypt and decrypt via a stream cypher. The automated
setup of the infrastructure is also required to achieve reachability of the end-
point nodes, optimal security across collaborating domains, reasonable network
performance, bridging services availability, hardware selection and scalability, and
ultimately, abiding by policy requirements.

EPIF has different components that are crucial to automating the data-sharing
processes between participating parties. The main components of the framework
are the application orchestrators, the infrastructure orchestrator, the policy man-
agement system, and the logic area generator. The two orchestrators are decou-
pled (conceptually) to orchestrate and manage different types of functions; the
workflow functions, and the network functions, respectively. The policy manage-
ment system is used as a reasoner to query policies and maintain agreement. The
logic area generator (64) is in place to assign security areas to end nodes, and
subsequently deduce security requirements and policies. The proxy node acts as
a framework actor, where the BFC pool is hosted and instantiated when ordered
by the orchestrator.

After resolving the BFC rule per source-destination flow, the EPIF instan-
tiates and deploys the services chain to secure connection according to the set
policy. The challenge of optimally provisioning these services remains, and so we
define with this work three stages for optimal placement and performance of the
chain. Fig. 6.1 illustrates these steps, starting with introducing a new health-
care use case with the expected associated BFC workload. Then we start the
profiling stages where we test the setup, collect resource metrics via the metric
server, calculate statistical information, and store the labelled data for the next
stage. The heuristic placement queries the available trusted proxy clusters via the
cluster manager and matches the required resources with the currently available
resources. Trust is modelled according to the node’s competence, and the con-
tractual agreement of the institution it runs within. The orchestrator controls the
placement of the service chain accordingly to maximise trust and resource utilisa-
tion. This would achieve optimal placement of BFC (or semi-optimal, considering
inaccurate profiling in case of a small number of test-runs with high standard de-
viations), and serves as a booster to the Q-learning agent in the next stage. Next,
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the run-time maintenance utilises a Reinforcement Learning agent and is asked to
monitor QoS metrics (latency, throughput, etc.) and reactively scale in/out. The
placement of the replicated scaled-out services can be done across the multiple
trusted proxy clusters (not just the chosen placement cluster).

Figure 6.1: The BFC deployment stages after introducing a new health use case:
Profiling, Heuristic placement, run-time maintenance.

A simple BFC deployment is illustrated in Fig. 6.2, where we have two types
of nodes:

• The master node: acting as the infrastructure orchestrator where we can
configure, deploy, and orchestrate microservices

• The worker node: acting as the proxy node hosting and running the BFC.
The worker nodes are spread over two different clusters A and B both
running on UvA machines in this case.

Fig. 6.2 also shows the example BFC implementations and the proxy ser-
vice. The proxy service has an important functionality of traffic intercepting
and redirecting to route through the BFC. With that we eliminate the need to
manually plan, compose, and configure routes across the service chain (example:
Client −→ NF1 −→ NF2 −→ NF3 −→ Server), by introducing the SOCKS(5|6)
(79) (87) proxy that intercepts and reroutes packets seamlessly to the end-points
nodes.

We focus in this paper on the first stage, and we populate the profile data
storage with resources consumed running use cases 1 and 2.
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Figure 6.2: The setup of the EPI function chains at UvA with one master node as
the orchestrator and the worker nodes across cluster A & B hosting the topology
of BFC.

6.4 Experiments

We design the following experiment to evaluate the CPU usage of different BF
chains. We do not consider memory because our cases do not pose a strain on
the resources. That is due to the type of functions implemented. We deploy this
framework (shown in Fig. 6.2) using four identical Ubuntu 18.04 VMs with 2
cores, 2 GB RAM, and 20 GB HD. The VMs are hosted on a UvA computing
server cluster, and the VMs are connected via the same network. In our effort to
run this in a controlled environment, we containerise all services and orchestrate
with Kubernetes. All the needed services run on the worker nodes and that is
made available via dedicating an external port that can be pinged and reached
from outside the node.

The SOCKS6 proxy we implement is a standard proxying protocol for TCP
and UDP connections. SOCKS6 is an optimised iteration of SOCKS5, and it
introduces minor tweaks to the Authentication handshake. The stateful Python-
based firewall function cross-checks the packets across a couple of rules to either
accept or reject traffic, then redirects it back to the proxy to route to the next
stop (next BF or destination). We implemented the encryption and decryption
functions with ChaCha20 stream cipher (85). It is a lightweight function that
improves on the Salsa algorithm (58) by increasing per-round diffusion without
decreasing the performance.

The metric server is a cluster-wide data aggregator of resource usage and will
scrape the relevant resource metrics of each pod. We use the metric server to
gather 100 samples of the CPU usage/pod, and then calculate statistical values
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(average and standard deviation error). All relevant code is made available on
GitHub1 for reproducibility purposes.

We assign a fixed CPU request and limit to all containers of 500milliCores
and 600milliCores, respectively. We run four different configurations. The first
use case is the one with a lower sending rate of 100kB/s, and we rerun this
experiment twice with 1 then 10 concurrent clients. Similarly, we also run the
same experiment with a use case simulating a heavier workload of 1000kB/s. We
purposely generate traffic that will be accepted and forwarded, because we need
traffic to propagate across the chain

6.5 Profiling Results

The varying composition, length, and order of the functions within a chain can
result in different CPU consumption per pod. That is further apparent in Fig.
6.3, Fig. 6.4, Fig. 6.5, Fig. 6.6.

Figure 6.3: Use case 1: CPU utilisation per pod and the throughput at the end
server with one client generating 1000 kB/s traffic, and grouped by service BFC
topologies composed of encryption (E), decryption (D), and firewall (F) services.

Considering the proxy service, the CPU utilisation does not change across
topologies. This is due to the minimal proxy’s functionality of redirecting traffic
according to the chain, and the fact that most processing is done on the NIC
(Network Interface Card).

1https://github.com/epi-project/EPI-kube-scaling
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While the other services are affected by the use case applied and the number of
concurrent users using the system. First, the firewall service has the highest CPU
utilisation being the heavier-weight function. Compared to the other topologies,
the consumption average is higher within the F-E-D and F chains, and that is
related to the first order of the service.

Second, the encryption and decryption services expectedly have approximately
equal CPU usage across the F-E-D and E-D topologies. That is due to similar
compiling instructions and code implementation. Unlike with the E-F-D topology,
where the decryption service has a much lower CPU average. This is caused by
the ordering of the firewall in the middle of the chain. This reduction is caused
by the different processing rates at the firewall, and this can differ with different
implementations (larger number of rules, code optimisation, etc.) Furthermore,
the reduction is also affecting the needed CPU power by both services (encryption
and decryption) in the F-E-D chain. Similarly, the causing factor is the firewall
placement at the beginning of the chain.

Figure 6.4: Use case 1: CPU utilisation per pod and the throughput at the end
server with ten clients generating 1000 kB/s traffic, and grouped by service BFC
topologies composed of encryption (E), decryption (D), and firewall (F) services.

Intuitively, the CPU utilisation of the services varies with the different use
cases, and increases with more clients, while the behaviour is consistent through-
out the experiments. These values are generated automatically after initiating a
profiling stage, and this serves as an input to the next stages.

To prove the relation between the BFC topologies’ composition and the re-
ceived packets’ rate reduction, we measure packets received per second at the
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Figure 6.5: Use case 2: CPU utilisation per pod and the throughput at the end
server with one client generating 1000 kB/s traffic, and grouped by service BFC
topologies composed of encryption (E), decryption (D), and firewall (F) services.

Figure 6.6: Use case 2: CPU utilisation per pod and the throughput at the end
server with ten clients generating 1000 kB/s traffic, and grouped by service BFC
topologies composed of encryption (E), decryption (D), and firewall (F) services.
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Figure 6.7: The monitored throughput reduction profile for the different use cases
with different BFC setups

Socat end-server. Fig. 6.7 shows the throughput reduction percentage/topology
while running the four experiments. The topology chains with no firewall have a
much higher throughput than the other setups.

This throughput is slightly lower than having no BFC at all. To counter this
effect, we employ a QoS-based scaler that monitors the throughput across each
function and scales out (or in) by replicating the service (horizontal scale) and
placing the pods according to the heuristic.

6.6 Conclusion

In this chapter, we provided insights into the resource utilization trends across
SFC microservices. Moreover, we built the handles to monitor services’ perfor-
mance, and that’s the groundwork for the other stages of optimal deployment.
In our next chapter, we aim to use these data to automatically provision the
microservice across trusted clusters and update its configuration. We will also
introduce the scalers to the setup. The scaler proposed will be triggered with
a Heuristic-Boosted Q-learning agent. We plan to compare the results of tradi-
tional provisioning mechanics to the proposed heuristic-boosted Q-learning one.
The comparison will be done according to three metrics: the QoS performance of
the microservice chains, packet loss, and the deployment success rate.



Chapter 7

Bridging Function Chains Provisioning
and Placement

In this chapter, we highlight the efficiency of the infrastructure orchestrator by
provisioning adaptive VNFs to enforce security policies associated with different
data-sharing scenarios (data-sharing includes algorithms and processed data).
We define a Cloud-Native Network orchestrator on top of a multi-node cluster
mesh infrastructure for flexible and dynamic container scheduling. The proposed
framework considers the intended data-sharing use case, the policies associated,
and infrastructure configurations, then it provides SFC and provides routing con-
figurations accordingly with little to no human intervention.

Moreover, what is optimal when deploying SFC is dependent on the use case
itself, and we tune the provisioning algorithms’ hyperparameters to prioritise
resource utilisation or latency in an effort to comply with the performance re-
quirements. As a result, we provide an adaptive network orchestration for digital
health twin use cases, that is policy-aware, requirements-aware, and resource-
aware. In this chapter, we answer the question:

RQ3: ”How to automate an adaptive Service Function Chain Provi-
sioning on available network Points of Placement candidates to run
a data-sharing request under different use cases’ requirements?”

This chapter is based on:

• Jamila Alsayed Kassem, Li Zhong, Arie Taal, and Paola Grosso.
”Adaptive Services Function Chain Orchestration For Digital Health
Twin Use Cases: Heuristic-boosted Q-Learning Approach,” Net-
Soft2023.
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7.1 Introduction

The widespread adoption of DTs in healthcare faces substantial challenges, in-
cluding stringent health data-sharing policies, high-performance network demands,
and potential limitations in infrastructure resources. In this chapter, we aim to
confront and overcome these challenges through the implementation of adaptive
VNFs dedicated to enforcing security policies tailored to various data-sharing
scenarios.

At the centre of our approach is the development of a Cloud-Native Net-
work orchestrator situated atop a multi-node cluster mesh infrastructure. This
orchestrator is designed to facilitate flexible and dynamic container scheduling,
providing a responsive and adaptable framework that addresses the unique con-
siderations of healthcare data-sharing. By incorporating this orchestrator into
our proposed framework, we intend to align dynamic elements of data-sharing
use cases, associated policies, and infrastructure configurations, culminating in
the seamless provisioning of SFC with minimal human intervention.

Recognizing the diversity inherent in digital health twin use cases, we acknowl-
edge that the optimal deployment of Service Function Chaining varies based on
the specific nature of each use case. To address this, we implement a tuning
mechanism for hyperparameters, allowing for the prioritization of resource uti-
lization or latency, thereby aligning with the performance requirements dictated
by the unique characteristics of each use case.

This chapter presents an adaptive network orchestration approach tailored
specifically for digital health twin use cases. Notably, our framework is charac-
terized by its policy awareness, requirements awareness, and resource awareness,
ensuring a holistic solution that navigates the intricate landscape of healthcare
data-sharing. Through the convergence of adaptive VNFs, dynamic container
scheduling, and fine-tuned hyperparameters, our proposed framework endeavours
to set the stage for an efficient and responsive Digital Twin ecosystem in health-
care, overcoming the hurdles posed by policy constraints, network demands, and
resource limitations.

7.2 Related work

SFC and VNF provisioning problems have been formalised and addressed by
employing heuristics or DQL in the past. Recently, (118) formalised a heuristic-
based approach to maximise the network throughput, while considering resource
overhead. They consider the required CPU consumption of a VNF, link capacity,
and maximum tolerable delay to search for optimal provisioning decisions. (114)
takes a different approach and utilises DQL neural networks to outperform linear
programming approaches in an effort to solve the SFC resource allocation prob-
lem. Similarly, the authors in (73) use RL-based techniques to formalise the same
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problem as an MDP and address it with a policy gradient learning agent. We
add to the current literature three main contributions: 1) We specifically reason
about the type of SFC that is being provisioned to enforce network security policy
in DHT use cases, 2) We propose heuristic-boosted DQL techniques to guide and
facilitate the learning process according to prior knowledge of profiled data, 3) We
add dynamic constraints to the provisioning problem; dynamic N-PoP candidate
and prioritising different metrics with different use cases.

7.3 Health Data sharing Policies

In previous work (65), we defined the collaboration logic model which the EPI
data-sharing framework follows to aggregate higher-level data-sharing agreements
with lower-level network security goals to establish a policy-abiding data-sharing
session. This can be further translated and aggregated to be enforced at a lower
level. The policy additionally depends on the parties involved, and the data type
being shared. After discussions with the hospitals within the EPI consortium, we
can enumerate the following security goals:

1) Providing access control to the data resources,

2) Identifying and authenticating parties,

3) Health data integrity, and confidentiality,

4) and non-repudiation.

These security goals can be achieved by applying different security mecha-
nisms, such as deploying access control and security protocols namely, SSL, SSH,
IPSec, firewalling, and the security gateway systems (75). We take a separation
of concerns approach where we define two levels of policies: data level, and net-
work level. We assume that all policies fall under one of the two levels, and this
is further discussed in (37).

By virtualising the network services, we aim to deploy and provision on-the-fly
exemplary reliable VNF, which we call BFs, that can accomplish these security
goals. The framework’s goal is to define an adaptive BFC orchestrator, enforc-
ing all types of network policies. We provide an access control mechanism by
containerising a ready-to-deploy firewall function, and we address the rest by im-
plementing standard security protocols to encrypt traffic. Once the security goal
is specified, then we can map that to the mandated network services, and to the
defined enforcement primitives: Filter traffic (F) and/or transform traffic (T).

The framework dynamically provisions these services by placing the BFs on
available N-PoPs (Network Points of Placements), assigning the service requests
to the running function, and routing traffic along the function’s chain to enforce
a policy. Along with the data-sharing policy changes, the available N-PoPs are
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constrained with different use cases running. As a result, the high-level policy
is defined and specified by two 3-tuples: < actors, acts, inRelation >, and <
endNodes,BFC,N -PoPs >, where the second one is in accordance with the
lower-level network policy.

7.4 DHT use cases and N-PoP restrictions

The three use cases, as previously defined, describe the requirements, restrictions,
and network configurations associated with each one.

7.4.1 Electronic Health Records Repository

This use case is built to run EHR (Electronic Health Records) data-sharing sce-
narios where there are two N-PoPs affiliated with healthcare institutions (HI), and
an isolated third-party research centre N-PoP. Fig. 7.1 illustrates the use cases’
configuration and the infrastructure setup, where the data-sharing movement is
expected from a remote user network to the HI network and vice versa. This use
case requires remote access to sets and effective queries (Update/Insert/Get) of
a patient’s medical records.

The third-party research centre is uninvolved in this transaction, and hence
the affiliated third N-PoP is isolated from the rest. The placement algorithm will
not consider it while placing the BFC request and will place the functions on the
other two to secure network traffic according to the BFC request.

7.4.2 Machine Learning model sharing

In an effort to advance healthcare research, we need to accelerate and support the
deployment of ML-featured applications (such as psychiatry diagnosis, effective
drug prescriptions, and side effects predictions, etc.), we define this use case
where ML and analytics algorithms are sent from a research centre to be trained
on data residing in the HI. Moreover, data movement is allowed again from the
data provider (the HI) back to the algorithm provider (the research centre), so
that the distributively trained model can be joined back again into one (more
accurate) model, and shipped back to be ready to use.

As a result, the policy dictates the availability of links across affiliated N-
PoPs to ensure who and where data is handled, as illustrated in Fig. 7.2. After
establishing those restrictions on traffic flow, we then reconfigure the network to
adapt to that and secure the network traffic.
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Figure 7.1: The infrastructure graph configuration under the EHR and the
Streaming use cases.

7.4.3 Healthcare data streaming

This use case describes health data streaming, an example application is to mon-
itor the patient’s status via wearable data, provide timely interventions, etc. The
data involved in this use case is sensitive data, which means that similarly as in
use case A, HI-affiliated N-PoPs are only considered for placement.

7.5 BFC provisioning

7.5.1 Adaptive Provisioning of BFC

We need to adapt the network to performance and policy requirements by au-
tomating the provisioning of the network service function chains. To do that,
we consider multiple approaches to provide a best-effort placement of network
microservices on a Kubernetes cluster mesh of N-PoPs middleboxes. We consider
the following provisioning steps:

1) Profiling of BFC service chains: Determine the computing and network
profiles while running microservices within the service chain under different
use cases.
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Figure 7.2: The infrastructure graph configuration under the ML model sharing
use case.

2) Mapping BFC requests to running microservices: Assign new requests to
run microservices’ deployments under different constraints.

3) Allocation of N-PoP: When mapping fails, place a new instance on an N-
PoP. This is also done according to a set of placement rules/constraints.

4) Chaining the microservices: This step is to assign available (routable) links
and host virtual links and actually chain the microservices according to
internal packet flow requirements between the microservices pairs.

7.5.2 Provisioning Decisions model

Infrastructure

The currently available infrastructure is represented as a directed, attributed
graph G(C,L,CPUC , DL). The finite set of vertices C represents the clusters
that serve as network points of placements (N-PoP), where a network microservice
can be placed. The unidirectional link between clusters is represented by the set
L ⊆ C × C, where (i, j) ∈ L represents the unidirectional link between cluster ci
and cj ∈ C.

Within the infrastructure environment, there exist limited computing and
network resources. These are represented by the attribute sets CPUC and DL.
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cpuCi ∈ CPUC is the maximum CPU capacity of cluster ci ∈ C, and dL(i,j) ∈ DL

is the network capacity with an associated delay of link (i, j) ∈ L at time t.

The configuration of G is representative of the data-sharing policy held by the
infrastructure providers within the EPI consortium, such that for any cluster ci
there is a cluster cj considered as an N-PoP candidate under the condition that:

(i, j) =

{
1|exists, ⇐⇒ cj is considered N-PoP candidate

0, otherwise.
(7.1)

The lack of an edge would drive the placement algorithm to either centralise
placement on ci or distribute it on a different cluster cz such that (i, z) exists.

As an example, when data provider A and algorithm provider B are shar-
ing data, the policy dictates that a third-party associated N-PoP should not be
considered for placement.

BFC requests and profiles

BFCs are ordered sets of network service requests, and a single request can
be composed of multiple chained microservices. To successfully provision these
requests, microservices can be placed and hosted on one or more clusters. BFC =
{f1, ..., fn} is a first-come-first-placed ordered set, where to each request f ∈ BFC
a directed graph Gf = (Sf , Lf ) is associated. Service requests are allowed to run
as long as required, and multiple service requests can populate the infrastructure
at any time. The finite set Sf represents the microservice functions that need to
be assigned to run a request f ∈ BFC.

Moreover, Sf ⊆ µS, the list of all possible containerised network microservices
(e.g. firewall, encryption, load balancer, NAT, etc.). The edges of the graph are
members of the set Lf ⊆ Sf × Sf and are associated with inter-virtual links
between two microservices, where (q, r) ∈ Lf represents the unidirectional link
between requested microservices µsq and µsr ∈ Sf .

Members of µS can be instantiated multiple times and can be deployed as
a microservice replica with different configurations, such that µsm

n is the nth

instance of microservice µsm ∈ µS. With that, one can instantiate smaller and
bigger instances of the same microservice.

To model this, we define CPU{µsmn} and d{µsmn}, the computing capacity
and processing delay of the nth instance of microservice µsm. On the other hand,
placed and running microservices can be shared across multiple incoming network
service requests, as an example, µsm

n can be active for f1 and f2.

A network service request has profiled requirements values that may differ un-
der different use cases utilising the requested service chain setup. As an example,
a service request f active for a streaming use case needs more CPU resources
and higher bandwidth than active for another use case. To model this, we define
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CPUu
q,f , D

u
f , representing the required CPU running microservice µsq when ac-

tive for f under use case u ∈ U , the end-to-end maximum delay respectively. (U
is the set of all possible use cases)

7.5.3 Variables

The goal of the proposed placement algorithm is to allocate network microservice
instances to N-PoP clusters and then map the deployed microservices to the
running instance. Moreover, the algorithm considers the use cases being deployed
over the network infrastructure and tailors the placement according to profiled
resource consumption per use case. Furthermore, the microservices need to be
chained to enforce the network policy route.

The first variable we consider is the virtual link mapping function MC
(i,j),(q,r),f ,

where we decide to utilise link (i, j) with virtual link (q, r) under request f such
that:

MC
(i,j),(q,r),f =

{
1, link (i, j) ∈ L is mapped to link (q, r) ∈ Lf

0, otherwise.
(7.2)

Then we consider is the placement function PC
ci,µsnm

∈ {0, 1}, such that:

PC
ci,µsmn =

{
1, µsm

n is placed on ci ∈ C
0, otherwise.

(7.3)

We also consider the mapping function Mµsnm,q,f ∈ {0, 1} to assign a microservice
µsm ∈ µS needed by the service request f , and associated with µsq ∈ Sf , to an
instance µsm

n running on the cluster ci, such that:

Mµsnm,q,f =

{
1, microservice µsm

n is mapped to µsq

0, otherwise.
(7.4)

Note that variables defined in Eq. 7.5.3, 7.3, 7.4 are dependant values such
that, suppose that we have a subgraph of Sf :

µsq µsr

In fact, the possibility of connecting microservices depends on their mapping and
placement. For example, we can have a successful microservice provisioning of
µsq can be that: Mµsnm,q,f = 1 and PC

ci,µsnm
= 1. While the output of provisioning

µsr such that Mµspk,r,f
= 1, and PC

cj ,µs
p
k
= 1 is conditional to the existence of

the link (i, j). This means that virtual link mapping MC
(i,j),(q,r),f = 1, and it is

determined, such that:
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MC
(i,j),(q,r),f = 1 =⇒ ∃Mµsnm,q,f = 1, PC

ci,µsnm
= 1 ∧ ∃Mµskp ,r,f

= 1PC
cj ,µskp

= 1

(7.5)

Before assigning a microservice of flow request f to cluster ci, we define the
available CPU resources of ci as:

cpuCi −
∑

∀µsnm|µsm∈µS

PC
ci,µsnm

.CPU{µsnm} (7.6)

The expected latency on utilised links running flow requests f at time t is:

D̂L,f =
∑

∀(i,j)∈L,(q,r)∈Lf

MC
(i,j),(q,r),f .d

L
(i,j), (7.7)

D̂C,f =
∑

∀ci∈C,
µsnm|µsm∈µS,

µsq∈Sf

Mµsnm,q,f .d{µsnm} (7.8)

The un-utilised resources on already running microservice instances are ap-
proximated to be:

cpuCi −
∑

f∈BFC

∑
∀ci∈C,

µsnm|µsm∈µS,
µsq∈Sf

Mµsnm,q,f .
∑
u∈U

CPUu
q,f (7.9)

7.5.4 Objectives and placement constraints

The objective is to minimise end-to-end latency and maximise CPU utilisation
across the infrastructure’s clusters, such that:

min
∑

∀ci∈C,
µsnm|µsm∈µS

PC
ci,µsnm

, (7.10)

min(D̂C,f + D̂L,f ) ≤ Du
f , (7.11)

The two minima might not always correlate depending on the use case, hence the
provisioning tools should prioritise minimising one over the other when appropri-
ate.
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7.5.5 Possible constraints

The first constraint is to ensure that the allocated function instances on the
cluster ci do not exceed available CPU resources, such that:

∀ci :
∑

∀µsnm|µsm∈µS

PC
ci,µsnm

.CPU{µsnm} ≤ CPUC
i (7.12)

The second constraint is to ensure that the mapped microservice requested
does not exceed the available CPU at the running instance:∑

µsq∈Sf ,
f∈BFC

Mµsnm,q,f

∑
u∈U

CPUu
q,f ≤ CPU{µsnm} (7.13)

Eq. 7.14 is to ensure that the maximal latency allowed is greater than the delay
composed of link and processing delays.

∀u :
∑

∀µsnm|µsm∈µS,
f∈BFC,
µsq∈Sf

Mµsnm,q,f .D{µsmn}+
∑

∀(i,j)∈L,
f∈BFC,
(q,r)∈Lf

MC
(i,j),(q,r),f .D

L
(i,j) ≤ Du

f

(7.14)
If a cluster ci is chosen for placement of nth microservice of µsm requested by

f , the function needs to be running (placed) before assignment.

Mµsnm,q,f ≤ PC
ci,µsnm

(7.15)

All microservices requested by request f are placed and mapped to the infras-
tructure.

∀f ∈ BFC :
∑

∀µsnm|µsm∈µS,
µsq∈Sf

Mµsnm,q,f = 1 (7.16)

Building virtual paths over available links must obey the following rule to ensure
that there exists a mapped link (i, j) to (q, r) if µsq is placed on ci and µsr is placed
on cj, such that µsn′m is potentially a different microservice instance assigned to
µsr:

∀µsq, µsr ∈ Sf , (q, r) ∈ Lf :

Mµsnm,q,f .P
C
ci,µsnm

.MC
µsn′

m′,r,f
.Pcj ,µsn′

m′ =MC
(i,j),(q,r),f (7.17)

Lastly, the microservice should not run indefinitely once instantiated, but the
microservice is deleted after being idle for a specified duration of time T , such
that PC

ci,µsnm
= 0 ⇐⇒

∑t=t′+T
t=t′ CPU{µsnm}.
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7.6 Provisioning Approaches

We deploy three approaches in an effort to satisfy the use cases’ requirements:
a greedy heuristic approach, Deep Q-Learning (DQL), and a Heuristic-boosted
DQL (HDQL). Fig. 7.3 illustrates the high-level overview of the infrastructure
orchestrator with the different components to make the provisioning decisions.

Figure 7.3: A high-level overview of the orchestrator.

We first deploy a greedy-based heuristic approach to reduce complexity with
increasingly complex network policies and use cases and still provide a manageable
best-effort provisioning decision by choosing the first N-PoP candidate meeting
the placement constraints. This approach is dependent on accurate CPU profiles
and does not react to resource usage and network latency bursts and anomalies.
It is not concerned with the most optimal provisioning choice, instead, it provides
the decisions that work.

7.6.1 Greedy Heuristic BFC Deployment Algorithm

This algorithm loops over the requested microservices and N-PoP candidates
(lines 1-2), if a running microservice instance µsnm meets the requirements set
according to placement properties and constraints in the previous section (line
4) then, µsq is assigned to run on the cluster ci and the loop continues to con-
sider more microservice requests. If the assignment of a microservice fails on all
clusters, then new instances need to be placed, and the algorithm loops again
over clusters, but this time places new instances and then assigns them to a mi-
croservice request. The algorithm applies constraints defined in Eq. (12), (13),
(14), (15), and (16) in lines 4 and 12, and it does so according to CPU and delay
profiles. We only instantiate and place a new service when all the mapping fails
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Algorithm 5 Heuristic BFC Deployment Algorithm

1: procedure Provision( G(C,L), Gf (Sf , Lf ))
2: while Not all µsq has been mapped to ci ∈ C do
3: while Not all ci ∈ C has been checked do
4: if ci ∈ N-PoP candidates then
5: if µsnm meets requirements then
6: Mµsnm,q,f = 1
7: end if
8: end if
9: end while
10: end while
11: if Not all µsq mapped to C then
12: while Not all ci ∈ C has been checked do
13: if µsn

′
m meets requirements then

14: PC
ci,µsn

′
m
∧Mµsn′

m ,q,f = 1

15: end if
16: end while
17: end if
18: return PC

ci,µsnm
,Mµsnm,q,f

19: end procedure

(in line 13), and by that, we prioritise minimising placement, as in Eq. (10) under
the constraints of delay.

7.6.2 DQL Algorithm

The performance of the first approach is highly dependent on the accuracy of the
CPU and delay profiles. Compared to traditional heuristic-based resource scaling
methods, Reinforcement Learning-based (RL) solutions are equipped to deal with
un-profiled network and resource bursts, instead, this DQL approach relies on
querying the current state and reacting via provisioning actions to maximise
performance rewards.

Action space: The discrete actions of microservices placing and assignment
are structured as [Cluster ID, Place/ Map/ Destroy, Instance ID, Microservice ID,
Proxy ID]. The first value specifies the cluster that is considered; the N-PoP can-
didate. The second value specifies the type of provisioning action: placing a new
instance, mapping a running instance to a request, or deleting an idle microser-
vice instance. The third and fourth values, respectively, refer to the microservice
instance and the type of microservice (n and m within µsmn ). Lastly, the Proxy
ID identifies the proxy we are configuring to chain the instantiated microservices
and handles the network services requests.
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State Space: The state space consists of the infrastructure’s variables, which
the DQL interacts with to monitor the environment’s changes based on decisions.
The provisioning is done across multiple sites, and the DQL algorithm needs
to make a satisfactory trade-off between resource cost and latency. Therefore,
the state of the agent should contain information about CPU utilisation/cluster,
placement status of microservices, the number of microservices across the clus-
ters, and the response time of requests.

Reward Function: The reward function measures the performance incentive
for the agent to perform a new action, based on the infrastructure’s current state.
The entire reward Rall at time t is calculated as the weighted sum of reward in
resource cost Rres and reward in performance Rperf , which is shown in:

Rall = αRres + βRperf (7.18)

Hyperparameters α and β are used to control the importance of these two val-
ues compared to the entire reward. One effective definition of reward function
steers the agent towards better performance with higher utilisation of resources
(prioritizing Eq. (10) vs Eq. (11)).

Action Policy: In the traditional DQL approach, the policy is set to map
an observable state st to a provisioning action at at a time t. The policy is
optimised by learning the Q-value performing at in state st, according to the
following formula:

π(st) =

{
maxatQ(st, at), ifq ≤ p

arandom, otherwise
(7.19)

, where q is a random value with uniform probability in [0, 1], and 0 ≤ p ≤ 1 is
the exploration/exploitation ratio parameter.

7.6.3 Heuristic-boosted Algorithm

While the previous tool can reactively adapt the network’s configuration to op-
timally provision BFC requests, it still can take a long time to converge with in-
creasingly complex requests, use cases, and N-PoP configurations. Subsequently,
we propose to combine both provision approaches (A and B) to deploy a Heuristic-
boosted DQL provisioning of SFC. We aim to accelerate the decision-making, and
guide the model learning via a new action policy:

π(st) =

{
argmaxat [Q(st, at) +H(st, at)], ifq ≤ p

arandom, otherwise
(7.20)

Where the H-value H(st, at) influences the choice of action, by evaluating the im-
portance of executing the action at (suggested by the heuristic algorithm) having
state st (23).
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7.7 Experiments and Results

Use cases’ Network Policies: The security enforcement primitives are con-
sistent throughout all the use cases, such that the firewall function is mandated
to provide access control to incoming traffic towards the healthcare institution.
Likewise, all outgoing traffic should be encrypted to protect sensitive data. This
is showcased in Fig. 7.4, where you can see the same logic being applied to all
the use cases.

The EHR use case is profiled to be a relatively small load application with
an expected average send rate of 100-200 kB/s. The ML-model sharing use case
is defined to be, also, a small load use case with an expected (average) periodic
send rate of 100-200 kB/s. Additionally, the streaming use case is profiled to be
a large load use case with a 1-3 MB/s send rate. Accordingly, the CPU profiles
of different BFCs under different use cases’ send rates are recorded in (62), and
further used via the heuristic algorithm to make provisioning decisions.

Moreover, the provisioning algorithm should comply with multiple use case
requirements. Maximum CPU usage is prioritised with the EHR and ML model
sharing use cases, compared to the streaming use case where low latency overhead
is required as well.

7.7.1 Experiments

To evaluate placement and assignment decisions taken by the different provision-
ing tools, we run the three use cases according to the defined send rate workloads,
and associated CPU profiles. We first reconfigure the graph G as Kubernetes clus-
ters, to reflect Fig. 1 and 4. Connected clusters form a cluster mesh via a cilium
backend server 1.

New instances vs CPU utilisation: We increase the number of concur-
rent clients utilising the BFC with locust2, and we record the instantiated new
instances/microservice across all the clusters under the different use case con-
figurations, with the growing number of clients. For replication purposes, the
implementation and configurations of the experiments are available on GitHub 3.
Furthermore, we compare the number of pods (instances) to the actual utilized
CPU per instance, to evaluate the CPU resource wastage, and further relate that
to the latency.

Latency Overhead: Similarly, we increase the number of concurrent clients
running different use cases and record the latency of processing one request (send-
ing a request and receiving a reply back). Low latency can be accomplished by
providing high-performance networking, but the goal is to evaluate the overhead
latency caused by adding network services in between end nodes, and the effect

1https://cilium.io/
2https://locust.io/
3https://github.com/epi-project/Netsoft2023
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USE CASE NETWORK POLICY REQUIREMENTS

Remote
user

Healthcare
Institution

F

T

Healthcare
Institution

Healthcare
Institution

F

Research
centre

T

F

T

Healthcare
Institutiom

Healthcare
Institution

F

T

T

F

EHR

ML model sharing

Healthcare data streaming

Prioritise maximal CPU usage 

Latency overhead is not critical 

Prioritise maximal CPU usage 

Latency overhead is not critical 

Prioritise low latency overhead 

  Minimise resource wastage 

Figure 7.4: Different network policies and requirements, deploying different use
cases; F represents a firewall microservice request, and T represents an encryption
microservice request.

of different provisioning decisions. We try to minimise the delay when deploying
the network function request, and ideally the latency overhead ≈ 0ms. We collect
the latency overhead by calculating the average of 10 queries and then measuring
the effect of the chain addition compared to no functions in between.

7.7.2 Results

Under the first use case’s N-PoPs constraints, no microservice instances are placed
on cluster 3 i.e. the Research centre cluster (or, if already running, not assigned
to the requests running EHR traffic), as shown in Fig. 7.5. The provisioning
decision, however, differs with each method, to capture the difference we collect
the number of running pods /clusters and the effect of increasing the number of
clients from 1 to 50 concurrently running. Moreover, the provisioning decisions
as we discussed previously are based on factors: CPU availability, and latency
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(a) The heuristic algorithm placement

(b) The DQL and HDQL algorithm placement

Figure 7.5: The placement of microservices and the average CPU utilisation
running the EHR use case.

overhead. Hence, we also showcase the average CPU utilisation percentage/pod
with each iteration, and the latency recorded to successfully resolve one request.

Firstly, in Fig. 7.5(a) we notice that the heuristic-based placement starts by
placing small configured firewall and encryption microservices on cluster 1 and
2, respectively, with the CPU utilisation average of 20-25% running 1 client on
both. The firewall utilisation ramps up faster than encryption to reach 100%
with 10 concurrent clients, then the heuristic placement reacts to the maximal
utilisation by upgrading the configuration of the microservice to reach 3 pods
running on cluster 1 with 20 concurrent clients running. The trend we notice
throughout this plot is that the heuristic placement is more concerned with max-
imising the average CPU utilisation, such that we end up overcommitting the
firewall microservice and assigning it to the maximal ammount of traffic. The
effect of overcommitting the firewall microservices (120%, 140% with 40 and 50
clients) is also reflected in the latency in Fig. 7.8(a), such that latency overhead
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(a) The heuristic algorithm placement

(b) The DQL and HDQL algorithm placement

Figure 7.6: The placement of microservices and the average CPU utilisation
running the ML model sharing use case.

increases from 2.21 ms with 30 clients to 5.32 and 6.26ms with 40 and 50 clients,
respectively.

On the other hand, with the DQL approach, this latency increase is avoided
because the resources are never overcommitted, with the hyperparameters in Eq.
7.18 set so that α > β, so the model will prioritise resources. With this approach,
two main decisions to optimise placement are taken, the first is to place the
encryption microservice on cluster 1, and by that only using the Kubernetes
backend discovery service once, such that microservices on the same cluster belong
to the same private network. Another thing is that the DQL is more adaptive
to resource bursts, with no need for profiling, and relying on accurate profiles of
CPU usage. This is also reflected in the latency, such that the overhead is halved
compared to the heuristic approach, and it decreased from 5.32 to 1.26ms running
40 clients.

With the HDQL approach, there are no major differences, and we end up
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(a) The heuristic algorithm placement

(b) The DQL algorithm placement

(c) The HDQL algorithm placement

Figure 7.7: The placement of microservices and the average CPU utilisation
running the streaming use case.

with the same latency as well. The reason is that the hyperparameters are set
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(a) The EHR use case.

(b) The ML model sharing use case.

(c) The streaming use case

Figure 7.8: The latency average recorded with different placement methods, and
the overhead compared to proxying traffic without passing through extra mi-
croservices.
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in the action policy. With this use case, latency overhead is not crucial, and
hence occasional under-provisioning of resources is not an issue, and the heuristic
placement is a sufficient tool for this use case.

Similarly, the ML model sharing use case has initially a similar placement,
the difference is that the utilisation is doubled indicating that the pods are as-
signed to handle double the requests. After that, we start another instance of a
firewall on cluster 2, to handle half of the traffic. The heuristic function upgrades
the placement configuration to adapt to the increasing workload. Similarly, this
approach ends up overcommitting resources and the overhead increases as shown
in Fig. 7.8(b).

The optimisation decisions taken by the DQL and HDQL approaches are
demonstrated by deciding to place microservices on the same cluster, to then
start new instances of the firewall cluster 3, that has currently associated with
lower round-trip latency, compared to cluster 2. This approach adapts to resource
usage bursts more accurately and minimises latency overhead accordingly.

With the last use case, the healthcare data streaming use case, we prioritise
latency, and there are three different placement decisions taken. First, the heuris-
tic performs poorly with this use case as shown in Fig. 7.8(c), where the chaining
is still distributed, and assignment decisions require two different lookups. Unlike
the other two approaches, the placement is distributed across clusters, but the
chaining is on one cluster. With that, Kubernetes backend microservice discovery
is optimised. With this experiment, due to the hyperparameters change, we end
up wasting resources with the DQL approach as shown in Fig. 7.7(b). Although
with these provisioning decisions, we provide the best latency overhead, there ex-
ist better actions and hence we have a third different placement with HDQL. The
HDQL provisioning provides approximately equal latency with maximal CPU
utilisation (shown in Fig. 7.7(c) and 7.8(c)).

As a result, the heuristic-based approach proved to be sufficient with the
EHR and ML model-sharing use cases, where we end up under-provisioning but
inflicting tolerable latency. That is especially true since low latency overhead is
not crucial in running said use cases, instead, we prioritise minimal CPU wastage.
The HDQL tool performs the best while running the streaming use case, where
minimal overhead latency was achieved, but with seemingly no over-provisioning
and resource wastage.

7.8 Conclusion

To run DHT use cases, it is essential to first consider data-sharing policies (includ-
ing network policies), and translate them into actionable service function chain
requests. Additionally, the provisioning of BFC (new instance placement and/or
assignment of an incoming request to an old running instance) depends on the
use case’s requirements and the current state of the infrastructure. We need to
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prioritize latency and/or minimise resource wastage, and we do that by modelling
the decision as a constrained optimization problem. Initially, we addressed the
requirements and constraints via heuristic, which can query the infrastructure
state and output decisions influenced by the BFC CPU profiles. Next, we pro-
posed using DQL methods, which provide more resilience to un-profiled bursts
and network degradation. Finally, we combined both approaches to introduce a
”best of both worlds” solution, that proved to be most valuable in accomplishing
lower latency overhead, with minimal CPU wastage.

The provisioning tools should consider a combination of constraints and ob-
jectives. The framework we proposed can be used within any general context, and
it effectively provisions network resources to deploy DHT use cases. We conclude
that heuristic-based approaches are sufficient when the latency overhead is not
crucial, while HDQL tools are most effective otherwise. In our next chapter, we
evaluate the framework according to security and privacy risks, whilst running
different workflows. EPI users compose workflows with multiple events including
data in action, data in transition, and data in storage. Different workflows might
entail a list of resources requisite; data type, dataset size, data sensitivity, and
minimum data utility.





Chapter 8

Privacy by Design

Due to the inherited sensitivity of health data, institutions are still wary of shar-
ing their data, especially with the increasing number of breaches in recent years
and the strict privacy legislation involved (GDPR, HIPAA, etc.). There exist
privacy and security concerns that arise with making data available for use or
processing. To tackle these concerns, we incorporate Privacy by Design (PbD)
principles. This informs our approach to constructing a data-sharing framework
that aligns with said principles. Subsequently, we introduce examples of data-
centric use cases requiring processing, followed by the delineation of the compu-
tation events model and data properties intrinsic to a use case. Furthermore, in
order to gain insight into the potential privacy risks associated with executing
a workflow request, we expand upon the model to quantitatively evaluate these
risks. Subsequently, we construct a framework, the EPI framework, aimed at
mitigating these identified risks, via adhering to PbD properties and provisioning
extra services. In this chapter, we answer the question:

RQ4: ”How to orchestrate the EPI framework services to minimise
security and privacy risks by comprehensively modelling security/
privacy probabilities and mitigating risks of DHT data-sharing work-
flows according to privacy-defined attributes?”

119
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This chapter is based on:

• Jamila Alsayed Kassem, Tim Müller, Christopher A. Esterhuyse,
Milen G. Kebede, Anwar Osseyran, Paola Grosso, The EPI frame-
work: A data privacy by design framework to support healthcare
use cases, Future Generation Computer Systems, 2024, 107550, ISSN
0167-739X, https://doi.org/10.1016/j.future.2024.107550.Jamila Al-
sayed Kassem, Tim Müller, Christopher A. Esterhuyse, Milen G.
Kebede, Anwar Osseyran, Paola Grosso, The EPI framework: A data
privacy by design framework to support healthcare use cases, Fu-
ture Generation Computer Systems, 2024, 107550, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2024.107550.

8.1 Introduction

In the era of big data and increased digitalization, the sharing of sensitive in-
formation, particularly in the medical domain, has become crucial for advancing
healthcare research, treatment, and patient outcomes (53). However, the inherent
privacy risks associated with sharing such data pose significant challenges. Tra-
ditional data-sharing approaches often neglect essential privacy considerations,
potentially compromising data confidentiality, integrity, and control (44).

To address these concerns, the EPI framework gives control over integrating
PbD principles into the sharing session. The EPI framework aims to establish a
comprehensive and robust environment for sharing medical data whilst ensuring
privacy and data utility. By incorporating workflow orchestration, data sharing
policies reasoning, and security/ privacy as a service orchestration, EPI addresses
the complex privacy challenges inherent in medical data sharing. The EPI frame-
work provides a holistic approach to data sharing by considering multiple dimen-
sions of privacy risks. These dimensions include Linkability (L), Identifiability
(I), Non-repudiation (Nr), Detectability (Dt), information Disclosure (iD), data
Indulgence (In), and policy Non-compliance (Nc). By thoroughly assessing these
dimensions, EPI enables the impact and likelihood quantification of potential pri-
vacy risks associated with shared medical data and provides the means to mitigate
this risk.

The EPI Framework focuses on maintaining data control throughout the data-
sharing process, ensuring that privacy considerations are integrated from the
outset. The framework addresses the challenge of balancing data utility with
privacy protection by offering mitigations specific to the associated data risks
identified during workflow submission.

This chapter elaborates upon prior research discussed in Section 8.2, with a
particular emphasis on the recurring theme of PbD. We define PbD concepts in
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section 8.3, and, in this chapter, distinguish between privacy and security proper-
ties. The use cases investigated in the EPI project are introduced in section 8.4,
accompanied by explicit definitions of data properties and the events computation
model associated with a use case (sections 8.5.18.6, respectively). We present the
LINDDIN privacy assessment model in section 8.7, wherein risk attributes are
formulated to quantitatively assess risk, considering both data properties and the
computation model. Offering an overview of the EPI framework in 8.8, we delve
into more detailed descriptions of the EPI orchestration layers (sections 8.9 and
8.10). Lastly, to evaluate the framework, we provide a detailed walk-through of
a practical use case and quantify the extent to which privacy risks are alleviated
before and after the implementation of the EPI framework in 8.11.

8.2 Related work

Several papers have contributed to the definition and development of PbD prin-
ciples, frameworks, and applications. In (20), the authors outline the seven foun-
dational principles of PbD, providing a framework for the operation of systems,
processes, and technologies: proactive and preventive, default privacy, embed-
ded in the design, full functionality of services, end-to-end security, visibility and
transparency, and finally, respecting user privacy.

(76) introduces the concept of privacy-aware ubiquitous systems and presents
principles for incorporating privacy by design into the development of such sys-
tems. It emphasizes the need to consider privacy throughout the design process.
(92) proposes a PbD framework to evaluate the privacy gap between IoT devices
and middleware platforms, such as OpenIoT, Eclipse SmartHome, etc. Minimis-
ing data, in general, is a common practice in Literature. As an example, in (44),
the framework is based on minimizing data storage (retention), raw data intake,
data sources, and data knowledge discovery.

In the context of PbD in healthcare applications, (21) and (97) apply the
7 PbD properties introduced in (20) to evaluate current practices; namely IoT
applications. In the true spirit of PbD, (32) utilises deep learning tools to pseudo-
anonymise neuroimages using defacing, skull stripping, and face masks to preserve
privacy and utility.

There already exist data-sharing platforms that align themselves with PbD
principles in general. One of them is Mahiru (111), a decentralised data-sharing
platform that emphasises domain autonomy. A design choice that makes working
with the framework practical is that it broadcasts all policy information to the
site that at that moment acts as an orchestrator; however, in the medical domain,
this is infeasible because some policies may be private.

The EPI Framework addresses the challenges of privacy and security in data
workflows by utilizing three main components: BRANE, the policy server, and
the Bridging Functions Chain (BFC) orchestrator. Through the utilization of
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the EPI Framework, organizations can enhance privacy protection, promote data
utility, and achieve compliance with privacy regulations. The framework’s holistic
approach aligns with the evolving landscape of privacy and security requirements,
enabling organizations to adapt to changing data privacy landscapes and emerging
threats.

8.3 Data Privacy by Design

PbD is a fundamental principle that advocates for embedding privacy protections
into the design and development of systems. One prominent regulation that em-
phasizes privacy by design is the GDPR in the European Union. GDPR fixes
strict requirements for data protection and privacy, placing increased responsibil-
ity on organizations to implement PbD principles.

Integrating privacy controls and safeguards into the processes may include
implementing strong access controls, encryption mechanisms, pseudonymization
and anonymization techniques, and user consent mechanisms. It also entails pro-
moting transparency by informing individuals about the purposes and scope of
data processing and ensuring that privacy settings are easily understandable to
users. By incorporating PbD, organizations can establish a privacy-conscious cul-
ture, foster trust with users, and proactively mitigate privacy risks. PbD enables
organizations to comply with legal requirements like GDPR and demonstrates a
commitment to protecting individuals’ privacy rights.

8.3.1 Privacy vs. Security properties

Security and privacy are closely related concepts but have distinct focuses. Se-
curity primarily deals with protecting systems, networks, and data from unau-
thorized access, breaches, and malicious activities. It encompasses measures such
as authentication, encryption, firewalls, intrusion detection systems, and incident
response mechanisms.

Privacy, on the other hand, is concerned with protecting personal information
and ensuring that individuals have control over the collection, use, and disclosure
of their data. It encompasses principles like data minimization, purpose limi-
tation, consent, transparency, and individual rights. While security focuses on
protecting the integrity, availability, and confidentiality of data and systems, pri-
vacy focuses on preserving individuals’ autonomy, dignity, and control over their
personal information. Both security and privacy are essential in today’s digital
landscape. Security mitigations might align with privacy needs. For example,
protecting against unauthorized access ensures control over data disclosure, ad-
dressing concerns from both perspectives.

In system design, we need to recognize the importance of both security and
privacy and adopt an integrated approach to protect data and individuals’ privacy
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Figure 8.1: The workflow illustration of the DIPG use case.

rights. Balancing these aspects is crucial for building data-sharing frameworks,
complying with regulations, and fostering a positive user experience in an increas-
ingly data-driven world.

8.4 The DIPG-registry

In previous chapters, we defined our data-sharing use cases, and we will discuss
these use cases in the context of PbD principles. These utilize patients-generated
data within the EPI consortium.

One of the use cases under the EPI project is the Diffuse Intrinsic Pontine
Glioma (DIPG) registry, founded by the SIOPE DIPG/DMG network. The reg-
istry was established in 2011 to advance DIPG research. The DIPG also known
as diffuse midline glioma (DMG), is a rare paediatric brain cancer for which there
is no curative treatment. The registry holds information on DIPG patients across
Europe and a partner registry in North America, the International DIPG/DMG
Registry, with patient data from the USA, Canada and Australia (15). The
registry serves the goal of advancing DIPG research by granting researchers con-
ditional access to selected datasets to perform analysis with more data points and
encouraging members to contribute datasets to the registry.

The registry serves to improve DIPG research by granting members (condi-
tional) access to selected datasets in order to perform analyses with more data
points and thus higher efficacy. Members submit clinical data from their institu-
tion to the DIPG Registry via a secure online CRF-structured web application
and database1. Figure 8.1 provides an illustration of the data flow required to
run this use case. This is a simple workflow of query requests of remote users,
and getting back the health data queried.

1https://dipgregistry.eu
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8.5 Data properties

Medical workflows (pipelines) can involve various types of data with varying sen-
sitivity and utility ; usefulness of a data set to successfully run a specific workflow.

8.5.1 Data Sensitivity

Medical data is inherently sensitive, as categorized by the GDPR (7). However,
this sensitivity is contingent on various factors. For instance, the state of the
data—like whether it is encrypted—plays a pivotal role. Upcoming sections will
revisit the specific data attributes that shed light on the associated privacy risks.
We consider several data states within the EPI’s data-sharing ecosystem, and are
relevant to the data required for the three use cases:

• Raw Data: refers to data that is in its original, unprocessed format. It
may include unstructured text, sensor readings, or any data that has not
undergone any transformation or aggregation. Raw data often requires ad-
ditional processing or anonymization to mitigate privacy risks before storage
or sharing.

• Anonymized Data: data has undergone a process to remove or modify
identifiers, making it extremely difficult or impossible to link the data back
to an individual. Hence, the sensitivity of anonymized data is reduced.
Anonymization techniques such as pseudonymization are applied to protect
privacy.

• Encrypted Data: refers to data that is transformed using cryptographic
algorithms into an unreadable format. Encrypted storage adds a layer of
security by protecting the data from unauthorized access. The encryption
helps mitigate the risk of exposure if the storage is compromised, or if a
transfer session is sniffed (eavesdropping).

• Synthetic Data: artificially generated data that mimics the statistical
properties of real data while containing no identifiable or sensitive informa-
tion. Synthetic data is often used for testing, development, and research
purposes. Since it does not contain real patient information, the sensitivity
is typically low.

• Aggregated Data: data that has been combined and summarized from
multiple sources or individual records. Aggregation helps protect privacy by
reducing the granularity of the data and removing personally identifiable
information. The sensitivity of aggregated data depends on the level of
detail retained and the potential for re-identification.
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Furthermore, with the data state in mind, we commonly think about the sen-
sitivity of a current dataset based on the distance compared to the original (raw)
dataset(s), as shown in equation 8.1, such that sensitivity ∈ {0, 0.5, 1.0}. Dis-
tance and sensitivity metrics are inversely proportionate, the higher the distance
of a dataset is the lower the sensitivity is:

sensitivity = 1− distance(raw , current), (8.1)

where 1 is an indication of the most sensitive dataset, 0 is the least sensitive and
distance ∈ {0, 0.5, 1.0}.

Moreover, the methods used to measure the distance metric are dependent on
the dataset itself. As an example, statistical measures can be used to assess the
difference in statistical properties, or if the dataset contains images, metrics like
Structural Similarity Index (SSIM) or Peak Signal-to-Noise Ratio (PSNR) can be
used to assess image distortion distance. The choice of a distance measurement
method depends on the characteristics of the data and the specific modifications
applied.

For simplicity purposes, let’s assume that distance can be one of three values:
0 if data is not processed at all meaning distance(raw , raw) = 0, 0.5 if data
is pseudo-anonymised, partially encrypted, partial data synthesis, or partially
aggregated based on the state (privacy-preserving method). 1 if data is fully
processed to maximize distance.

To provide an example, suppose we have a raw EHR dataset, as shown in
listing 8.1, that contains patient records with sensitive attributes such as patient
ID, age, gender, condition, date of visit, cholesterol level, and blood pressure.
Each record in the dataset represents patients’ visit history. Let’s assume we
have a simplified example of the dataset that is in Listing 8.1:

1 Raw = { "PatientID ": 1, "Age": 42, "Gender ": "Male",

2 "Condition ": "Diabetes", "Date_of_Visit ": "2023 -01 -05" ,

3 "Cholesterol_Level ": 180, "Blood_Pressure ": "120/80" ,

4 "BMI": 25.5 }

Listing 8.1: An example, unprocessed EHR dataset

Listing 8.1 shows record raw in an unprocessed state, with no further process-
ing to change the state. Hence distance(raw , current) = 0. In Listing 8.2, the
data state is changed. In this pseudonymized dataset, the patient IDs have been
replaced with pseudonyms ”P1” through ”P4”. The date of the visit has been
replaced with generic labels ”Visit1” through ”Visit4” to protect the privacy of
individuals. The remaining attributes such as age, gender, condition, cholesterol
level, blood pressure, and BMI are retained. The distance in this listing is con-
sidered to be distance(raw , current) = 0.5, under the assumption we previously
stated.

1 Psuedoanonymised = { "PatientID ": "P1", "Age": 42,

2 "Gender ": "Male", "Condition ": "Diabetes",
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3 "Date_of_Visit ": "Visit1", "Cholesterol_Level ": 180,

4 "Blood_Pressure ": "120/80" , "BMI": 25.5 }

Listing 8.2: An example simple pseudo-anonymisation of an EHR dataset

On top of what is omitted in the 8.2, the fully anonymized dataset in 8.3
also replaces the age attribute with ”Age1” through ”Age4”, and the gender is
anonymized as ”Gender1” through ”Gender4”. The rest of the attributes related
to medical conditions, such as condition, date of visit, cholesterol level, blood
pressure, and BMI, remain intact with no clearly identifying information. The
distance in the last listing is considered to be distance(raw , current) = 1.

1 Anonymised = { "PatientID ": "Patient1", "Age": "Age1",

2 "Gender ": "Gender1", "Condition ": "Diabetes",

3 "Date_of_Visit ": "Visit1", "Cholesterol_Level ": 180,

4 "Blood_Pressure ": "120/80" , "BMI": 25.5 }

Listing 8.3: An example of an EHR dataset of an anonymised entry via a simple
method

Bear in mind that while distance measurement offers a quantifiable evaluation
of dataset disparities, it may not fully encapsulate the effect on data utility or
usefulness. Hence, a comprehensive evaluation of altered datasets should account
for both sensitivity and utility aspects.

8.5.2 Data Utility

Data utility refers to the value or usefulness of data for a specific purpose or
task, such as the workflow associated with the three use cases. Defining all utility
factors can be a cumbersome task, so for the sake of this paper, we focus our
model on the factors that are most relevant to the provided use cases. The utility
of data can be influenced by various factors, including data type, data state/dis-
tance, data size, and available computing resources.

Data type: In the context of health data, a multitude of data types may be
necessary for the given use case, each subject to processing to deliver a specific
service. For instance, data types encompass patients’ health records, medical
images, clinical trial data, sensor data, wearables, and the like.

Different types of data have different utilities depending on the specific al-
gorithm and the problem being addressed. This is showcased when a data type
utype is available for processing or not when the workflow is requested:

utype =

{
1, type requested is available for workflow

0, otherwise.
(8.2)

Computation Power: Handling and processing large, distorted, and syn-
thetic datasets may require significant computational resources and can impact
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the efficiency and scalability of; for example; the ML-based workflow (CVA use
case). The utility of data is influenced by the available computing resources. If
the computing resources are limited, the utility of large datasets may be reduced
due to the constraints on processing and model training. Conversely, with ample
computing resources, the utility of large datasets can be fully realized, allowing
for more comprehensive analysis and better model performance. The compute
resources relate to CPU and memory resources requested rreq compared to that
available rav , and is formalized as a flag:

ucompute =

{
1, rreq < rav

0, otherwise.
(8.3)

Data State: The first two attributes, aforementioned, are functional at-
tributes and depend on resources’ availability, while the following two attributes
affect the privacy risk directly. The status of the data and the relative distance
can also impact its utility. Fully Synthetic data, which is artificially generated
to mimic real data, may have lower utility compared to raw or real-world data
because it may not capture all the nuances and complexities present in the orig-
inal data. To capture this effect, we look into the distance value and compare it
to the acceptable distance submitted along the workflow, to successfully run it.
This distance attribute is formalized as a flag udistance :

udistance =

{
1, distance(raw , current) ≤ distancereq

0, otherwise.
(8.4)

Data size: The size of the data can affect its utility in different ways. Larger
datasets generally provide more utility by enabling more accurate and robust
machine learning.

On the other hand, data minimization is a sign of good privacy by design
practices, and one way to do that is by sharing (or making available) the minimal
dataset size while running a workflow. Other than minimizing sensitivity (in-
creasing distance), size is an attribute that needs to be considered under privacy
and utility constraints.

The effect of the size attribute is formalized as flag usize , where usize = 1 means
that this size utility condition is met:

usize =

{
1, size requested is available for workflow

0, otherwise.
(8.5)

The requested utility attributes are set by the users submitting a workflow
request, and the current availability of data and computing resources are de-
termined by the framework. As a result, the total utility (U) is calculated as
the sum of these attributes, such that α, β, θ, and γ parameters are also set to
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determine the relevance of these attributes to the submitted workflow. Where
α + γ + β + θ ≤ 1:

U = αutype + γucompute + βudistance + θusize (8.6)

As mentioned before, data privacy-preserving methods are associated with
data sensitivity, as well as data size. Figure 8.2 showcases the effect of these
methods on utility. The framework we will define aims to find the optimal trade-
off point to run a workflow, to minimize privacy risk with utility as a constraint.
The threshold for data privacy is set by the data sharing policies, while the
threshold for minimum utility is set by the user submitting the workflow.

Figure 8.2: A depiction of how privacy-preserving mitigations trade-off utility
and sensitivity.

8.6 Data sharing events & Events model

In this section, we introduce our event model, describing the building blocks of
behaviour for data exchange systems. This provides a low level of abstraction of
the data-sharing events, enabling our analysis of risk within the workflow event
model. A single event performs a specific task, such as selecting a data entry,
aggregation, and filtering. A workflow model is a composition of events occurring
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at possibly physically-distributed sites. Data-sharing events can refer to gain-
ing access to data in storage, transferring data, or processing data with data in
execution.

8.6.1 Data in Storage

Data in storage events can be of different types:

1) data read events: reading data from a storage system or source,

2) data write events: writing data to a storage system or destination,

3) data update events: modifying existing data in a storage system, and

4) data delete events: removing or deleting data from a storage system.

Data in storage events can be performed via different methods. Some methods
are functionally equivalent but differ in their privacy/security characteristics. A
characteristic example is file system access methods. These are fundamental
operations for opening, closing, reading, and writing files. These methods are
generally considered less secure than their functional equivalents using Object
Storage Access or Relational Database Access. This is because file system access
methods rely on operating system-level permissions and access controls, which
can be vulnerable to unauthorized access if improperly configured. Additionally,
file system access may lack encryption mechanisms to protect data at rest.

Data storage events are expressed by specifying an event’s type storage event ,
defining the data value, the data in question, the storage location (ex: database
location), and lastly, the method function used storage function. This is ex-
pressed as follows:

1 storage_event: <data_value , storage_location ,

storage_function >

The properties associated with data are discussed in Section 8.5.

8.6.2 Data in Transfer

Data in transfer events can be of different types:

1) data moving events: moving data from one location to another, such as from
one storage system to another, or from storage to an execution environment,

2) data import events: bringing external data into the pipeline for processing,
and

3) data export events: sending processed data out of the pipeline to another
system or destination.
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Similarly, transfer events can utilize multiple methods to run, and methods
vary in terms of privacy/security, protocols, and implementations. As an example,
a requested event can run via a specific transfer function like SFTP (SSH File
Transfer Protocol). SFTP is considered one of the most secure options as it
provides secure file transfer capabilities over an encrypted SSH connection. It
offers authentication, data encryption, and integrity checks. On the other hand,
a method function can also run and utilize Remote Mounting, which introduces
security and privacy risks depending on the configuration and implementation.
It relies on the security mechanisms provided by the underlying protocols (e.g.
NFS), which may have vulnerabilities if not properly secured. Transfer events
can be expressed as follows:

1 transfer_event: <source_location , destination_location ,

data_value , transfer_function >,

where the transfer event is replaced with the event type, the source location is
the source site data is originating from, similarly, the destination location is where
the data will end up, the data value specifies what dataset is the object of this
event, and the transfer function is the method this event is utilizing to run.

8.6.3 Data in Execution

Data execution events can be of different types:

1) data processing events: computing (new) output data, possibly using (ex-
isting) input data,

2) data transformation events: converting data from one representation (e.g.,
format) to another,

3) data aggregation events: combining multiple data elements into a single
entity or summary,

4) data filtering events: excluding specific data based on certain criteria, e.g.,
to select only a particular element.

We can run a requested execution event via Secure Multi-Party Computation
(SMPC). SMPC is a cryptographic technique that enables secure collaborative
data processing among multiple parties. It ensures that sensitive data remains
encrypted during computations, enhancing security by minimizing exposure to
plain text data. We can also utilize On-Premises Processing with Strict Access
Controls methods. By enforcing rigorous access controls, the risk of unauthorized
access or data leakage is reduced. On the other hand, utilising General-Purpose
Computing Environments (GPCE), such as traditional servers or cloud instances,
implicates a lower level of inherent security.
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The compute type is defined with the event type, input data and output data
define the input and output data of the compute event, respectively, and processing
function defines the method function. This is expressed as follows:

1 compute_event: <input_data , output_data , processing_function >

A workflow model can be composed with a series of events, and Table 8.1
provides an example workflow model composed of READ storage event, IMPORT
transfer event, and PROCESS execute event:

index workflow tasks
1 READ⟨EHR1, loca, file system access⟩
2 IMPORT ⟨loca, locb,EHR1,FTP⟩
3 PROCESS ⟨EHR1, algorithm(EHR1), algorithm,GPCE ⟩

Table 8.1: An example events model

Employing event-based modelling for workflows not only facilitates the as-
sessment of privacy and security risks but also provides a detailed depiction of
the services essential for the management and execution of a use case. These
use cases align with the format demonstrated in Table 8.1. In addition to this,
workflow requests should comprehensively outline data values and specify util-
ity prerequisites imperative for the operationalization of this workflow model.
A workflow request has a set of requirements to successfully run with minimal
acceptable utility value Uacc. To calculate Uacc utility’s requirement, attributes
and weights are set, as formalized in Equation 8.6. Here, users will specify the
data type, compute resources, data size, data distance, and data size that should
be available to run the workflow and assign 0 and 1 expected values to E(utype),
E(ucompute), E(udistance), and E(usize). Note that, by default, all utility conditions
are expected to be met, and hence function E sets all the utility attributes to 1.
In addition to α, γ, β, and θ weights reflect the importance of these attributes.

8.7 Privacy Risk assessment

To evaluate the workflow models we defined, privacy and security risk assessment
models serve as powerful tools to evaluate and mitigate potential threats to data
privacy and security. This is done by systematically identifying vulnerabilities
and assessing the associated risks. These models provide a structured framework
for quantifying and qualifying risks, allowing for prioritizing mitigations to the
most critical areas of concern.

As we previously discussed we make a distinction between security and privacy,
and we extend the LINDDIN privacy risk assessment model to assess privacy
in particular, which is based on the model published in (116). In this paper,
we primarily focus on privacy, but security concerns could align with privacy
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concerns and to identify these instances, a number of security models could be
used. Namely, the Microsoft approach to threat categorization STRIDE (8).

8.7.1 LINDDIN Privacy Model

We address PbD recommendations while running different workflows, and to do
that we first calculate the data privacy risk. The privacy risk is defined as the
risk of losing control of data usage and disclosure. There are multiple privacy
threats that we need to mitigate, as shown in Figure 8.3, and they protect the
corresponding features.

Figure 8.3: The LINDDIN model’s privacy features and the associated risks.

Linkability

linkability (L) is the threat that an attacker or unauthorized malicious users can
link and relate between two or more data attributes (patient ID, age, condition,
etc.). As an example, make a link that patients X and Y are related because they
live in the same Postcode and have the same ethnicity. A high degree of linkability
can lead to identifiability (and hence unlawful disclosure) and inference that can
lead to societal harm. Figure A1 in the Appendix A illustrates an example
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threat tree where the goal is to exploit linkable data in storage. Figures A8 and
A15 illustrate linkability threats relevant to different data stages. We highlight
in red texts when privacy threats overlap with security threats modelled in the
STRIDE threat categories.

Identifiability

Identifiability (I) is a privacy threat that can result in identifying the subject of
a data object, for instance, via aggregating different data sets and interpreting
correlations. This is a threat to the anonymity and pseudonymity of patients in
research datasets. Figure A2 illustrates the identifiability threats of data with
events in the storage stage. Further illustrations can be found in the appendix,
relating to data in storage, transfer, and execution events in Figures A.2, A.9,
and A.16 respectively.

Non-Repudiation

Non-repudiation (Nr) is a privacy threat when data subjects want to have plau-
sible deniability of events relating to their data. This relates to the threat of
failing to retrieve consent for disclosing some data. Similarly, threat trees in the
appendix are illustrated in Figures A.3, A.10, and A.17 relating to different data
stage events.

Detectability

Detectability (Dt) is a privacy threat where an unauthorised user can determine
whether an item exists despite padded data, synthetic data, noise, etc. Note
that detectability does not equate to data disclosure, this item is not outright
disclosed/known, but its existence can be deduced. Similarly, threat trees are
illustrated in Figures A.4, A.11, and A.18 relating to different data stage events.

Information Disclosure

Information Disclosure (iD) is both a privacy and security threat, and it can
be quite detrimental to data usage control and privacy. Unlike previous privacy
risk categories where data is intentionally but unwisely disclosed, which leads to
losing control of the degree of disclosure, the iD threat focuses on unintentional
disclosure resulting from weak access control, weak encryption, etc. Example iD
threat trees are illustrated in Figures A.5, A.12, and A.19 relating to different
data stage events.



134 Chapter 8. Privacy by Design

Data Indulgence

Data Indulgence (In) is the threat of failing to minimize data during workflow
events. This has a direct effect on the linkability and identifiability of data sub-
jects. Example threats are illustrated in Figures A.6, A.13, and A.20.

Policy Non-compliance

Policy Non-Compliance (PNC) is a threat that a workflow event does not adhere
to data-sharing policies, and these policies are not (fully) enforced. This could
be the result of different vulnerabilities like weak authorisation/authentication of
who can write and change a policy, bad policies that do not address edge cases and
hence can be exploited, or no or weak enforcement methods. This is illustrated
in Figures A.7, A.14, and A.21 relating to different data stages events.

8.7.2 Risk Evaluation

To calculate the privacy risk of a threat, we can use the formula: risk(threat) =
likelihood ∗ impact . The impact factor is assigned by the system engineers of
the consortium. This indicates what privacy features are prioritized, and what
feature has little to no concern. Like (119), in this work, we distinguish five levels
of impact: critical (1), high (0.75), medium (0.5), low (0.25), and none (0).

The likelihood component considers several factors that affect the probability
of a successful privacy threat. One important factor is the Correlation Level
(CL) of the data with other datasets. Data with low probable correlation has less
likelihood of being exploited, while data with medium or high correlation poses
a higher likelihood of being targeted.

The Sensitivity Level (SenL) of the data is another factor influencing the
likelihood. Raw data, which contains personally identifiable information, is more
likely to be targeted compared to de-identified or pseudonymised data. Fully
anonymized data, where individual identities are impossible to ascertain, has the
lowest likelihood of being exploited.

TheAccessibility Level (AL) determines who can potentially exploit the threat.
If the threat can be exploited by consortium members or authorized third parties,
the likelihood may be higher compared to threats that can only be carried out
by external attackers.

The Skill Level (SkL) of the attacker required to exploit the threat is also
considered in the likelihood assessment. Attacks that can be executed using
simple tools or existing algorithms have a higher likelihood, while those requiring
complex tools or multiple steps have a lower likelihood.

The Dataset Size (DS) is another influential factor. Larger datasets provide
more opportunities for correlations, aggregation, and pattern recognition, increas-
ing the likelihood of a successful privacy attack.
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Risk
Fac-
tors

Correlation
Level

Sensitivity
Level

Accessibi-
lity Level

Skill
Level

Dataset
Size

Intrusion
De-
tectabil-
ity

Low
Risk

Low prob-
able cor-
relation
with other
Datasets

Data dis-
tance is
maximal

Can be ex-
ploited by
consortium
members

Complex
(mul-
tiple)
tools

Small Easily
Detectable
with no
extra tools

Medium
Risk

Medium
probable
correlation
with other
Datasets

Data is
partially
processed
to preserve
privacy

Can only
be ex-
ploited by
trusted
third
parties

Existing
algo-
rithm-
s/mal-
ware

Medium Can be
detected
with log-
ging and
monitored

High
Risk

High
probable
correlation
with other
Datasets

Data is
raw

Can be ac-
cessed by
outsiders

Simple
tools

Large Can’t be
moni-
tored/de-
tected

Table 8.2: The risk likelihood attributes

Lastly, the Intrusion Detectability (ID) plays a role in the likelihood assess-
ment. Threats that are easily detectable and can be mitigated through monitoring
systems have a lower likelihood, while threats that cannot be easily monitored or
detected have a higher likelihood.

By assigning each factor an appropriate value, we can calculate the likelihood
component of the privacy risk equation. The values can be set by security engi-
neers subjective to experience, state-of-the-art adversary attacks, and statistical
surveys. This comprehensive assessment allows for a more thorough understand-
ing of the potential privacy risks associated with specific threats. Table 8.2 shows
these attributes, and rates these values as low, medium, or high-risk values such
that CL, SenL,AL, SkL,DS , ID ∈ {0, 0.5, 1}, respectively. The likelihood of a
single threat tm is:

likelihood(tm) =
CL+ SenL+ AL+ SkL+ DS + ID

6
, (8.7)

such that tm ∈ Tw , where Tw is the set of privacy risks relevant to running
the workflow according to the submitted actions. Then, the workflow risk is
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formulated as:

r(Tw) =

|Tw |∑
m=1

r(tm)

|Tw |
(8.8)

8.8 The EPI Framework Architecture and De-

sign

After introducing the use cases, the data properties, utility attributes, the event
model, and privacy risk categories, we now define the EPI Framework that aims
to run a use case adhering to privacy by design. To do that, we delegate dif-
ferent functions into three components: BRANE workflow orchestrator, eFLINT
policy reasoner, and BFC orchestrator which handles reprogramming the infras-
tructure/request.

The EPI components are put in a collaborative architecture to address data-
sharing challenges on many levels: application level where we need to run different
workflows (potentially distributively) regardless of the heterogenous computing
capabilities of the node, policy level where we need to manage and adhere to
data-sharing agreements and laws, and reprogramming the overlay network of
services to enforce some obligations and rules.

8.8.1 Private & dynamic policies formalisation

First, the institutional policies and laws relevant to the EPI Framework need to be
encoded in a way that reasoning about them can take place. As such, they need to
be formalised and concretised to the level where they are left unambiguous. After
all, the implementation of laws is often left for interpretation to accommodate
a particular use case; and in an automated system, this concretisation has to
happen beforehand.

There exist multiple languages for formalising these notions. One such lan-
guage is eFLINT (109), which is designed specifically for reasoning about norma-
tive rules. Concretely, it can be used to define a policy specification which models
and then constraints a particular system. Subsequently, it can be queried about
the model’s state, and its state can be updated, at which time it will detect if any
of the constraints are violated. This makes it a suitable tool for implementing
the constraints on a system like the EPI Framework.

8.8.2 Brane: distributed workflow execution

The first two levels of the EPI Framework, the application and policy levels, are
implemented by Brane (107), a distributed workflow execution engine designed
for use in healthcare (see Section 8.9). In particular, it allows the cooperative
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execution of tasks in a workflow on potentially privacy-sensitive data, which is
owned by various organisations, in a way that allows its owners to stay in control
and exert their policies. This way, it reduces risk using a PbD approach.

8.8.3 Bridging Function Chains model

After the workflow composition with BRANE, and the policy specification, at a
lower level, we enforce the conditional policy rules by introducing privacy-as-a-
service (PraaS) and security-as-a-service (SecaaS) functions. These functions in
the context of the EPI framework are BFs and are often chained into BFCs. The
BFC orchestrator adapts the setup to promote privacy and security by creating
an overlay network of extra services provisioned by the orchestrator and enforcing
mitigations in accordance with the policy and workflow requirements.

Figure 8.4 provides a high-level perspective of the EPI architecture, show-
casing its three core components. Once EPI users define workflow events and
input data requirements, the execution and orchestration of these workflows take
place via Brane. This module interacts with data-sharing policies, and the
BFC model generates setup actions accordingly to provide necessary mitigation.
Consequently, the EPI framework finalizes the workflow by integrating the extra
BFC services, while concurrently weighing the trade-off between risk and utility
associated with this workflow.

8.9 Brane

This section discusses Brane, the workflow execution engine of the EPI Frame-
work introduced in Section 8.8, in detail so that we can analyse its privacy risks
in Section 8.11. Brane operates in a federated manner. The orchestrator is
the centralized part that orchestrates the work that decentralised parts coopera-
tively execute. Each decentralized part is a domain, representing an organization.
Domains control compute resources and share them, and data, with their peers.
In addition, domains are empowered to express constraints on the system by
having a policy reasoner containing the organisation’s data-related policies and
determining which actions are compliant, i.e., permitted.

The design decisions behind Brane are motivated by a few core assumptions
derived from its intended use case in the medical domain. These are based on
previous work that explored the initial design of Brane (35). The first of these
is inherent to organisations in Brane’s use-case:

1. Assumption. Organisations often maximise control over their data and min-
imize their peers’ access to their data.

This is justified by considering the privacy-sensitive nature of the medical data;
domains are responsible for keeping that data private. As such, we assert each
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Figure 8.4: A high-level view of the EPI PbD architecture.
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domain’s control over its actions on its own resources. In turn, domains cannot
directly act on the resources of their peers. This fundamental resignation of
control over others’ actions is an age-old idea, paramount even in the Enchiridion
of Epictetus, written in 135 A.D. (e.g., translated in 1955 (34)). Somewhat more
recently, it is shared by Mahiru (111), a data exchange and computation system
comparable to Brane.

Assumption 2 follows from domains being autonomous:

2. Assumption. Domains cannot be forced by the orchestrator or other domains
(not) to act.

Consequently, Brane has fundamentally limited control over domains that al-
ready access data. For example, Brane itself cannot compel a domain to delete
data at a particular moment2, and Brane cannot force a domain to observe the
conditions on which it was given access to data. Nevertheless, domains rely on
Brane to orchestrate their cooperation within domains’ constraints. Services
express these constraints in forms convenient to them, e.g., as policies encoding
access-control rules; (see Section 8.11 for examples).

To simplify matters, we assume that domains control their services such that
they act in their own interest, i.e.:

3. Assumption. Domain constraints are respected by its own services.

Constraints expressed in policy reasoners may themselves be privacy-sensitive.
For example, as per Article 17.2 of the GDPR (38), “personal data shall, except
storage, only be processed with the data subject’s consent”. The fact that a
patient has given consent reveals the presence of their data in the dataset. This
is formalized as:

4. Assumption. Constraints may be privacy-sensitive.

Because of this, Brane does not inspect the state of any policy reasoner di-
rectly. Instead, domains react to requests to permit cooperative actions at their
discretion, at their own pace, without revealing their underlying rationale.

Finally, for a practical implementation, we assume:

5. Assumption. Whether data is present on a domain, as well as data metadata,
is non-sensitive information.

Concretely, the orchestrator may disseminate metadata without consulting policy
reasoners. Domains may always control the dissemination of metadata within
their domains (e.g., to their users), as well as metadata leaving their domains,

2Note that domains can always choose to implement some cooperative scheme outside of the
framework to provide this control, if necessary.
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but this is transparent to Brane. Intuitively, this metadata represents the public
effects of private policies.

Brane’s design is discussed in Section 8.9.1. Then, using the assumptions
stated above, properties preserved by Brane are defined in Section 8.9.2. The
preservation of these properties is elaborated on in Section 8.9.3.

8.9.1 Framework overview

In this section, we introduce the main components of Brane and how they
cooperate together on a high level to implement policy-aware workflow execution.

Components

The Brane framework is a collection of six components fulfilling separate func-
tions (Figure 8.5). Three compose the orchestrator and direct the work per-
formed between the domains: the driver, which traverses a plan and emits a
series of events; the planner, which takes a workflow and assigns each of the
steps to a domain; and the global audit log, which logs the behaviour of the
centralised orchestrator and any information shared by local domains to allow
ex-post enforcement. Then, every domain consists of the other three compo-
nents: a worker, which takes events emitted by the driver and processes them
locally; a checker, which encapsulates the domain’s policy reasoner; and a local
audit log, the domain-local counterpart to the global log.

Then there are two domain-local components that Brane interacts with but
are typically implemented by third-party services: a backend, which executes
tasks as containers; and a data source, which provides access to domain data.
These components are the only ones to deal with actual data instead of only
control messages. Finally, there is also the user, who interacts with the framework
to execute a workflow.

To facilitate domain autonomy (Assumption 2), the implementations of the
components can vary between running instances of the framework or between
domains within the same instance. It also allows domains to interface with already
existing systems, such as patient consent databases. Finally, it affords domains
to choose their own level of scalability: one running service may provide the
functionality of several components, or vice-versa.

Interaction between components

The components interact with each other to achieve workflow execution as dis-
cussed in (35). In summary, execution begins when a user initiates an interaction
with the driver and submits a workflow. Immediately, the driver forwards the
workflow to the planner to plan it: in this procedure, it compiles the user-friendly,
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Figure 8.5: Graphical overview of the Brane framework. The rectangular nodes
indicate components. Components comprising the (centralized) orchestrator oc-
cur uniquely, while the rest are replicated per domain. Third-party services are
represented by nodes with suggestive symbols. Inter-node edges represent com-
munication channels, and are directed as per the “main” information flow; e.g.,
audit logs mainly receive information.

but abstract, workflow representation to an executable plan. Most notably, do-
mains are assigned to tasks and to input datasets, encoded they will execute that
task or provide that input, respectively. During this, the planner interacts with
checkers to discover which assignments are permitted by the domains’ constraints.

Once planned, the planner sends the plan back to the driver, which then starts
to traverse it. The driver emits events to workers to execute the tasks encoded
in the plan as it does so, including any auxiliary tasks such as transferring data.
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The workers process these events only if it is in accordance with the checkers
relevant to that event, implementing a secondary check of domain constraints.

When all events have been processed, the driver returns the final result to
the user and the interaction ends. Note that this never contains any potentially
sensitive data; instead, the user must separately request workers to get access to
it, as if they were a worker themselves. This homogenizes all data accesses from
the perspective of checkers.

During this process, the audit logs are updated by the other components to
keep track of the system’s (past) state.

8.9.2 Definition of Safety and Privacy Properties

In this section, we define the fundamental properties of any system using the
Brane framework.

Core Ontology

Brane’s orchestrator and domains (together, agents) communicate essential in-
formation in terms of a core ontology, the relations in Table 8.3. Concretely, they
create, communicate, store, and reason about members of these relations. As
such, the properties defined in this subsection are formulated in terms of these
relations.

The core ontology formalizes the (compute) events discussed in Section 8.6.
To do so, it defines sets of identifiers that refer to Brane entities: compute
names all compute events that occur in the system; agent names all domains; and
data abstracts over all kinds of data in the system, including implementations of
processing functions. In addition, there is a fourth set called label that denotes
arbitrary strings, although it must at least contain the string Authorized. It
acts as a collection of arbitrary metadata assigned by checkers (see Section 8.9.2).

Note that the compute-set only names the events; its parameters are defined
using the input, output and function relations. Similarly, compute events are
assigned to an agent using the assigned relation, and which agents to query before
the event may be processed are given by involves. Finally, labels are assigned to
entities using the labelled -relation.

In the rest of this section, we denote logical variables using Greek letters or
suggestive uppercase letters. For example, A denotes an arbitrary agent. We
denote the membership of ϕ in relation Φ as formula ψ ∈ Φ or Φ(ψ), and de-
structure relation elements into tuples of elements as per Table 8.3. For example,
if output(C,D) then D is data.
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name structure intuition
function (compute, data) f in y := f(x)

input (compute, data) x in y := f(x)
output (compute, data) y in y := f(x)

assigned (compute, agent) This worker agent
is assigned to pro-
cess this event.

involves (compute, agent) Processing this
event requires the
authorization of
this agent.

labelled (agent, X, label) This agent gives
this X (data, com-
pute, or agent) this
label.

Table 8.3: The core ontology : relations with fixed names and structures, but
whose elements vary per use case and over time.

Properties Defined via the Core Ontology

The essential properties preserved by the framework are now defined in terms of
the Core Ontology.

1. Property. Compute events using a data value whose owning agent has never
given authorization are not executed.

This property relies on the assumption that workers always adhere to their own
domain’s checker (Assumption 3), i.e., workers only compute, access, and transfer
data as authorized by their checkers. However, due to Assumption 2, other agents
will not necessarily follow this restriction. Brane cannot prevent the data from
being propagated further, e.g., via other communication channels, once they have
access.

Assumption 4 Assumption 5 reveal a tension checkers must navigate during
cooperation. Fundamentally, checkers express constraints on the system which
must be obliged. However, checkers may not want to do so when it reveals private
information. After all, an attacker may extract that constraint by observing the
effects of strategic interactions, as per the algorithm in (105). As such, it becomes
important for checkers to be able to decouple their emitted authorisations from
their internal constraints, in order to be able to implement countermeasures to
such attacks (e.g., introduce acceptable levels of noise). To this end, Brane
generally provides that:

2. Property. Checkers fully control their authorizations.
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However, in practice, we expect that many constraints are not privacy-sensitive.
Checkers are willing, and incentivized, to share this information, as it affords
others making informed decisions. For example, if checkers eagerly authorize
plans, plans can be made and executed more efficiently. Generally:

3. Property. Agents may share metadata to aid cooperation.

Agents are free to exchange control information, even beyond the core ontology.
For example, they may exchange hints, unreliable suggestions of plans considered
desirable, serving to guide planning, but not substituting authorization.

4. Property. Agents can prove (e.g. to an auditor) that their actions comply
with the policies of their peers.

It is important for any system that requires compliance that it should be possible
to detect non-compliant behaviour. In Brane, this is done by creating a trail
of receipts which can be used to statically determine if processing an event was
allowed by all checkers involved. Moreover, it can also be used to verify whether
involvement was computed correctly (see Section 8.9.3).

5. Property. Data transfers can be delayed until the required function is being
executed, i.e., data is transferred lazily.

Brane attempts to maximise data privacy by minimising data transfers; data is
only transferred once it must be accessed (see Section 8.9.3). This helps to combat
Data Indulgence (Section 8.7.1) and improve performance and compatibility, as
it defers access to purpose-built containers.

To conclude, the following properties of how agents should behave can be
derived from the previous properties:

6. Property. An agent can stay in control of its data if it only enables access
to agents for which it has evidence they are assigned to a compute event requiring
the data, and that all agents involved with that event have authorised it.

Effectively, it establishes a norm characterizing well-behaved agents: workers
should only access data in order to perform a compute authorized by all involved
checkers. By Assumption 2, Brane cannot guarantee that agents will comply
with this norm; so instead, it is up to the individual agents to decide which other
agents can be trusted to comply.

In the next subsection, background will be provided for how these properties
are upheld and what it means for agents to be involved or to authorize a compute.

8.9.3 Enforcement of Properties

In this section, we explain how some key properties of Section 8.9.2 are preserved
in practice.
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Centralized Annotation of Computes

The core ontology fixes a set of essential concepts on whose meaning all domains
agree; this meaning arises by their special usage by Brane components. Here,
we discuss the relations populated by the centralized services.

Firstly, input, output, and function are populated to reflect the contents
of workflows submitted by drivers, also reflecting the formulation of compute
(events) in Section 8.6.3. Secondly, assigned is populated by the planner. Thirdly,
involves is populated by the orchestrator, relating each compute to domains whose
authorization is needed before execution may begin (see Section 8.9.3, to follow).

The centralized control of these relations ensures distinct computes and data
are uniquely identified. Other properties make them more meaningful; concretely,
1) once assigned, each compute’s outputs, functions, inputs, and involved agents
are fixed, 2) each assigned compute has exactly one function and exactly one
output, and 3) each assigned compute involves all owners of its input data. These
properties let other services reason given incomplete information. For example,
a checker observing (t, x) ∈ function can infer ∀y : y ̸= x→ (t, y) /∈ function.

Decentralized Authorization and Labelling

Checkers communicate asynchronous control information by populating the re-
lation labelled. Intuitively, labels establish abstractions over computing events,
agents, and data. The domain of labels is unspecified but certainly contains au-
thorized, which has a fixed, special meaning, arising from Property 6. Our no-
tion of labels is inspired by collections and categories in the Mahiru system (111).
Thus, preserving Property 2 follows from the preservation of Property 7:

7. Property. Agent A uniquely controls which elements of labelled match (A, ϕ1, ϕ2),
i.e., it controls its own labellings.

This stronger property is enforced by each agent independently. An agent consid-
ers (A,X,L) ∈ labelled true only when given proof. Proof is metadata, created
and disseminated by agents, for example, via gossip between domains.

We leave the details of our implementation of proof out of the scope of this
paper. Here, it suffices to say that our approach centres around agents creating
and communicating cryptographically signing (logical inference) rules for infer-
ring proof of membership of elements in labelled. Crucially, the framework fixes
a universal well-formedness criterion for rules: rules inferring (A,X,L) ∈ labelled
must be signed by agent A, but may be applied by any agent. This approach
strikes a desirable compromise. On one hand, this preserves Properties 2 and 7;
agents ultimately control their labellings in general and authorizations in par-
ticular. On the other hand, rules let agents express authorization in terms of
abstract conditions. For example, agent Amy’s rule expresses “I authorize any
compute whose function is labelled pseudonymizing by Bob”; in this example,
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Amy effectively delegates the authorization of a particular computing task to
Bob.

Note that the usage of cryptographic signatures ensures non-repudiation and
integrity of labellings and authorizations; they can be neither retracted nor forged.

Like the D1LP language (80) and Mahiru (111), we frame authorization as a
trust management problem: authorization of compute is proven by attributing
it the Authorized label as the result of reasoning with logical rules. However,
our computes are not resources with unique owners responsible for providing
authorization. Instead, involvement defines the set of agents whose authorizations
are needed.

Data tokens

As stated for Property 5, it is practical if data transfers can be performed lazily
instead of eagerly. However, from a checker’s perspective, it is still valuable to
reason about data access as explicit transfers because other domains cannot be
relied upon to adhere to access restrictions (Assumption 2).

Brane solves this tension by representing data access with access tokens.
Each is a (cryptographically-)signed value encoding where a dataset can be ac-
cessed, how it can be accessed, and with which credentials. Workers can exchange
these tokens to emulate explicit data transfers and to model which worker has
access to which dataset. When a worker processes an event, it can consequently
pass the token to a processing function so that it can access only the required
data at its own leisure.

The audit logs

The audit logs let Brane’s various components store metadata needed to justify
their actions. For example, a worker logs their receipts before beginning work.

The audit log can be seen as a large collection of facts distributed over both the
global audit log and the various local audit logs. At runtime, it is unnecessary
for any component to have a full overview of all logs, nor do they need to be
synchronised to provide a coherent view3. To facilitate this, it is fundamentally
unordered. Instead, required ordering can be encoded in the facts themselves
(e.g., by timestamping).

When an auditor wants to perform an audit, the audit log as a whole must at
least provide domains’ receipts, information about which events have been started
and completed and which checkers existed at the start of each event. Brane does
not require this information to be available automatically; for example, an auditor
may have to manually request access to a local audit log of a domain. However,

3In fact, this is discouraged, because incoherence between logs likely indicates non-compliant
behaviour.
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domains are incentivised to ease the task of auditing, as this encourages other
domains to trust them with work.

8.10 BFC orchestrator

In this section, we discuss the last layer of the EPI framework, as shown in Fig-
ure 8.4. The BFC orchestrators mitigate any threats that were not addressed at
the Brane and policy levels. This PraaS/SecaaS network orchestrator provides
the means to provision mitigation methods based on the requested workflow ac-
tions, and subsequently the relevant threats. A number of these threats might
already be out of concern (low-risk score) due to the current set-up of the en-
vironment, for example, if the action submitted is running data transfer with
SFTP, then unauthorized access to data is of low risk. While Brane, powered
by policies, guarantees a number of PbD properties, such as data minimisation
done by sharing data tokens instead of physical data, it does not ensure minimal
risk because it is still highly subjective to the implementation of workflow and
the environment setup. The BFC orchestrator deploys preventative measures,
and enforces a minimal risk threshold, or otherwise rejects the workflow request.
BFC offers a configurable overlay network that is not provisioned at higher layers
of the EPI framework, and by that it provides an adaptive infrastructure with
privacy risk in mind. It is still essential to mitigate any privacy risk that has
not been mitigated by design via Brane, and to do that there is a need for an
adaptive set-up offering PraaS/SecaaS.

In previous work (66)(68), we proposed the BFC orchestrator, a dynamic or-
chestrator that automates the programming of the underlying networks to secure
health data-sharing. Data-sharing is secured by orchestrating and managing ser-
vices to add security and privacy value to each communicating node, irrespective
of each node’s capabilities. As mentioned earlier, the BFs are mitigation ready-
to-use functions and are implemented with containerisation, which allows flexible
instantiation and chaining to enforce increasingly complex policies. In the con-
text of this paper, a communicating node refers to any data flow even within the
same domain; management traffic or physical data flow (edges (e), (h), and (g)
in Figure 8.5), relating to data in storage, execution, and transfer events.

The adaptation of the underlying networks is done after the workflow sub-
mission, then the BFC orchestrator evaluates the current setup, taking policy
requirements and data requirements as input, to finally translate that into setup
actions. For example, data transfer from Domain A to Domain B is only permis-
sible if the privacy risk is below a threshold, which can be done if A can encrypt
and decrypt via a stream cypher. The automated setup of the infrastructure is
also required to achieve reachability of the end-point nodes, optimal privacy and
security across collaborating domains, reasonable network performance, bridging
services availability, hardware selection and scalability, and ultimately, abiding
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by policy requirements.

The BFC orchestrator is the last layer before actually running the workflow,
as part of a use case. The orchestrator operates under Assumption 6 that:

6. Assumption. There exists an exhaustive threat database.

7. Assumption. There exists a many-to-many relation between threats and the
BF functions.

Initially, the evaluation of the environment setup and utilized event function
methods is done by cross-referencing the threat database for relevant threats.
The relevance of these threats is situational and is directly mapped to the work-
flow by analysing the pattern formalised via the events model. On top of that,
Assumption 7 express a many-to-many relation between said threats and mitiga-
tion measures. Meaning that many threats can be mitigated in many ways, by
utilizing different BF implementations. The choice of which BF to instantiate,
and chain, is dependent on the policy workflow requirements. One thing to note
is that these mitigations can affect utility in varying accordance. This is further
illustrated in Figure 8.6, such that these measures can be privacy or security
mitigations.

Figure 8.6 illustrates the many-to-many relation between threats relevant to
a workflow, and makes a distinction between data privacy mitigation (such as
anonymisation, aggregation, etc.) and security mitigations (such as network ad-
hocs, VPNs, and access control mechanisms).

At this stage, Assumptions 8 and 9 at play, as explained in Section 8.9, the
workflow submitted already has checked against the policy. Then the policy
will give us an inkling of what is an acceptable risk, and what requirements to
enforce. Moreover, as previously explained, and as per Assumption 10, the utility
attributes in Section 8.5.2 are set by the user submitting the workflow.

8. Assumption. Workflows submitted are already checked against policies

9. Assumption. Acceptable risk thresholds are set by policy.

10. Assumption. The utility attributes are set by the user whilst submitting the
workflow request.

8.10.1 BFC Framework Overview

In this section, we introduce the main components of the BFC framework, the
design decisions, and an overview of policy requirements enforcement.
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Figure 8.6: Possible data privacy and security mitigations and the relation to
threats.
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Components

After submitting the workflow request to BRANE, the request goes through the
first two layers to plan and ensure compliance. The BFC Framework is deployed
to enforce minimal privacy risk by placing extra PraaS and SecaaS; BFCaaS. The
framework consists of 4 components spanning over two hierarchical layers control
plane and a decentralised plane, as illustrated in Figure 8.7: 1) BFC orchestrator,
which is where service instantiation, placement, and provisioning decisions are
made. 2) Worker nodes, which are Point of Placement (PoP) where BF services
are hosted to be instantiated. 3) Proxy, which holds routing information to
enforce dataflow via BF or BFC. 4) BF; containerised instances of these services.

For the implementation of the BFC orchestrator, we need to be able to instan-
tiate on-the-fly services and redirect all actions to go through these services. The
implementation is further detailed in previous works (69), where we utilise cilium
4 and deep reinforcement learning to optimally provision and place BFCaaS.

After giving a high-level overview of the BFC framework components and
implementation, we will now explain how to reason about the risk and enforce
policies.

BFCaaS & Privacy Requirements

To evaluate the current setup, we need to refer back to, Assumption 6 and con-
sider, a set of possible privacy threats Tworkflow that are relevant to running the
workflow. BF is the set of possible mitigation functions, such that bfj ∈ BF ,
and BF is:

BF = {smk|k = 1, ..., d} ∪ {pml|l = 1, ..., v}, (8.9)

smk and pml are members of the data privacy and security measures sets,
respectively. Each workflow in accordance with the requested actions has a set of
expected known threats, and these threats are more or less relevant (risk ≈ 0)
according to the set-up in place relating to the type of function utilised to run a
transfer, storage, or execution events.

As per Assumption 7, a single threat can be mitigated via a single bfi or chain
of bf ; BFCj ∈ BFC, such that:

BFCj ∈ P(BF ), (8.10)

A chain is a set of bf combinations, where you have one or more bf, and P(BF ) is
the power set of BF . Moreover, the Property 8 showcases the degree of mitigation
these measures have relating to a threat.

4https://cilium.io/use-cases/service-mesh/
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Figure 8.7: Overview of the BFC Framework. There are two main layers to de-
ploy the BFC framework, the centralised orchestration layer (the central place)
and the decentralised domain(s) (services in this layer are duplicated / domain
in the system). The edges illustrated between services are: (a) Event plans, (b)
threat queries, (c) Service management, (d) route configuration, (e) rerouted
dataflow, (f) Physical data, (g) distributed service chaining, (h) domain-to-
domain dataflow, and (i) Data tokens.
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8. Property. A bridging function or a chain of bridging functions can mitigate
a threat to a varying degree.

11. Assumption. A bridging function or a chain of bridging functions are im-
plemented securely, hence added inherent risk is negligible.

In relation to Property 8, we measure the mitigation ratio by defining the miti-
gation factor f , such that tm ∈ Tw:

f(tm, bfi) =

{
1, fully mitigated
δr(tm)
r0(tm)

, otherwise
(8.11)

where δr(tm) = r0(tm) − r1(tm), such that r0 and r1 are the risk of threat
tm before (initial) and after applying the mitigation measure bfj. f(tm, bfi) ≤ 1
and f(tm, bfi) > 0 because if r0(tm) ≈ 0 then tm /∈ Tw. δr(tm) ≥ 0 building on
Assumption 11, where BF functions implemented by security experts. Moreover,
to calculate the cumulative effect of applying the chain BFC to mitigate threat
tm:

f(tm, BFCj) =


|BFCj |∑
p=1

f(tm, bfp), If < 1

1, otherwise

(8.12)

The conditional function ensures that the mitigation factor f ≤ 1, meaning it is
already fully mitigated if f = 1. Moreover, the remaining risk of a threat after
applying BFCaaS is:

rr(tm) = r0(tm).(1− f(tm, BFCj)), (8.13)

where 0 ≤ r(tm)r ≤ 1.
Moreover, to calculate the remaining risk of the total workflow rr(Tw), then

we look at all the risks of all the threats, and the different mitigations applied.
The remaining risk of a workflow is calculated such that:

rr(Tw) =

|Tw|∑
m=1

[
r0(tm) · (1−

j=N∑
j=1

f(tm, BFCj))

]
Tw

, (8.14)

where N is the total number of BFCaaS mitigation deployed.

8.10.2 Privacy & Security vs Utility

Other than the mitigation factor, utility requirements also factor into the decision
of BFCaaS provisioning. Some BFs might affect the utility depending on the type
of function, so as an example anonymization function can increase the sensitivity,
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hence decreasing utility. This effect is formalized as utility factor g, and g :
Ubf(i−1)

× bfi → Ubfi , such that Ubfi is the new utility of Ubf(i−1)
after applying bfi.

If Ubfi = U0; the initial utility, then bfi has no effect on utility.
The resulting utility after applying the BFCaaS is formalised as Ur, such that:

Ur = g(U0, BFC) = g(UBFCj−1
, BFCj)|1 < j < N, (8.15)

in Equation (8.15) Ur the calculated in terms of initial utility U0, and the set of
all mitigation chains BFC.

g(U0, ϕ) = U0, (8.16)

where in Equation (8.16) no mitigations were applied, hence BFC = ϕ, and no
effect on utility occurred.

9. Property. BFC mitigation decision is a constrained optimizing problem.

10. Property. BFC are deployed to minimize privacy risk with utility in mind.

11. Property. A workflow request can fail if utility or privacy requirements are
not met.

With that in mind, searching for the optimal BFC set of mitigation chains is
dependent on the utility and privacy risks acceptable Uacc and racc, as discussed in
Section 8.5.2 and Section 8.7.2. This search problem is a constrained optimising
problem, in reference to Property 9, where the BFC orchestrator aims to minimise
privacy risk and maximise utility according to the following constraints:

Ur ≥ Uacc (8.17)

rr(Tw) ≤ racc (8.18)

This problem is addressed with a heuristic search algorithm, as in Algorithm 6.
The problem is simplified to find the best effort BFC mitigation chains with
Property 11 in mind. We start by assigning BFC, Ur, and rr(Tw) to initial
values in lines 1-3. We set λ to 1 in line 4, to prioritize minimizing privacy risk
(privacy risk has maximum priority in the first iteration of the search). Loop over
all threats in Tw, and try to find the best mitigation (chain) for this threat by
finding the set combination BFCj ∈ P(BF ) that minimizes risk and maximizes
utility in line 8-9. Then check the resulting effect of this BFCj in lines 11-12,
and compare it against the acceptable values. If this fails, then remove BFCj

from the BFC sets that will be deployed, and tune the λ parameter to change
the search weight and prioritize the utility more in lines 18-19. Try again until
λ < 0, then exit the while loop, and look into other threats. After going over all
threats and adding mitigation (chain) sets to BFC, check the effect of the whole
set as in Equations (8.14) and (8.15), and reject or accept the workflow according
to the constraints.
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Algorithm 6 Search for Optimal Mitigations

1: procedure Mitigate(Tw, BF , racc, Uacc)
2: BFC ← ϕ
3: Ur = U0

4: rr(Tw) = r0(Tw)
5: λ = 1
6: ordered list Tw
7: for all tm ∈ Tw do
8: while λ ≥ 0 do
9: BFCj ∈ P(BF )
10: BFCj = argminBFCj

(λ · f(tm, BFCj)− (1− λ) · g(BFCj))
11: BFC ← BFCj

12: rr(Tw)← new rr(Tw)
13: Ur ← g(U0, BFC)
14: if rr(Tw) ≤ racc AND U1 > Uacc then
15: Success!
16: else if rr(Tw) > racc AND Ur > Uacc then
17: Continue to the next threat
18: else
19: BFC − {BFCj}
20: λ← λ− 0.1
21: end if
22: end while
23: end for
24: if rr(Tw) > racc OR Ur < Uacc then
25: Reject workflow
26: else
27: Return BFC, rr(Tw), Ur

28: end if
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8.11 DIPG USE CASE: A walk-through

Previous sections laid out all the use case concepts, the risk assessment method,
and the EPI Framework components. This section expands on the first use case;
the DIPG; and provides a walk-through that applies all said concepts to showcase
the EPI framework’s capabilities in privacy risk minimization. Since not all the
details of this use case are known, we make assumptions to concretely reason
about it, and give example setups of the data exchange environment and the
associated EPI framework decisions.

8.11.1 Data properties & Event model

Table 8.4 specifies an example DIPG workflow request, where an EPI user with a
data scientist role wants to read and transport a small DIPG dataset EHR1 from
the DIPG repository location locDIPG to the hospital as a destination lochosp.

The data properties related to this EHR1 record are sensitivity and utility.
First, in this use case, the data maintained in the DIPG repositories is pseudo-
anonymised, hence the data sensitivity is medium and therefore can be set to 0.5
(distance = 0.5); thus is not completely anonymized.

Second, the required data utility attributes for this workflow are set by the
user. The requested data type for this workflow is EHR, where EHR1 is expected
to be made available. No compute power is needed (no processing required whilst
executing this workflow), meaning rreq = 0. Moreover, a higher distance is accept-
able for this workflow (> 0.5), and the distance required can be distancereq = 1.
Subsequently, the EPI framework is allowed to further anonymise the data with-
out compromising the workflow.

With E(utype) = E(ucompute) = E(udistance) = E(usize) = 1, further assume
that type, distance, and size requirements are equally important, and compute
resources requirement is not. Hence, the utility parameters are set to α = β =
θ = 1

4
. As a result, acceptable utility is a weighted sum of the expected attribute

values Uacc =
3
4
.

The workflow events are modelled in Table 8.4, where there are two events:
storage event of type read with SQL as the read function method, and transfer
event of type move with FTP as the transfer function method.

index DIPG workflow task
1 READ⟨EHR1, locDIPG , SQL⟩
2 MOVE ⟨locDIPG , lochosp ,EHR1,FTP⟩

Table 8.4: The DIPG event model
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8.11.2 Initial Risk

According to the utilised function methods specified in the events model, the
workflow might be vulnerable to several threats. Table 8.5 showcases an example
threats list relevant to the DIPG workflow. In the table, we also set the risk
attributes according to Section 8.7.2. Relevant threats are primarily related to
the data in storage and data in transit stages events. These threats concern one
or many privacy risk categories.

To calculate the initial risk, we go over the 14 threats’ risk attributes, and
average the total risk as in Equation (8.14). In this example, the initial risk is:

r(Tw) =

14∑
m=1

r(tm)

14

=

14∑
m=1

likelihood(tm) · impact(tm)

14

(8.19)

The exact answer is subjective to the set impact for each threat, and this is
set at a higher consortium level. For this example, assume that the impact of
these threats is the maximum value (impact = 1), hence risk = likelihood and
the initial risk is then only dependent on the set risk attributes, such that:

r(Tw) ≈ 0.54 (8.20)

Threat Name Stage Category Correlation Sensitivity Accessibility Skill Size Detectability

Unauthorised Access

Storage

iD M →L M → L H →L H →M L H →M

Linkable Data Attributes L M →L M → L L →L L L H →M

Identifiable Data Access I M →L M → L L L L H →M

Profiling and Tracking Nr M →L M → L H M L H →M

Long Retention Nr M →L M → L M H →M L H →M

Unlawful Retention Nr M →L M → L H H →M L H →M

Policy Modification

Transit

Nc M →L M → L M H →M L M

Eavesdropping/Sniffing iD M →L M → L H →L H →L L H

MitM iD M →L M → L H →L H →L L M

Traffic Analysis L M →L M → L H →L L L H

IP Tracking L, I M →L M → L H →L L L H

Metadata Leakage iD, Dt M →L M → L H →L H L H

Oversharing of Data Nc, In M →L M → L M →L H →M L M

Unlawful Sharing Nc M →L M → L M →L H →M L M

Table 8.5: The DIPG workflow’s relevant threats and the example risk attributes.
After applying the EPI Framework, some threats are mitigated, translating to
lower risk estimations. The new values are colour-coded, where grey values are
mitigated by Brane ’s design, orange values are mitigated by the chosen eFLINT
policies, and the blue values are mitigated by the BFC orchestrator.
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8.11.3 The EPI framework’s Mitigations & Residual Risk

This section focuses on demonstrating how certain privacy risks can be mitigated
with the EPI Framework. Starting with BRANE PbD mitigations, then the
formalization of policies stipulated in privacy regulations and contracts, and lastly
BFCaaS setups.

BRANE mitigations

Because of its Privacy-by-Design principles, Brane allows for the mitigation
of certain risks. Mostly, this is done by empowering the policy reasoners on
a domain to dynamically apply the mitigations. For example, Brane has the
option to lower the risk of an attacker getting access to Linkable Data Attributes,
but only if the policy reasoners implement the correct constraints on Brane. As
such, most of these mitigations are discussed as particular policies in the next
section.

However, there are a few mitigations that Brane always provides regardless of
policy. Mainly, by making use of its audit logs, Brane improves the detectability
of certain threats. In particular, any threat relating to data access for which the
involved checkers have to give authorization can be detected as a discrepancy in
the logs’ proof trees. However, the attacks can only be detected if the violation
occurs within the framework itself: for example, it can be detected if a domain
processes a workflow on a dataset to which it should not have access, but not if
a domain is hacked and the data is copied manually without leaving a trace. As
such, the detectability risks of such threats are reduced to medium risk (M).

Further, the skill level required to perform attacks is lowered in a lot of cases
by the fact that Brane only needs very limited access to a domain through
well-defined interfaces. This makes it harder for attackers to perform Policy
Modification on a particular domain, which further reduces the skill risk of other
threads. However, because the policies are residing on domain infrastructure and
not Brane-managed infrastructure, the skill required to attack the policy is also
dependent on how well-secured the domain is.

eFLINT mitigation

In this section, a brief explanation of policies that potentially mitigate some of
the risks listed in Table 8.5 is provided. All examples in eFLINT are shortened for
brevity, a detailed explanation of the code can be found in previous work (108).

Granting access to authorized users only: An access control mechanism
is one way to mitigate linkability. Access control allows organizations to restrict
access to data values, for example, based on the sensitivity of data and/ or based
on the roles of users. For the DIPG use case, access to the data values is granted
only to users who are affiliated with a member organization and have a project
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proposal approved by SIOPE DIPG/DMG. The following eFLINT fragment for-
malizes that:

1 Fact approved -project Identified by project * member.

2 Extend Act read Holds when (Exists project , member:

3 selected(asset ,project) && approved(project ,member)

4 && affiliated -with(user ,member)).

5 ?Enabled(read(<user >,DCOG ,<EHR1 >)).

Listing 8.4: Grant access to researcher with an approved project

Listing 8.4 specifies that the action ”read” is to be understood as accessing
a file, and it is enabled when there exists a data value(asset) that is selected for
an approved project and the user that is requesting access is affiliated with a
member organization. The query is evaluated to be true if a user is affiliated with
a member organization and the user has a project approved for which EHR1 has
been selected. Such a policy ensures that unauthorized access does not take place
and reduces the high risk associated with unauthorized access, in Table 8.5, to a
minimum.

Granting access to authorized purposes: The GDPR dictates that data
collected for a certain purpose be used only for said purpose unless a different
legal basis applies. In addition to authorizing users based on approved projects
and affiliations, access is granted based on authorized purposes specified by data
subjects or controllers. By doing so, the probability of unlawful data sharing is
minimized. Furthermore, restricting access based on authorized purposes restricts
organizations from re-purposing data values, since controllers can’t re-purpose
data values unless authorized by data subjects or other legal basis applies.

The policy in Listing 8.5 specifies that the action of collecting personal data
is affiliated with a legit purpose and the user is part of an authorised project.

1 Fact accurate -for -purpose Identified by data * purpose.

2 Extend Act read Holds when (Exists project , member:

3 selected(asset ,project) && approved(project ,member)

4 && affiliated -with(user ,member))

5 && accurate -for -purpose ()).

6 ?Enabled(read(<user >,DIPG -purpose ,<EHR1 >)).

Listing 8.5: Grant access to researcher with an approved purpose

Finally, restricting access to data values for a specific purpose minimizes link-
ability by restricting access to the amount of contextual information one can
gather from certain data values, making it harder to link data values to a specific
individual.
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8.11.4 BFCaaS

The last step of mitigation setup is to go through the BFC orchestrator and
instantiate BFCaaS in compliance with racc set by the policy, and uacc submitted
by the EPI user. At this stage, rr(Tw) is calculated again, such that:

rr(Tw) ≈ 0.18, (8.21)

where this indicates the remaining risk after deploying BRANE and formalizing
the policy with eFlint.

To further minimize this risk probability, the orchestrator deploys two ex-
ample services: anonymization and secure file transfer protocol ∈ pm and ∈ sm,
respectively. With these services, risk attributes like sensitivity decrease to L, and
subsequently, this decreases correlation as well where the anonymization function
replaces correlatable data values with randomized new values. This is also compli-
ant with the acceptable requested utility. Moreover, the secure transfer protocol
decreases the probability of accessibility relating to packet sniffing, MitM, and
similar attacks. As a consequence of the traffic being encrypted over the network,
it takes more complex tools to exploit (some skill attributes are lowered to L).

8.12 conclusion

Medical data sharing is essential for research advancement, but Privacy by Design
(PbD) principles are as important as ever, especially in dealing with medical
data. The EPI Framework facilitates data sharing while ensuring compliance
with PbD principles. This framework effectively manages privacy risks, maintains
control over data, and governs disclosure. It is constructed with the utilization
of BRANE, a workflow execution engine, and the BFC orchestrator, a BFC-as-
a-Service network orchestrator. We introduced a privacy risk model to quantify
the privacy risk associated with data sharing. We evaluated the mitigated risk
in reference to data utility and the predefined acceptable risk as per relevant
policies.
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Conclusion

Data sharing has become fundamental to advancing medical research, facilitating
breakthroughs in understanding, preventing, and treating health conditions. The
evolution towards personalized medicine represents a paradigm shift, emphasizing
tailored treatments based on individual patient characteristics. This approach
acknowledges the diverse influences of genetics, environment, and lifestyle on
health outcomes, advocating for precise interventions tailored to each patient’s
unique profile. As larger datasets become available, the promise of personalized
medicine grows, fuelled by machine learning models and advanced data analytics.

The concept of DHT further amplifies the potential of personalized medicine
by creating digital models that mirror individual physiological systems or health-
care institutions. By leveraging diverse patient data and cutting-edge technolo-
gies, DHTs pave the way for innovative healthcare applications, ranging from
drug development to treatment optimization.

However, the realization of personalized medicine hinges on robust data-
sharing mechanisms and collaborative efforts across healthcare domains. Chal-
lenges surrounding data privacy, security, and interoperability underscore the
need for dynamic infrastructures capable of adapting to evolving healthcare in-
frastructure landscapes. Developments like the EPI framework offer a glimpse
into the future of healthcare infrastructure, integrating policy-driven data shar-
ing with advanced networking technologies.

The EPI framework; as discussed in this thesis; considers the trade-offs be-
tween security, privacy, and network performance as a critical design prerequi-
site. Enhancing security often requires additional resources, such as encryption
and multi-factor authentication, which can introduce network overhead. Simi-
larly, robust privacy measures, including data anonymization and access controls,
can introduce latency, complexity, and lower data utility. On the other hand,
prioritizing performance might necessitate compromises in security and privacy,
leaving systems vulnerable to breaches, unauthorized access, and non-compliant
data-sharing. As we demonstrated, managing this trade-off within the EPI frame-

161



162 Chapter 9. Conclusion

work is mapped to the use cases’ policies, acceptable security and privacy risks,
and performance requirements. This is done to optimize all aspects to meet the
specific needs and constraints of a health data-sharing use case.

The presented thesis highlights the key contributions in this discourse from
the design of data-sharing frameworks to the implementation of adaptive infras-
tructure. This thesis proposes the EPI framework to promote more secure and
reliable health data sharing in terms of network performance and resource utili-
sation.

The main contributions of this work are:

• A conceptual policy-adaptive framework for health data sharing, and we im-
plement the proof of concept with Kubernetes to process distributed work-
flows.

• Autonomous policy reasoning and infrastructure setup according to a re-
quested workflow. The reasoning is done by aggregating the feasible data
flows according to the infrastructural feasibility and the allowed data flow,
in compliance with the policy.

• The implementation of the EPI proxy that redirects, manages, and chains
traffic to enforce data-sharing policies.

• An AI-powered provisioning tool to effectively place EPI functions and as-
sign computing resources.

• A privacy-by-design data-sharing framework with risk minimisation ap-
proach, and in our methodology we also consider relevant privacy threats,
data utility, and mitigation techniques.

Due to the listed contributions of tool design, and development and deploy-
ment of the proof of concept, we were able to answer the posed questions. Starting
with the subquestions:

• RQ1: ”How can we address open policy, security, and computing data shar-
ing challenges via building a dynamic infrastructure framework to deploy
DHT use cases?”

The proposed EPI framework in this study comprises three primary components:
1) the policy reasoner, 2) the infrastructure orchestrator, and 3) the workflow
orchestrator. These components work collaboratively to manage policy, security,
and computing aspects, addressing the specified concerns. Chapter 3 provided an
in-depth exploration of this solution by presenting the architecture and design of
the EPI framework. The workflow initiation, facilitated by BRANE, undergoes a
formalization process and is then assessed against the defined policies to ascertain
compliance. These policies encompass both data-level and network-level consid-
erations. In Chapter 4, we explained the logical model guiding the aggregation
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and reasoning processes for different policies. This comprehensive approach re-
sults in the implementation of policy-compliant workflow orchestrations through
the adoption of the EPI Framework, effectively answering the question at hand.

We developed a robust logic model, enabling the policy orchestrator to pro-
cess and scale with O(n2) CPU time, even as the complexity of heterogeneous
infrastructural areas increases across data-collaborating nodes. We conclude that
the EPI framework is efficient in addressing multifaceted challenges by integrat-
ing policy reasoning with infrastructure and workflow orchestration. The policy
reasoner ensures that all processes adhere to predefined security and privacy stan-
dards, mitigating risks and enhancing compliance. The infrastructure orchestra-
tor dynamically manages resources to align with policy requirements, optimizing
performance. Meanwhile, the workflow orchestrator coordinates tasks efficiently,
ensuring the smooth execution of operations within the set policy constraints.
This integrated approach fortifies the system’s resilience against potential threats.
This study offers a valuable model for future implementations in various contexts
requiring stringent policy adherence and resource management.

• RQ2: ”What are the performance tradeoffs when employing different pack-
ets’ redirection methods and bridging functions to enforce network policy-
compliant routes under different workloads?”

To answer this question we implemented the EPI proxy using NGINX and
SOCKS tools. Additionally, we implemented some Bridging Function Chains
that could be deployed within the EPI framework setup like firewalls, encryp-
tion, and decryption functions. We evaluated and analysed the tradeoffs in a
Kubernetes environment and simulated multi-domain setups. In Chapter 5, our
research showed that when comparing the different proxies, there exists a tradeoff
in terms of port scalability, optimisation, reconfigurability, dynamicity, and secu-
rity. Moreover, the SOCKS-based proxy outperforms the NGINX-based proxy in
terms of processing rate and it supports all traffic types. On the other hand, the
NGINX-based proxy has a lower overhead. In Chapter 6, we demonstrated a cor-
relation between the BFC topologies and the reductions in received packet rates,
indicating that there is a computation, latency, and processing rate tradeoffs with
different BFC topologies.

In conclusion, the SOCKS-based proxy’s superior processing rate and compat-
ibility with all traffic types make it a versatile choice for environments requiring
high throughput and broad traffic handling capabilities. However, this comes at
the cost of higher overhead compared to the NGINX-based proxy, which, while
offering lower overhead with ¡1ms running 120 consecutive requests and thus po-
tentially better performance in specific scenarios, lacks the same level of process-
ing efficiency and versatility. Additionally, the implementation and evaluation
of BFCs revealed significant impacts on packet rates and processing latencies,
highlighting the importance of carefully selecting and configuring BFC topologies
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to balance security and network performance. The evaluation conducted in this
study provides valuable insights into the optimal deployment strategies within
the EPI framework, guiding future implementations towards achieving a secure
and effective network infrastructure.

• RQ3: ”How can we automate an adaptive Service Function Chain Pro-
visioning on available network Points of Placement candidates to run a
data-sharing request under different use cases’ requirements?”

To answer this question we first formalised a comprehensive problem statement
of SFC provisioning. We formalised this problem as an optimal restricted search
problem, such that the search restrictions are the different use case requirements.
In Chapter 7, we implemented and deployed heuristic and AI-based search algo-
rithms to optimally place and chain SFC according to the requested policy, and
under the use case requirements restrictions. Our research shows that heuristic-
based approaches are adequate when latency overhead is tolerable according to
the use case requirements, offering a practical solution for optimizing performance
under static operational conditions. However, for scenarios where minimizing la-
tency is paramount, HDQL tools record the lowest latency (halved compared to
traditional heurisitic-based methods) and highest CPU utilization rate (≈ 0%
un-utilised allocated CPU). Moreover, HDQL is robust against fluctuating net-
work traffic and stringent latency requirements. Deploying HDQL within the EPI
framework ensures that network policy-compliant routes are robustly provisioned
to meet different use cases’ requirements.

• RQ4: ”How to orchestrate the EPI framework services according to pri-
vacy by design principles by comprehensively modelling privacy proba-
bilities and mitigating risks of DHT data-sharing workflows according to
privacy-defined attributes?”

In Chapter 8, we explored the performance of the EPI framework according to the
PbD considerations. We proposed the privacy risk assessment model to quantify
risk and evaluate our framework. The workflow submitted to the EPI framework
specifies 1) Data properties the workflow requires to have access to, 2) and data
sharing events within the workflows. The LINDINN privacy model defines privacy
as the threats of the Linkability of data, Identifiability of data, Non-repudiation
of data, detectability of data, information Disclosure, data Indulgence, and policy
and consent Noncompliance. The EPI framework takes into consideration these
privacy risks by design.

The EPI framework is proven to mitigate privacy risks when running use case
workflows. Privacy risk is quantified by assessing the risk of probability and the
impact of a successful exploit. Notably, the EPI framework decreased the privacy
risk of running the DIPG workflow from 0.54 to 0.18, demonstrating significant
improvements in safeguarding sensitive data.
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These improvements underscore the framework’s ability to enhance policy
compliance, privacy, and security. By incorporating a robust privacy risk assess-
ment model, the EPI framework addresses critical concerns of data linkability,
identifiability, and non-repudiation, among others. This proactive approach to
privacy by design ensures that data-sharing workflows adhere to stringent pri-
vacy standards, thereby reducing the likelihood and impact of data breaches.

Now that we have answered the subquestions we can answer the main research
question:

RQ: How can we effectively support health data sharing use cases
for heterogeneous parties collaborating within an infrastructure?

In this thesis, we proved that effectively supporting health data-sharing use
cases hinges on the ability to adapt the infrastructure to promote a collaborative
environment across healthcare institutions. To do that we need to ensure data
control throughout the entire collaboration process. This is made possible by
formalising exhaustive data-sharing policies that reflect the rules of the control
each party needs. These need to be manageable and machine-understandable to
be able to enforce and reason about these policies. This will promote policy-
compliant workflow orchestration. The effectiveness of use case support also
depends on the reliability and performance of the EPI framework to meet the use
case requirements in terms of latency, overhead, and computing resources.

Moreover, integrating technologies that enhance programmability, security,
and privacy is pivotal. Implementing BFC topologies to provision data encryp-
tion, access control, and audit trails strengthens the infrastructure’s ability to
manage sensitive health information securely. Additionally, leveraging machine
learning and AI algorithms can optimize BFC placements and network setups,
further enhancing the framework’s capabilities in managing the trade-offs be-
tween security, privacy and network performance while running a use case across
distributed environments.

Our research not only supports compliance with regulatory requirements but
also promotes collaborative research, personalized medicine initiatives, and im-
proved patient care outcomes through data-driven decision-making. Ultimately,
a well-established infrastructure cultivated by these principles ensures that health
data-sharing initiatives are sustainable, secure, and aligned with evolving health-
care needs. Our work serves to promote data sharing acceptance in healthcare
institutions, and we demonstrated the EPI framework’s practical benefits by de-
ploying a PoC in collaboration with UMCU and St. Antonius Hospital.

9.1 Future Work

Our work could be further expanded in the following directions:
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9.1.1 Deploy ML and NLP to manage policy complexity

In this thesis, we establish uniform formats and languages that can be read-
ily implemented across diverse healthcare systems and institutions. We define
clear standards for the ease of policy implementation and for fostering smoother
data-sharing processes across the healthcare landscape. A work in progress is to
manage the policy complexity that can get exponentially hard to formalise. This
is dependent on the policy dynamicity, life cycle management, and cross-domain
policy integration.

An interesting avenue could be to leverage Machine Learning (ML) algorithms
and Natural Language Processing (NLP) techniques to interpret, enforce, and
even suggest modifications to complex policies. Advanced NLP technologies,
such as Transformers, unsupervised learning, and generative pre-training, now
deployed in tools like ChatGPT, can play a significant role in this regard. By
utilizing these cutting-edge technologies, healthcare organizations can automate
the interpretation and management of policies, making the process more efficient
and less prone to human error.

For instance, Transformers can be used to parse and understand complex
policy documents, extracting key requirements and compliance metrics automat-
ically. Unsupervised learning can help in identifying patterns and anomalies in
policy application across different domains, suggesting areas for improvement
or highlighting potential compliance risks. Generative pre-training models, like
those used in ChatGPT, can assist in drafting policy documents, generating com-
pliance reports, and even creating tailored policy recommendations based on spe-
cific organizational needs.

By automating policy management processes through these advanced AI and
NLP technologies, healthcare organizations can streamline compliance efforts and
adapt more effectively to evolving regulatory requirements and technological ad-
vancements. This approach not only enhances the accuracy and efficiency of
policy enforcement but also frees up valuable human resources to focus on more
strategic tasks, ultimately fostering a more responsive and resilient healthcare
data-sharing ecosystem.

9.1.2 Refine the framework to improve adoption and de-
ployment

Deploying the EPI framework in the actual healthcare landscape presents a chal-
lenge with numerous opportunities for exploration and refinement. One critical
avenue for future work involves conducting real test-bed implementation studies
to assess the framework’s effectiveness, scalability, and practicality across diverse
healthcare settings. Collaborating closely with healthcare institutions, research
centres, and regulatory bodies will be essential to gain insights into the frame-
work’s usability, interoperability, and impact on healthcare delivery.



9.1. Future Work 167

Understanding the factors influencing user acceptance and adoption of the EPI
framework is another crucial aspect for future exploration. Researchers can delve
into stakeholders’ perceptions, attitudes, and concerns regarding data-sharing
policies, security measures, and usability features to refine the framework ac-
cording to user needs. Prioritizing user-centric design principles will be key to
enhancing user satisfaction and engagement with the system.

Ensuring seamless interoperability and integration with existing healthcare
systems and data repositories is paramount for widespread adoption. Future ef-
forts should focus on developing robust interfaces, APIs, and data standards to
facilitate data exchange and integration across heterogeneous healthcare environ-
ments.

Navigating complex regulatory landscapes and ensuring compliance with data
protection laws, privacy regulations, and ethical standards are significant chal-
lenges. Future research should prioritize the development of comprehensive gover-
nance frameworks, audit mechanisms, and compliance monitoring tools to uphold
regulatory requirements and mitigate legal risks.

Moreover, while the EPI framework provides the means to optimally deploy
and provision workflows, policies, and BFC, we identify some weak spots that
could affect adaptation. It is imperative to recognize that the security of the EPI
topology heavily relies on the robustness of BFC implementations. Similarly,
the effectiveness of the policy depends on the formalisation of considering all
edge cases and pinpointing conflicts. Therefore, future efforts should prioritize
the implementation and verification of state-of-the-art security functions within
BFC configurations. This includes exploring and integrating advanced encryption
techniques, strong authentication mechanisms, and stringent access controls to
fortify data security and privacy protections.

Continuously enhancing security and privacy features within the EPI frame-
work is essential to safeguard sensitive healthcare information against evolving
threats. Research efforts should explore innovative security measures tailored to
the unique demands of healthcare environments. This includes proactive mea-
sures such as regular security audits, vulnerability assessments, and updates to
address emerging security and privacy risks effectively.

Capacity building and training programs for healthcare professionals and IT
personnel will be crucial to ensure effective implementation and utilization of
the EPI framework. Developing educational resources and hands-on training
can empower stakeholders with the knowledge and skills needed to leverage the
framework effectively. By addressing these key areas of future work, stakeholders
can collaboratively work towards deploying and accepting the EPI framework as
a foundational tool for enabling secure, transparent, and ethical data sharing in
real-world healthcare environments.

On the other hand, on the road towards acceptance, it is essential to em-
phasize the importance of the growth of shared data, particularly for training
purposes, as well as the need for identifying and filtering erroneous data and
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mitigating potential biases. As healthcare institutions increasingly rely on data-
driven decision-making, the volume and quality of shared data become critical
factors in ensuring accurate and reliable outcomes. Therefore, robust mecha-
nisms must be in place to validate, clean, and maintain the integrity of shared
health data.

While data validation and filtering processes have been out of scope for this
thesis, these mechanisms are crucial in identifying and rectifying erroneous data,
which can otherwise lead to misleading conclusions and compromised patient care,
subsequently hindering acceptance and deployment of healthcare applications.

Furthermore, the adoption and deployment of health data sharing are not
solely contingent upon having the right technical framework. The success of such
initiatives also depends on the development of viable business models and sup-
portive government policies. The cost-benefit analysis of data-sharing initiatives
must be thoroughly examined to ensure that all stakeholders, including healthcare
providers, patients, and policymakers, see tangible value in participating. Sus-
tainable business models that provide incentives for data sharing while ensuring
affordability and access are crucial for widespread adoption.

In summary, the EPI framework’s wide adoption hinges not only on its techni-
cal robustness but also on the broader context of data growth, quality assurance,
business models, and regulatory support. By addressing these factors, stakehold-
ers can collaboratively work towards a resilient and effective health data-sharing
ecosystem that enhances healthcare delivery and patient outcomes.
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A.3 Privacy Threats: Data in execution
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Talwar, and Úlfar Erlingsson. Scalable private learning with pate. arXiv
preprint arXiv:1802.08908, 2018.

[90] Vaishali Patel, Wesley Barker, and Erin Siminerio. Trends in consumer
access and use of electronic health information. Office of the National Co-
ordinator for Health Information Technology: Washington DC., October
2015.

[91] Vishal Patel. A framework for secure and decentralized sharing of
medical imaging data via blockchain consensus. Health Informatics
Journal, 25(4):1398–1411, 2019. PMID: 29692204. doi:10.1177/

1460458218769699.

[92] Charith Perera, Ciaran McCormick, Arosha K. Bandara, Blaine A. Price,
and Bashar Nuseibeh. Privacy-by-design framework for assessing internet
of things applications and platforms. In Proceedings of the 6th International
Conference on the Internet of Things, IoT’16, page 83–92, New York, NY,
USA, 2016. Association for Computing Machinery. doi:10.1145/2991561.
2991566.

[93] Wullianallur Raghupathi and Viju Raghupathi. Big data analytics in health-
care: promise and potential. Health information science and systems, 2(1):3,
2014.

[94] Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, and Glenn Shafer.
Game-theoretic statistics and safe anytime-valid inference. arXiv preprint
arXiv:2210.01948, 2022.

[95] Erik Roelofs, Andre Dekker, Elisa Meldolesi, Ruud G. P. M. van Stiphout,
Vincenzo Valentini, and Philippe Lambin. International data-sharing for
radiotherapy research: An open-source based infrastructure for multicentric
clinical data mining. Radiotherapy and Oncology, 110(2):370–374, 2 2014.
doi:10.1016/j.radonc.2013.11.001.

[96] Kamran Sartipi, Krupa A. Kuriakose, and Weina Ma. An infrastructure
for secure sharing of medical images between pacs and ehr systems. In
Proceedings of the 2013 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’13, pages 245–259, Riverton, NJ, USA,
2013. IBM Corp. URL: http://dl.acm.org/citation.cfm?id=2555523.
2555549.

[97] Farida Habib Semantha, Sami Azam, Kheng Cher Yeo, and Bharanidharan
Shanmugam. A systematic literature review on privacy by design in the
healthcare sector. Electronics, 9(3):452, 2020.

https://doi.org/10.1177/1460458218769699
https://doi.org/10.1177/1460458218769699
https://doi.org/10.1145/2991561.2991566
https://doi.org/10.1145/2991561.2991566
https://doi.org/10.1016/j.radonc.2013.11.001
http://dl.acm.org/citation.cfm?id=2555523.2555549
http://dl.acm.org/citation.cfm?id=2555523.2555549


BIBLIOGRAPHY 191

[98] S. Shakeri, V. Maccatrozzo, L. Veen, R. Bakhshi, L. Gommans, C. de Laat,
and P. Grosso. Modeling and matching digital data marketplace policies. In
2019 15th International Conference on eScience (eScience), pages 570–577,
2019.

[99] OASIS Standard. extensible access control markup language (xacml)
version 3.0. A:(22 January 2013). URl: http://docs. oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-os-en. html, 2013.

[100] Judith ter Schure and Peter Grünwald. Accumulation bias in meta-analysis:
the need to consider time in error control. F1000Research, 8, 2019.

[101] Danan Thilakanathan, Shiping Chen, Surya Nepal, Rafael Calvo,
and Leila Alem. A platform for secure monitoring and sharing of
generic health data in the cloud. Future Generation Computer Sys-
tems, 35:102 – 113, 2014. Special Section: Integration of Cloud
Computing and Body Sensor Networks; Guest Editors: Giancarlo
Fortino and Mukaddim Pathan. URL: http://www.sciencedirect.

com/science/article/pii/S0167739X13001908, doi:https://doi.org/
10.1016/j.future.2013.09.011.

[102] Rosanne J. Turner, Femke Coenen, Femke Roelofs, Karin Hagoort, Aki
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Summary

This thesis tackles the pressing challenge of secure and efficient health data shar-
ing, proposing the Enabling Personalized Intervention (EPI) framework designed
to facilitate the data collaboration process across healthcare institutions. This
thesis introduces a framework that provides seamless, policy-compliant sharing
capabilities within a multi-party environment. The EPI framework is structured
to support a flexible yet highly secure infrastructure, accommodating the diverse
needs of healthcare providers who must share data across institution boundaries.
The architecture is composed of three interdependent components: the Policy
Reasoner, the Infrastructure Orchestrator, and the Workflow Orchestrator. Each
component is designed to handle specific aspects of the data-sharing process, from
enforcing policies to managing resource allocation and orchestrating workflows.

The Policy Reasoner interprets and applies rules for data sharing, ensuring
that access and usage adhere strictly to both institutional and regulatory policies.
The Infrastructure Orchestrator manages computational resources dynamically,
adapting to varying demands in data processing and network requirements, and
the Workflow Orchestrator coordinates the secure flow of data between insti-
tutions, aligning workflow operations with set security and privacy constraints.
Together, these components create a cohesive system capable of securely sharing
health data while respecting stringent compliance standards.

At the core of the EPI framework is its policy-driven approach, which inte-
grates rules around privacy and access control directly into the data-sharing in-
frastructure. This approach allows healthcare institutions to share data in ways
that comply with both internal policies and broader regulatory guidelines, main-
taining high standards of patient confidentiality and security. The framework
also incorporates dynamic, adaptive resource allocation using Kubernetes-based
containerization, allowing it to efficiently scale resources up or down depending
on the data-sharing requirements. This adaptability enhances performance and
supports a diverse range of data types and workflows, making the framework
suitable for both complex, high-throughput tasks and simpler data exchanges.
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Additionally, the EPI framework introduces a proxy-based traffic management
solution to optimize data flow across healthcare systems.

This thesis explores automated Service Function Chain (SFC) provisioning,
where the thesis deploys heuristic and AI-driven tools to dynamically assign re-
sources based on workload requirements. The Heuristic-boosted Deep Q-Learning
(HDQL) tool efficiently matches resources to data-sharing needs, reducing latency
and maximizing CPU utilization.

The EPI framework is proven to improve privacy according to the LINDINN
privacy model, which evaluates privacy risks and directs the application of policies
that mitigate potential vulnerabilities. Experimental evaluations highlight the
effectiveness of the EPI framework’s privacy-by-design approach, showcasing its
potential for privately sharing sensitive medical information between healthcare
providers.

In summary, this thesis presents a comprehensive framework for secure and
adaptable health data sharing, addressing the unique challenges of privacy, com-
pliance, and efficiency in the healthcare sector. The EPI framework’s combination
of policy-driven controls, adaptive infrastructure management, and privacy risk
mitigation provides a strong foundation for secure, compliant data sharing across
institutions. With its capacity to scale resources and protect sensitive informa-
tion, this framework represents a significant step toward enabling personalized
medicine and advanced healthcare research in a collaborative, data-rich environ-
ment.



Samenvatting

Deze dissertatie richt zich op de dringende uitdaging van veilige en efficiënte
gezondheidsdata uitwisseling en stelt het Enabling Personalized Intervention (EPI)-
framework voor, ontworpen om het proces van datacollaboratie tussen zorgin-
stellingen te faciliteren. Deze thesis introduceert een framework dat naadloze,
beleidsconforme mogelijkheden biedt voor gegevensuitwisseling in een multi par-
tijomgeving. Het EPI-framework is opgebouwd om een flexibele, maar zeer veilige
infrastructuur te ondersteunen, die tegemoetkomt aan de uiteenlopende behoeften
van zorgverleners die gegevens over institutionele grenzen heen moeten delen. De
architectuur bestaat uit drie onderling afhankelijke componenten: de Policy Rea-
soner, de Infrastructure Orchestrator en de Workflow Orchestrator. Elke compo-
nent is ontworpen om specifieke aspecten van het data uitwisselingsproces af te
handelen, van het afdwingen van beleid tot het beheren van resourceallocatie en
het coördineren van workflows.

De Policy Reasoner interpreteert en past regels toe voor gegevensdeling, waar-
bij wordt gegarandeerd dat toegang en gebruik strikt voldoen aan zowel institu-
tionele als wettelijke beleidsregels. De Infrastructure Orchestrator beheert de
computationele resources dynamisch, waarbij hij zich aanpast aan wisselende
eisen op het gebied van gegevensverwerking en netwerkbehoeften. De Workflow
Orchestrator coördineert de veilige stroom van gegevens tussen instellingen en
stemt de workflow-operaties af op vastgestelde beveiligings- en privacybeperkin-
gen. Samen vormen deze componenten een samenhangend systeem dat in staat is
gezondheidsgegevens veilig te delen, met inachtneming van strikte nalevingsnor-
men.

De kern van het EPI-framework wordt gevormd door een beleidsgestuurde
benadering, die privacy- en toegangsregels direct integreert in de data uitwissel-
ingsinfrastructuur. Deze aanpak stelt zorginstellingen in staat om gegevens te de-
len op een manier die voldoet aan zowel interne beleidsregels als bredere wettelijke
richtlijnen, waarbij hoge normen voor patiëntvertrouwelijkheid en veiligheid wor-
den gehandhaafd. Het framework omvat ook dynamische, adaptieve resourceal-

199



200 Samenvatting

locatie door gebruik te maken van op Kubernetes gebaseerde containerisatie,
waardoor het efficiënt resources kan opschalen of verkleinen, afhankelijk van de
vereisten voor gegevensuitwisseling. Deze aanpasbaarheid verbetert de prestaties
en ondersteunt een divers scala aan gegevenstypen en workflows, waardoor het
framework geschikt is voor zowel complexe, hoge-doorvoer taken als eenvoudigere
gegevensuitwisselingen. Bovendien introduceert het EPI-framework een proxy-
gebaseerde verkeersbeheersoplossing om de gegevensstroom tussen zorgsystemen
te optimaliseren.

Deze thesis verkent geautomatiseerde Service Function Chain (SFC) voorzienin-
gen, waarbij heuristische en AI-gestuurde tools worden ingezet om dynamisch re-
sources toe te wijzen op basis van de werkbelastingvereisten. De Heuristic-boosted
Deep Q-Learning (HDQL) tool koppelt resources efficiënt aan de behoeften van
gegevensuitwisseling, waardoor latentie wordt verminderd en CPU-gebruik wordt
gemaximaliseerd.

Het EPI-framework heeft aangetoond privacy te verbeteren volgens het LINDI-
NN privacymodel, dat privacyrisico’s beoordeelt en de toepassing van beleid stu-
urt om potentiële kwetsbaarheden te beperken. Experimentele evaluaties onder-
strepen de effectiviteit van de privacy-by-design aanpak van het EPI-framework
en tonen het potentieel aan om gevoelige medische informatie privé te delen tussen
zorgverleners.

Samenvattend biedt deze thesis een uitgebreid framework voor veilige en aan-
pasbare gezondheidsdata uitwisseling, waarmee wordt ingespeeld op de unieke
uitdagingen op het gebied van privacy, naleving en efficiëntie in de zorgsec-
tor. De combinatie van beleidsgestuurde controles, adaptief infrastructuurbe-
heer en mitigatie van privacyrisico’s in het EPI-framework biedt een solide ba-
sis voor veilige, nalevingsgerichte gegevensuitwisseling tussen instellingen. Met
de capaciteit om resources op te schalen en gevoelige informatie te beschermen,
vertegenwoordigt dit framework een belangrijke stap in de richting van geperson-
aliseerde geneeskunde en geavanceerd gezondheidsonderzoek in een collaboratieve,
datarijke omgeving.
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