
Exploring the Enforcement of Private, Dynamic
Policies on Medical Workflow Execution

Christopher A. Esterhuyse
Informatics Institute, University of Amsterdam

Amsterdam, The Netherlands

c.a.esterhuyse@uva.nl

Tim Müller
Informatics Institute, University of Amsterdam

Amsterdam, The Netherlands

t.muller@uva.nl

L. Thomas van Binsbergen
Informatics Institute, University of Amsterdam

Amsterdam, The Netherlands

ltvanbinsbergen@acm.org

Adam S. Z. Belloum
Informatics Institute, University of Amsterdam

Netherlands eScience Center
Amsterdam, The Netherlands

a.s.z.belloum@uva.nl

Abstract—We report on the ideas and experiences of adapting
Brane, a workflow execution framework, for use cases involving
medical data exchange and processing. These use cases impose
new requirements on the system to enforce policies encoding
safety properties, ranging from access control to legal regulations
pertaining to data privacy. Our approach emphasizes users’
control over the extent to which they cooperate in distributed
execution, at the cost of revealing information about their policies.

Index Terms—Workflow, Policy, Multi-Agent, Privacy, Safety

I. INTRODUCTION

The Brane framework was originally developed by the EU

PROCESS project1 for use in exascale, high performance com-

puting (HPC) [1]. Its focus is on enabling (data) scientists to

execute high-level scripts, which abstract away the underlying,

distributed workflow execution. Brane’s central design tenet

is affording the separation of users’ concerns, in accordance

with their specialized roles. For example, software developers

provide the functional building blocks applied by scientists in

scripts. Section II begins with an overview of Brane for HPC.

When automated systems compute and share data across

organizational boundaries, user participation is predicated on

the system’s reliable enforcement of their policies. Intuitively,

users are willing to share data, but want to retain control of its

use. Ultimately, policies control the system at an operational
level, i.e., how data is read and written (called access control),
and processed (called usage control). Many languages exist

to capture these notions in rule-based forms, well-suited to

automated enforcement, e.g., XACML [2] and ODRL [3].

In the context of processing medical data, there is a further

need for policies to capture normative concepts; these include

various social policies, including organizational policies and

legal regulations, such as the EU General Data Protection

Regulation (GDPR) [4]. Generally, it is difficult to correctly

translate between these representations of policy. In this work,

we draw from the work on the eFLINT language, which aims

1https://www.process-project.eu

to formalize many notions of policy such that they have un-

ambiguous interpretations, both legally and operationally [5].

This paper reports on ongoing work to adapt Brane for

the exchange and computation of medical data, across orga-

nizational boundaries. We describe the essential extensions to

Brane to support checkers, a new, automated service, central to

the enforcement of user policies (Section III). We then explore

the design space of cooperative checkers (Section IV), which

use an abstract, normative policy representation (e.g., eFLINT)

in communicating with agents, i.e., both human users and

automated services. This makes the system easier for humans

to understand, and improves the efficiency of its execution.

Our work emphasizes the users’ control over the extent to

which their policy information is exposed to other agents.

This is motivated by the observation that medical policies

ultimately encode private information, e.g., processing Bob’s

data requires Bob’s written consent.

The last sections reflect on these contributions. We draw

attention to related works (Section V) which inspire our

own by solving sub-problems and related problems. Finally,

we enumerate existing ideas and design decisions suited to

exploration in future work (Section VI).

II. BRANE FOR HIGH-PERFORMANCE COMPUTING

Brane is a framework for distributed execution of scientific

workflows. Its design maximizes the ease-of-use for (data)

scientists, by providing them a high-level scripting abstraction,

hiding the complexities of utilizing the underlying, distributed

resources. The complexity, inherent in such a system, is

made approachable by emphasizing the separation of concerns

between cooperating (human) users and (automated) services.

This section primarily summarizes a previous work [1],

reflecting Brane’s roots in HPC. However, the relationships

between services are presented here from a different perspec-

tive, for the sake of supporting the subsequent sections.

481

2022 IEEE 18th International Conference on e-Science (e-Science)

978-1-6654-6124-5/22/$31.00 ©2022 IEEE
DOI 10.1109/eScience55777.2022.00086

A. Three Kinds of Users; Three Kinds of Services

[1] specializes users according to their role: (1) a (data)
scientist feeds a script to a driver, which drives the execution

of the script, and returns the results; (2) a software engineer
implements and registers functions, packaged, executable con-

tainers, usable in scripts; (3) a system engineer configures and

maintains the automated services comprising the system.

In this paper, we present a simpler view than that presented

in [1], defining only three kinds of (automated) services

that constitute the system: driver, planner, and worker. In

summary, a driver interfaces one scientist with the system

at large, interpreting their script. Some work is delegated by

drivers to planners, and then further delegated to workers.

In the sequel, we use agent to characterize the constituents

of the distributed system, generalizing over users and services.

B. Each Driver Executes One Scientist’s Script

Via a persistent communication session, a scientist feeds

a script to their dedicated driver. Scripts are expressed in

BraneScript, a purpose-built scripting language.2 BraneScript

is designed to be intuitive to data scientists through its similar-

ity to many general-purpose programming languages, such as

Python and Lua. BraneScript is imperative, defining sequences

of statements for reading and writing local variables, manip-

ulating branching and looping control flows, and evaluating

expressions. Typical Boolean, integer, and string literals and

operators are also included. Listing 1 gives an example of a

simple script, which repeatedly updates val.

1 let val := 1 + 1;
2 while (val < 10) {
3 val := g(f(val, 5)); }

Listing 1. An example of a BraneScript script, demonstrating its imperative
control flow, integer literals and combinators, and (re)assignment of variables.

A driver parses and interprets the given script incrementally,

one statement at a time. This entails modifying a persistent

state. Much of this state is comprised of primitive data, such

as integers, that is isolated to the driver. Other values are stored

in a virtual file system3, shared between services. We assume

that this virtualization abstraction is preserved; two services

never disagree on a shared value. We also assume that shared

values are identifiable, e.g., with an absolute file path. This lets

services refer to shared values in messages without accessing

the values themselves. Drivers rely on sharing to delegate the

work of evaluating each function(-application) expression to a

planner. To scientists, a function is applicable to parameters to

produce a result, as usual. To services, a function identifies a

shared value, an executable container that emits output values

when executed with given input values. On encountering a

function expression, a driver encodes it in a compute-task,

2In [1], Bakery is defined as an alternative to BraneScript, differing only
in its concrete syntax. Bakery prioritizes human-readability over brevity.

3Brane is currently implemented atop JuiceFS (https://juicefs.com).

sends it to a planner in a message, and pauses its interpretation

of the script until it is notified of the result. Thus, services

cooperatively schedule [6] the evaluation of expressions.

C. Services Cooperate in Computing Workflows

Services delegate the computation of values to one another

by exchanging messages: compute-tasks. Concretely, each

compute-task (1) defines the functional relationship between

an output value, a function, and a set of input values, and

(2) encodes a goal, the obligation to compute the output value.

A compute-task can be understood as a ‘one-step’ workflow.

Fig. 1 gives an example of two inter-related compute-tasks.

f g

5

v0 v1 v2

function function

arg 1

arg 0 arg 0

Fig. 1. The figure depicts the values (vertices) and functional relationships
(edges, labelled suggestively) that constitute two compute-tasks (gray boxes),
i.e., ‘one-step’ workflows. Each compute-task is depicted as graphically
containing its logical constituents, i.e., included vertices, and edges between
included vertices. Diamonds are functions. Squares are integer literals. This
example corresponds to one execution of line 3 for the script in Listing 1,
whose execution replaces the assignment val �→ v0 with val �→ v2.

Work is delegated by drivers to planners, and further by

planners to selected workers. Each such selection presents

an optimization opportunity, as not all workers can be relied

upon to perform any given task at the same rate (or at all).

This is motivated in practice, where workers are hosted by

heterogenous hardware, and distributed over heterogenous net-

work links. Planners are responsible for creating an abstraction

of reliable task execution. Planners may make many selections

per task, delegating the same work to any number of workers.

In the sequel, we call a compute-task annotated with the

worker selected to execute it a compute-event. As in [7], we

call this activity planning, and its products plans.

In summary, drivers partition scripts into compute-tasks,

planners plan these tasks, and workers execute these plans.

III. BRANE WITH POLICY ENFORCEMENT

This section details essential extensions, to the version of

Brane presented in Section II, to afford the enforcement of

users’ policies. To this end, we introduce the checker, a novel

service that encapsulates the policy of a policy expert, a novel

user. This is comparable to how a driver interfaces with a

scientist, and encapsulates a script. This section explains the

way checkers interface with other agents via authorization,

to facilitate enforcement. Until Section IV, we minimize the

extent to which we define checkers’ internals, e.g., we remain

agnostic to the representation of policy used by policy experts.

482

A. Policies and Behavior

Scientists and policy experts have in common that they

interface with the system via an abstraction appropriate to their

roles. They are both ultimately concerned with influencing

and observing what the system does, i.e., how the system

behaves. BraneScript is the abstraction suited to scientists, who

are concerned with prescribing the functional relationships

between values, and prescribing goals. In contrast, policies

prescribe particular safety properties to preserve, by stating

what is, and is not, permitted to happen. In this context,

policies are typically called access control, and usage control;
intuitively, these prescribe which values may be accessed, and

which computations may be performed, respectively. In either

case, policies are defined in terms of modalities for ‘time’ and

‘place’, i.e., whether a value can be accessed depends on when

it would be accessed, and by which agent.

For our purposes, we define the behavior of a system to be

the set4 of events that have happened. There are three kinds

of events; a compute-event happens when it is executed, i.e., a

particular worker executes a particular compute-task, produc-

ing an output value. A read- or write-event happens whenever

a particular shared value is read or written, respectively, by

a particular agent. We use access to generalize over reading

and writing. At runtime, the system’s behavior is extended to

include events as they happen. Listing 2 shows an example

behavior, with examples of all three kinds of events.

1 { read-event(w0, f),
2 read-event(w0,v0),
3 read-event(w0, 5),
4 compute-event(w0,v1,f,(v0,5)),
5 write-event(w0,v1),
6 read-event(w1, g),
7 read-event(w1,v1),
8 compute-event(w1,v2,g,(v1)),
9 write-event(w1,v2) }

Listing 2. Example of a behavior, whose events are listed textually using
suggestive, ad-hoc textual syntax, in an order that suggests realistic execution.
This demonstrates what may result from the execution of the left and right
compute-tasks in Fig. 1, by workers w0 and w1, respectively.

Let a policy denote a set of compliant behaviors. The

preservation or restoration of the compliance of the system’s

behavior is called enforcement. Policies are useful while agents

can rely on their enforcement; this formalizes the connection

between users’ expectations, and the system’s implementation.

In the context of some compliant behavior, we say that some

events are compliant if the behavior that results from the events

happening is also compliant.

In summary, agents model the system in terms of behavior,

determining which events have happened, and should happen.

4This set-representation specifies no order on events that have happened. In
practice, behavior may be extended with additional ordering information, e.g.,
events are annotated with timestamps. This was not essential to the narrative.

B. Private Policies and Public Authorization

Enforcement emerges from agents ensuring that only com-

pliant events happen. Clearly, this necessitates planners and

workers reasoning about policies to some extent. However,

it is undesirable to give agents unchecked access to policies.

This is motivated by realistic policies encoding compliance

in terms of private information, which should remain hidden

from some subset of agents. For example, a compute-event

processing Bob’s medical records is compliant only if Bob’s

written consent is stored in the hospital’s server.

The role of the checker is to control the extent to which

they publicize their policy information. Concretely, a checker

decides which events to authorize, publicizing the fact that the

event is compliant to their policy. The set of events authorized

by checker c can be understood as an interface, written only

by c, but read by all agents. Crucially, checkers hide policy

information by keeping events unauthorized, as the absence of

authorization does not imply non-compliance.

While checkers are free to create any authorizations at

all, it is practical for them to remain passive, only creating

authorizations on the request of planners. On the one hand,

it affords a checker cooperating with the execution of scripts.

On the other hand, it avoids the checker unnecessarily reveal-

ing policy information by authorizing events unnecessary for

execution. Checkers must strike the balance, as best suits their

policy experts’ needs, between preserving the privacy of policy

information (by creating few authorizations) and cooperating

in execution (by creating many authorizations). Checkers are

incentivized to model the extent to which attacking agents

can recreate their policies via observing their authorizations.

These attackers can draw from decades of research; e.g.,

attackers incrementally learn hidden automata (our policies) by

making selected queries (our requests), and learning from the

responses (our authorizations). For example, consider learning

algorithms L∗, from 1987 [8], and L#, from 2022 [9].

C. Meta-Policies and Implicit Authorization

In practice, there are many reasons that a worker could infer

that an authorization would be granted on request. In these

cases, an agent can acquire authorization implicitly. Obviously,

implicit authorization avoids the overhead of communication

in which the worker would gain no (new) information. More

interestingly, it lays the groundwork for statically-established

limits on the powers of checkers not to authorize events.

Checkers implicitly authorize events with which they are

not involved, where involvement is a relation defined entirely

in terms of public, static information. This is expected to

be sufficiently generic for many realistic use cases, as it can

model a variety of concepts, including ownership, jurisdiction,

and physical proximity. For example, involvement models the

(administrative) domains of [10], a logical partition of agents

and resources over their owners; a checker is involved with

all events executed by workers with which it shares a domain.

This touches on the big idea of meta-policies: policies defining

which other policies may be enforced. For example, an event

is implicitly authorized, because its prohibition is prohibited.

483

D. Checkers can Observe the System’s Behavior

Our approach to enforcing the compliance of the system’s

behavior is inherently conservative; no event happens until all

checkers have authorized it (either implicitly or explicitly).

Thus, checkers and policy experts can infer that a given event

did not happen, namely, if it remains unauthorized. A checker

learns what did happen by observing the system’s behavior. At

some level, this must be communicated explicitly; for example,

services gossip about each event as it happens, such that

checkers are ultimately notified. Alternatively, we may rely on

the virtual file system to share the behavior; e.g., it is written

by workers, and read by checkers.

E. Mutable Policies and Temporary Authorization

Recall the example from Section III-B; Bob’s consent is

defined in terms of information outside the system. This

demonstrates that policies are subject to unexpected change,

such that they reflect changes in the outside world; e.g.,

Bob withdraws consent. This poses a problem; workers can

no longer infer the compliance of an event from having

previously observed its authorization. Ideally, such staleness
is avoided through the use of instantaneous, synchronous

communications. Realistically, we opt for an approximate

solution, based on timestamps; checkers bound the validity

of each authorization message with a timestamp, until which

the authorization is assumed not to be stale.

IV. COOPERATIVE CHECKERS

This section provides a design for the implementation of

cooperative checkers. These checkers make effective use of

the authorization interface defined in Section III, along with

additional communications to coordinate with other, cooper-

ative services. In summary, cooperative checkers share extra

information about their policies, to improve cooperation.

A. Expressing Dynamic Policies in eFLINT

It is important that checkers are free to be unpredictable,

as this makes them autonomous, i.e., able to make important

decisions on their own; concretely, they may decide, arbitrarily,

which authorizations to send. However, the productivity of

the system as a whole is inhibited by this unpredictability;

generally, planners cannot predict which events will be au-

thorized. We characterize a cooperative checker as one that,

on request of its policy expert, eases cooperation by sharing

policy information with its peers.

Cooperative checkers formalize their policies in eFLINT,

a language specialized for policies [11]. The language aims

to bridge the gap between operational systemic rules, such

as access control policies, and legal texts, such as the GDPR.

This generality is afforded by eFLINT policies having sensible

interpretations in both the normative world (in terms of duty-

claim and power-liability relationships), and in the cyber-

physical world (in terms of event-labelled transition systems).

Furthermore, eFLINT is of particular interest because of

its dynamism; in some cases, the compliance of an event is

defined as a predictable function of past events. A policy is

a pair: a specification and a state. These terms are defined

precisely in previous works on eFLINT [11]; here, it suffices

to say that this partitioned representation is natural in practice,

and facilitates a policy changing frequently, despite its speci-

fication changing only infrequently. This lays the groundwork

for checkers publicizing small specification fragments that

communicate much about their policies in future. Listing 3

gives an example of a fragment of an eFLINT specification,

from which one can infer much about the policy as a whole.

1 Act compute Actor worker
2 Related to
3 output, function, arguments
4 Conditioned by function.id != "f"

Listing 3. A fragment of an eFLINT policy’s specification, with identifiers
chosen to suggest their interpretation. From only this fragment, one can infer
that any compute-event applying function f is non-compliant to the policy.

As a formal language, eFLINT reifies policies as concrete

artifacts, enabling unambiguous communication of policy in-

formation to other agents, e.g., in the interface between a

checker and its policy expert. Its formal semantics also lays

the groundwork for automated tooling that assists humans in

reasoning about policies, and their effects on behavior.

B. Cooperating with Planners; Publicizing Policy Hints

Within the bounds prescribed by its policy expert, upon

request, a cooperative checker shares as much policy informa-

tion as possible, as quickly as possible. This necessitates the

checker continuously reasoning about the part of their policy

that has been publicized so far. Within the bounds, each request

is given a response; an event is authorized if compliant, and

otherwise, explicitly rejected, expressed in a message returned

to the sender. Furthermore, responses are annotated with hints.

A hint encodes a policy, and is intended to assist the recipient

in predicting the checker’s policy in future.

Generally, hints are unreliable; formally, a hint is a policy,

independent to the checker’s policy. However, these hints

represent a best effort; a hint is most useful when it is highly

accurate for a long time. A special case of hint is reliable,

owing to its explicitly-expressed, perfect accuracy. Such a hint

is capable of encoding a set of authorizations. Observe that

the usage of reliable hints obviates the usual authorization

interface. This standardization in services’ representation of

policy is conceptually compelling, but may be undesirable

in practice; it would necessitate all services reasoning about

policy at a level of abstraction suited only to checkers.

C. Cooperating with Checkers; Transactional Authorization

Recall that checkers benefit from being notified of events as

they happen, as this lets policies model the system. This lays

the groundwork for modeling a useful computation primitive:

the (distributed) transaction. A transaction returns the results

of a computational task to a set of observers; crucially, each

transaction is atomic, committing or aborting as an indivisible

unit, such that all observers agree on its results (values).

484

Checkers cooperate to complete a transaction in three steps;

(1) the results are computed, but remain inaccessible to the ob-

servers (2) checkers independently decide if some condition is

met, as a function of the results; if so, then potentially, (3) the

transaction commits, making the results readable by observers.

Unless committed, a transaction is eventually aborted, and no

result is observed. To realize step 3, the checkers must reach

consensus on whether to commit or abort. Various consensus

algorithms, suited to this task, are summarized in [12].

These distributed transactions let the system model specu-
lative execution, as in [13]; checkers define the compliance of

(the observable effects of) a workflow’s execution as a function

of its (intermediate) results; e.g., a checker authorizes a user

reading v2 of Fig. 1 only after the checker reads v1.

V. RELATED WORK

Our approach is inspired by a variety of existing works

that share our central idea; automated agents constrain the

execution behavior of a system by reasoning about some form

of policy, and announcing decisions in another. [14] focuses

on cooperation. All policies are always always public. Our dis-

tinction between planners and checkers is thus de-emphasized;

they coincide in ‘site’. All sites have the same constraints on

planning, modulo policy staleness. Our approach can roughly

model that of [14] by checkers always sharing their entire poli-

cies as unreliable hints. Our checkers meet the requirements of

‘auditor’ defined in [15]. Our approaches differ in the details,

as a consequence of using very different representations of

script and policy. For example, our scripts always omit notions

of ‘place’, to be determined later, by planners.

Other work is interesting, as it complements our own. For

example, [16] pre-processes plans by injecting bridging func-

tions, which change the plan’s security properties, but do not

change its outputs. Our hope is for this to provide a systematic

means of executing the same scripts with new, compliant plans,

not currently considered. For example, the expression f(x)
is pre-processed to f(decrypt(encrypt(x))), such that

x crosses the network in encrypted form. In [17], planners

improve the security of networked containers by isolating them

in an overlay network, derived from scripts and policies.

Planning and compliance-checking can both be approached

as distributed constraint satisfaction problems. As such, there

is much relevant literature on the topic in general, reviewed

in [18]. We are particularly interested in work that leverages

properties specific to our application context to improve effi-

ciency. For example, [19] drives the behavior of the actuators

in a cyber-physical system. A complex problem is solved via

its decomposition into simpler, independent problems.

Finally, our notion of behavior and our approach to generat-

ing it from behavioral specifications (our scripts and policies)

is inspired by similar work on synchronous protocols. This

includes the static generation of web service orchestration code

from Reo [20], and Scribble [21], and the dynamic generation

of network communications from Reo [22], and PDL [13].

These synchronous languages also inspired the transactional

approach to authorization, presented in Section IV-C.

VI. FUTURE WORK

Work is ongoing on extending Brane’s implementation to

reflect Section III-B, affording automatic enforcement via

authorization. Emphasis is on enabling auditing, holding an

agent responsible for providing evidence that its actions are

compliant. We imagine an approach based on cryptography;

for each event that happens, an authorization signed by each

checker must be available. This lays a foundation for improve-

ments to the system’s robustness and flexibility.

There is a need to formalize the trust relationships between

agents, as a function of policies. The aim is to minimize

users’ vulnerabilities to exploitation, as a consequence of

erroneously expecting their vulnerabilities to be protected.

This phenomenon is called ‘the dark side of trust’ in [23].

Section III-C introduced the notion of meta-policies, sys-

temic approaches to constraining which policies checkers

enforce. There is a large design space of simple meta-policies

that have profound effects on the system’s properties. For

example, if any checker in group g authorizes any e, then

all in g authorize e. How are such meta-policies expressed?

Is it practical to model realistic schemes, e.g., n-grid group

authorization? [24] Can agents disagree on meta-policies?

Hints present another significant design space, letting check-

ers and planners cooperate in finding policy-compliant plans.

Consider planning the evaluation of f(x). First, the planner

announces the task to the checker. Second, the checker encodes

a ‘partial plan’ as a policy; the task is compliant if not executed

by worker w0. Finally, the planner assigns the task to w1.

VII. CONCLUSION

This paper presents ongoing work to prepare Brane for the

exchange and processing of medical data. This requires users

to retain control of how their data is shared and processed.

Users constrain the system’s behavior via policies, modeling

notions ranging from access control to legal regulations.

Our approach revolves around the explicit reification and

tracking of what events comply to policies, and what events

have happened. Checkers enforce user policies at an opera-

tional level, by authorizing planned events. Checkers balance

competing requirements. On the one hand, checkers maximize

the privacy of the policies being enforced, e.g., by authorizing

few events. On the other hand, checkers maximize the pub-

licity of policies, such that other agents may make informed

decisions, increasing the efficiency of execution.

Much work remains to be done in exploring the various

design decisions touched upon in this paper. In time, the hope

is that future findings confirm our expectations, that Brane’s

current strengths can be retained, while also enforcing policies

sufficiently expressive for a wide variety of use cases.

ACKNOWLEDGMENTS

This research is part of the EPI project and is supported

by NWO in the Commit2Data – Data2Person program under

contract 628.011.028. The authors are funded, in part, by

the AMdEX Fieldlab project supported by Kansen Voor West

EFRO (KVW00309) and the province of North-Holland.

485

REFERENCES

[1] O. Valkering, R. Cushing, and A. Belloum, “Brane: A framework
for programmable orchestration of multi-site applications,” in 17th
IEEE International Conference on eScience, eScience 2021, Innsbruck,
Austria, September 20-23, 2021. IEEE, 2021, pp. 277–282. [Online].
Available: https://doi.org/10.1109/eScience51609.2021.00056

[2] A. Matheus, “How to declare access control policies for XML
structured information objects using oasis’ extensible access control
markup language (XACML),” in 38th Hawaii International Conference
on System Sciences (HICSS-38 2005), CD-ROM / Abstracts Proceedings,
3-6 January 2005, Big Island, HI, USA. IEEE Computer Society,
2005. [Online]. Available: https://doi.org/10.1109/HICSS.2005.300

[3] S. Guth and M. Strembeck, “A proposal for the evolution of the ODRL
information model,” in Proceedings of the First International Workshop
on the Open Digital Rights Language (ODRL), Vienna, Austria, April
22-23, 2004, R. Iannella and S. Guth, Eds., 2004, pp. 87–106. [Online].
Available: http://odrl.net/workshop2004/paper/odrl-guth-paper.pdf

[4] 2018 reform of eu data protection rules. European Commission.
[Online]. Available: https://ec.europa.eu/commission/sites/beta-political/
files/data-protection-factsheet-changes en.pdf

[5] L. T. van Binsbergen, M. G. Kebede, J. Baugh, T. M. van Engers,
and D. G. van Vuurden, “Dynamic generation of access control
policies from social policies,” in The 12th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN
2021) / The 11th International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare
(ICTH-2021), Leuven, Belgium, November 1-4, 2021, ser. Procedia
Computer Science, N. Varandas, A. Yasar, H. Malik, and S. Galland,
Eds., vol. 198. Elsevier, 2021, pp. 140–147. [Online]. Available:
https://doi.org/10.1016/j.procs.2021.12.221

[6] S. Saewong and R. Rajkumar, “Cooperative scheduling of multiple
resources,” in Proceedings of the 20th IEEE Real-Time Systems
Symposium, Phoenix, AZ, USA, December 1-3, 1999. IEEE Computer
Society, 1999, pp. 90–101. [Online]. Available: https://doi.org/10.1109/
REAL.1999.818831

[7] D. A. Cohen, J. Crampton, A. Gagarin, G. Z. Gutin, and M. Jones,
“Iterative plan construction for the workflow satisfiability problem,”
J. Artif. Intell. Res., vol. 51, pp. 555–577, 2014. [Online]. Available:
https://doi.org/10.1613/jair.4435

[8] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987. [Online]. Available:
https://doi.org/10.1016/0890-5401(87)90052-6

[9] F. W. Vaandrager, B. Garhewal, J. Rot, and T. Wißmann, “A new
approach for active automata learning based on apartness,” in Tools
and Algorithms for the Construction and Analysis of Systems -
28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I, ser. Lecture Notes in Computer Science, D. Fisman and G. Rosu,
Eds., vol. 13243. Springer, 2022, pp. 223–243. [Online]. Available:
https://doi.org/10.1007/978-3-030-99524-9\ 12

[10] F. Dijkstra, B. van Oudenaarde, B. Andree, L. Gommans, P. Grosso,
J. van der Ham, K. Koymans, and C. T. A. M. de Laat, “A
terminology for control models at optical exchanges,” in Inter-
Domain Management, First International Conference on Autonomous
Infrastructure, Management and Security, AIMS 2007, Oslo, Norway,
June 21-22, 2007, Proceedings, ser. Lecture Notes in Computer Science,
A. K. Bandara and M. Burgess, Eds., vol. 4543. Springer, 2007, pp. 49–
60. [Online]. Available: https://doi.org/10.1007/978-3-540-72986-0\ 5

[11] L. T. van Binsbergen, L. Liu, R. van Doesburg, and T. M. van
Engers, “eflint: a domain-specific language for executable norm
specifications,” in GPCE ’20: Proceedings of the 19th ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences, Virtual Event, USA, November 16-17, 2020, M. Erwig
and J. Gray, Eds. ACM, 2020, pp. 124–136. [Online]. Available:
https://doi.org/10.1145/3425898.3426958

[12] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in 2014 USENIX Annual Technical Conference,
USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014,
G. Gibson and N. Zeldovich, Eds. USENIX Association, 2014, pp.
305–319. [Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro

[13] C. Esterhuyse and H. Hiep, “Reowolf 1.0: Project documentation,”
Computer Security, no. CS-2001, 2020.

[14] L. Veen, S. Shakeri, and P. Grosso, “Secure data sharing and distributed
processing with Mahiru,” Apr. 2022, Funded by the Netherlands
eScience Center and NWO under the SecConNet project (27017G18).
[Online]. Available: https://doi.org/10.5281/zenodo.6497704

[15] L. Zhang, R. Cushing, L. Gommans, C. T. A. M. de Laat, and
P. Grosso, “Modeling of collaboration archetypes in digital market
places,” IEEE Access, vol. 7, pp. 102 689–102 700, 2019. [Online].
Available: https://doi.org/10.1109/ACCESS.2019.2931762

[16] J. A. Kassem, C. de Laat, A. Taal, and P. Grosso, “The EPI
framework: A dynamic data sharing framework for healthcare use
cases,” IEEE Access, vol. 8, pp. 179 909–179 920, 2020. [Online].
Available: https://doi.org/10.1109/ACCESS.2020.3028051

[17] S. Shakeri, L. Veen, and P. Grosso, “Evaluation of container
overlays for secure data sharing,” in 45th IEEE LCN Symposium
on Emerging Topics in Networking, LCN Symposium 2020, Sydney,
Australia, November 16-19, 2020, H. Tan, L. Khoukhi, and
S. Oteafy, Eds. IEEE, 2020, pp. 99–108. [Online]. Available:
https://doi.org/10.1109/LCNSymposium50271.2020.9363266

[18] D. L. Sallach, “Distributed constraint satisfaction: Foundations
of cooperation in multi-agent systems by Makoto Yokoo,” J.
Artif. Soc. Soc. Simul., vol. 8, no. 2, 2005. [Online]. Available:
http://jasss.soc.surrey.ac.uk/8/2/reviews/sallach.html

[19] V. Degeler and A. Lazovik, “Dynamic constraint satisfaction with space
reduction in smart environments,” Int. J. Artif. Intell. Tools, vol. 23, no. 6,
2014. [Online]. Available: https://doi.org/10.1142/S0218213014600276

[20] S.-S. T. Jongmans, F. Santini, M. Sargolzaei, F. Arbab, and H. Af-
sarmanesh, “Automatic code generation for the orchestration of web
services with reo,” in European Conference on Service-Oriented and
Cloud Computing. Springer, 2012, pp. 1–16.

[21] J. King, N. Ng, and N. Yoshida, “Multiparty session type-safe
web development with static linearity,” in Proceedings Programming
Language Approaches to Concurrency- and Communication-cEntric
Software, PLACES@ETAPS 2019, Prague, Czech Republic, 7th April
2019, ser. EPTCS, F. Martins and D. Orchard, Eds., vol. 291, 2019,
pp. 35–46. [Online]. Available: https://doi.org/10.4204/EPTCS.291.4

[22] J. Proença, D. Clarke, E. P. de Vink, and F. Arbab, “Dreams: a
framework for distributed synchronous coordination,” in Proceedings
of the ACM Symposium on Applied Computing, SAC 2012, Riva,
Trento, Italy, March 26-30, 2012, S. Ossowski and P. Lecca,
Eds. ACM, 2012, pp. 1510–1515. [Online]. Available: https:
//doi.org/10.1145/2245276.2232017

[23] D. A. Pienta, S. Tams, and J. Thatcher, “Can trust be trusted
in cybersecurity?” in 53rd Hawaii International Conference on
System Sciences, HICSS 2020, Maui, Hawaii, USA, January 7-
10, 2020. ScholarSpace, 2020, pp. 1–10. [Online]. Available:
https://hdl.handle.net/10125/64264

[24] W. Shieh, B. P. Weems, and K. M. Kavi, “An n-grid model for
group authorization,” in Sixth Annual Computer Security Applications
Conference, ACSAC 1990, 3-7 December, 1990, Tucson, Arizona, USA.
IEEE, 1990, pp. 384–392. [Online]. Available: https://doi.org/10.1109/
CSAC.1990.143813

486

