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Abstract—In healthcare and other fields, data of an individual
is often vertically partitioned across multiple organizations.
Creating a centralized data store for AI algorithm development
is cumbersome in such cases because of concerns like privacy and
data ownership. Methods of distributed learning over vertically
partitioned data could offer a solution here. While several studies
have evaluated the feasibility, privacy and efficiency of such
methods, an extensive evaluation of their impact on predictive
performance compared to a centralized approach is missing.
Vertical Split Learning (VSL) aims to provide vertical distributed
learning through distributed neural network architectures. Our
study adapts and applies VSL to 8 datasets, both in medicine
and beyond, evaluating the impact of different network and
(vertical) feature distributions on predictive performance. In most
configurations VSL yields comparable predictive performance to
its centralized counterparts. However, certain data and network
distributions give an unexpected and severe loss of performance.
Based on our findings we give some initial recommendations
under which conditions VSL can be applied as a suitable
alternative for data centralization.

Index Terms—Vertically partitioned data, deep learning, split
learning, medicine

I. INTRODUCTION

Already for decades there is a great promise and prospect
in the use of artificial intelligence (AI) in healthcare. AI
is often promoted as a means to improve health outcomes,
reduce costs and improve the healthcare experience for both
patients and clinicians. But there are still technology, data and
regulatory barriers that inhibit the widespread implementation
of AI across the healthcare industry. One of these barriers
is the use of centralised storage and computation for AI
algorithm development [1]. Limited availability of data sets
hinders training and validation [2]. As patients are usually
managed across the care continuum, health data of one
patient is typically stored at multiple providers. As a result,
data is distributed and often needs to be brought together
in a centralized repository for algorithm development. This
can be time consuming or even impossible due to privacy
concerns of patients, patient consent or data sharing policies
of individual care institutions. Recent developments in
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distributed learning have opened up the possibility to develop
AI algorithms without bringing data into a central repository.
Application of distributed learning depends on the type
of data distribution. When a data set is distributed across
organisations, yet all the data of a single patient is in a
single location, this is referred to as horizontally partitioned
data. When vertically partitioned, the data of every single
patient is distributed among different care institutions. While
horizontally partitioned data implementations and solutions
are widespread, vertically partitioned distributed learning
remains an understudied topic [3]. Nevertheless, it is highly
prevalent in medical use cases as patients often have multiple
care providers, even for a single episode of care. For example,
consider the development of an algorithm that predicts the
outcome of Cerebrovascular Accident (CVA): after the CVA
incident, the patient might be admitted to a hospital at first,
but be transferred to a different clinic for their rehabilitation.
Moreover, this patient might also have data at their general
practitioner. To create prediction models using all essential
information, it may be necessary to draw information from
all involved institutions.

The straightforward approach for dealing with vertically
partitioned data is to create a central database or registry.
Unfortunately, this comes with concern of privacy as true
anonymization of data is difficult [4]. Also, it needs approval
from (medical) ethical boards of the different institutions,
and there are questions of data ownership responsibility
of maintaining and updating the central database. While
distributed learning might not solve all these issues [2], it
will make shared learning more feasible. Recently, the field
of vertical federated learning (VFL) has started to offer such
distributed solutions for vertically partitioned data. Several
machine learning algorithms have been developed, such
as for logistic regression [5], random forests [6], support
vector machines [7], as well as deep learning (DL) [8] [9].
Unfortunately, these DL solutions still have issues in terms
of predictive performance, privacy and efficiency. While
several papers have addressed these last two issues [14] [12],
predictive performance, especially for diverse sets of use
cases, has not been properly investigated. A promising VFL
approach is Vertical Split Learning (VSL) [11]. With VSL,



not only the data but also the neural network is distributed
over the locations. This creates the opportunity to bring partial
networks to the vertically partitioned data, thereby creating a
vertically split neural network, where data remains locally, and
only intermediate outputs and gradients are shared between
the different locations. However, this distribution creates the
possibility of loss of predictive performance compared to
centralized learning [11]. While VSL has been tested on a
few use cases, it is important to investigate this in a larger set
of use cases and distribution scenarios. VSL negates the need
for a central database, and offers opportunity to perform deep
learning on distributed, more complete datasets. Therefore, a
small loss compared to centralized learning (CL) could be
acceptable, as it could increase the availability of usable data.
Nevertheless, it is essential to investigate in which cases the
VSL is a good alternative to CL, and to show how the pay-off
between effort and potential gain of predictive performance
of CL skews.

The goal of this paper is to study in which situations CL can
lead to a gain in predictive performance in medical use cases,
by comparing the predictive performance of VSL for several
different scenarios in comparison with CL. It will look at
different datasets, including several medical and non-medical
datasets to cover a range of different use cases, as well as
different feature distributions in these datasets and the impact
of the different set ups of the Vertical Split Neural Network.
The contributions of this paper are as follows:

1) We develop a method to extensively evaluate the pre-
dictive performance of vertical split learning, where we
allow for different network and feature distributions

2) We apply our developed evaluation method for vertical
split learning on 8 datasets that provide a wide range of
use cases where vertical partitioning is appropriate

3) Based on our evaluations, we offer some initial recom-
mendations in which manner and in which use cases
vertical split learning can be used instead of centralized
learning without major loss in performance

II. RELATED WORK

A dataset can be distributed in many ways and each
distribution raises different challenges. The partitioning is
defined by the distribution of the samples and the features
of the datasets over the different locations. Data can be
horizontally partitioned (figure 1a), vertically partitioned
(figure 1b), or a combination of the two, also referred to
as arbitrarily partitioned (figure 1c). Of these situations, the
most commonly occurring is horizontal data partitioning.
This is for example the use case of standard or horizontal
federated learning (HFL). For HFL, as every sample has all
features in the same location, every location creates their
local model on their local samples, whereafter these local
models are used to iteratively combine into one global model
[3]. HFL solutions can not be directly applied to vertically
paritioned data (VPD), as they require the same features
across all different partitions, but the field of vertical federated

learning offers new solutions. For machine learning purposes,
most algorithms have either through experimentation or
mathematical proof been shown to be comparably accurate to
their centralized counterparts. These include algorithms for
logistic regression [5], random forests [6], and support vector
machines [7]. With regards to deep learning on vertically
partitioned data, several studies have been published with
architectures that allow for vertical distribution [8] [9] [13].

a) b)

c)

Fig. 1. shows the different distributions of data, with the rows representing
samples and the columns representing features. Each partition illustrates the
data at a local node. Data can be (a) Horizontally partitioned, (b) Vertically
partitioned, (c) Arbitrarily partitioned

Due to the more complicated nature of VPD, as the data
of one sample is spread out over different institutions, VFL
cannot simply send complete neural network updates but has
to rely on some kind of partial model. This can raise issues in
terms of privacy, efficiency and predictive performance, with
the first two being the subject of several recent VFL studies.
Some studies have pointed out the risk of privacy leakage in
VFL architectures, due to the sending of intermediary network
information [15] [14]. To resolve this, TransNet adds a noise
layer in the neural network to limit data exposure, at the
cost of small loss in predictive performance [9], and [12] and
[10] have argued to add extra privacy protecting measures.
Nevertheless, we see that there is limited attention to the
influence of vertical federated learning on predictive perfor-
mance, even though many record a significant drop compared
to centralized learning. Due to the distribution of VPD, it can
be expected that the predictive performance will not only be
affected by network architecture, but also by the type of data
set and the feature distribution. While retention of predictive
performance is essential for acceptation, especially in health
care, we see very few papers that conduct a comparative
analysis on the predictive performance. Often they test with
an imaging dataset such as MNIST [8] [10] [13], which would
not give an accurate representation of a vertically distributed
dataset, or only selecting a single feature distribution with no
information of the networks performance on other distributions
[11] [9] [12]. Moreover, some algorithms assume that all



parties or the server have access to the datasets labels [10] [9],
a case not necessarily representative for a real life scenario.
Vertical Split Learning [11], where a neural network is split up
amongst several local nodes and a central server is promising.
Its predictive performance seems comparable to the centralized
learning in their experiments, and the architecture allows for
the labels to be held by a single party. We believe an accurate
and thorough evaluation of predictive performance is necessary
for acceptation. This is especially important medical use cases,
because of the possibility of an increase in bias with a drop in
performance. Our goal is to test vertical split learning on a set
of different use cases in different feature distributions, to show
under which conditions VSL can be a suitable alternative to
centralized learning.

III. BACKGROUND

Vertical split learning originated from (horizontal) split
learning (SL) [16], where the layers of a neural network are
spread out over multiple clients. This can be beneficial for
privacy as clients do not need to share their data, and efficient
as calculating the network can happen in a distributed manner.
VSL is an extension of SL, where the layers themselves
can also be split among different locations. The distribution
of the neural network is illustrated in figure 2a, where the
neural network is split up among three parties, 2 local nodes
and a central server. The k layer represents the layer in
the neural network where the division between the local
nodes and the server falls. The f count represents where the
layers themselves are split up among the local nodes. In a
real-world use case, the f count would depend on the local
feature distribution, while k would be tunable. However, we
will also simulate different feature distributions. In figure
2, we assume that the central server owns the labels of the
dataset. Alternatively, the node owning the labels could act
as central server, or a different architecture, with a central
server acting as intermediary, can be implemented. In the
set up of [11], the neural network is only recombined at the
final activation function with a high k value. We designed
our VSL set up with a tunable k as it could influence the
predictive performance of the split network, due to the
interconnectedness of the network nodes. A centralized
neural network contains several layers of nodes, and between
two consecutive layers, all nodes are connected. When a
network is split vertically, this interconnectedness between
the nodes is limited within the different locations. As the
predictive strength of the neural networks depends on this
interconnectedness and its ability to find feature interactions,
a lack of interconnectedness could cause a model to perform
less well. Therefore, earlier centralization of the model, with
a lower k, might compensate a possible performance drop
in certain instances. As previously mentioned, the vertical
splitting of the networks will not always lead to a loss of
performance, which implies the model architectures and data
sets and their distribution over the clients influences response
to the split architecture. To be able to estimate in advance
in which situations split learning is a proper alternative to

centralized learning, the relation between the distribution of
the features and predictive performance should be investigated.

Figure 2b shows the architecture of vertical split learning,
and the steps of the algorithm. The steps are as follows, and
repeat until conversion:

1) The local nodes forward their samples through their
partial models, up until the k layer

2) The outputs of the k layer are combined from the local
node, and sent to the central server

3) The central server trains their part of the model using
the samples available, and backpropagates until layer k

4) The backpropagated gradients are split and sent back to
the local nodes, who backpropagate their partial model.

a) b)

Fig. 2. a) This figure show the distribution of the neural network, distributed
between the central server (top) and the local nodes (bottom). The values of
k and f determine how the network is split b) VSL architecture

IV. EXPERIMENTS

To investigate the performance of vertical split learning in
a wide range of use cases and distribution set ups, several
experiments were orchestrated in the following manner: 8
public datasets appropriate for vertical data partitioning were
selected and 3 experiments were performed on these datasets,
to illustrate both the influence of feature distribution and neural
network distribution on predictive performance.

A. Datasets

For the experiments, 5 public medical datasets were selected
based on the following criteria. The dataset needed to be pub-
licly available and contain at least 500 samples to be suitable
for a Multi-Layer Perceptron (MLP). Moreover, only datasets
where a vertical partitioning would be a reasonable possibility
were selected. As such, medical imaging datasets, or datasets
covering a single event, like ICU datasets, were excluded.
The datasets were furthermore selected to include a diverse
set of medical use cases. Due to the limited accessibility of
public medical datasets, we also include several non-medical
datasets to provide a wider range of dataset diversity. To have
relevance for vertical split learning, datasets with the purpose
of fraud detection were chosen. Vertically partitioned data can
be applicable here, as financial institutions might aim to join



Ref. Dataset # Samples # Features Frac. Pos. lab.
[17] Cervical cancer 858 36 0.06
[18] Early stage diabetes 520 17 0.62
[19] Heart Disease 3749 15 0.15
[20] Stroke 5110 12 0.05
[21] Stroke Rehabilitation 1219 200 0.26
[22] Provider Fraud 5410 28 0.09
[23] PaySim 307511 11 <0.01
[24] Insurance Claims 1000 43 0.25

TABLE I
DETAILS OF DATASETS. RIGHT COLUMN CONTAINS THE FRACTION OF

POSITIVE LABELS PER DATASET.

forces in finding fraudulent behaviors of certain individuals.
As such, the 8 datasets, summarized in table I are as follows:

• Risk Factors of Cervical Cancer Has been collected
at Hospital Universitario de Caracas in Venezuela. The
dataset, to predict the likelihood of cervical cancer,
comprises of demographics, habits, medical history, and
records of 858 female patients.

• Early stage diabetes risk prediction Contains information
from direct questionnaires to patients of Sylhet Diabetes
Hospital in Sylhet, Bangladesh. This questionnaire in-
cluded demographic information and relevant medical
history, is used to predict early stage diabetes.

• Stroke rehabilitation Originated from a year-long ob-
servational study by the University of Texas, following
patients rehabilitating after a stroke incident. Includes
demographics, medical history, data from questionnaires
and medical examinations at multiple time points.

• Framingham Heart disease: Contains data from an on-
going observational study on the cardiovascular health
of residents of Framingham, Massachusetts. The goal
is to classify whether the patient has 10-year risk of
coronary heart disease. The dataset provides the patients’
demographics, and behavioral and medical risk factors.

• Stroke This dataset is used to predict whether a patient is
likely to get a stroke based on features including demo-
graphics and medical history and risk factor behaviors.

• Healthcare Provider Fraud Detection Analysis is a dataset
created for the task of predicting provider fraud; a form
of organized crime which involves providers, physicians
and beneficiaries making fraudulent claims. This partic-
ular dataset contained inpatient data, outpatient data and
beneficiary demographics, preprocessed by [22].

• Synthetic Financial Datasets For Fraud Detection
(PaySim) Synthetically dataset: generated using their pro-
posed PaySim generator, which uses one month of real
life financial logs from a mobile money service provider
to generate realistic financial data. The data consists
of financial logs, with the aim to predict fraudulent
transactions.

• Insurance Claim: Likely synthetic dataset of insurance
claims; there is no information available on Kaggle on
the data’s source. The data includes personal information
such as hobbies and occupation.

B. Dataset preparation

Missing features were imputed by averages for continuous
variables, and by the most common value for discrete vari-
ables. Features with an extremely high missing value count
(more than 90%), were removed from the dataset. Because
most datasets have a big class imbalance, a low sample count
or both, we decided to aim to balance the datasets. The
datasets were oversampled, undersampled using SMOTE or
neither, depending on what was most suitable for the dataset.
This was decided by which option gave the highest predictive
performance per dataset after the parameter search.

C. Centralized model

Before the distributed experiments, a centralized MLP was
designed and trained for each dataset. A parameter and hy-
perparameter search was performed to optimize the model.
This search was performed using Optuna [25]. The proper
configuration of the centralized model is essential, as the
centralized models function both as the benchmark for the
distributed models, as well as the foundation for the distributed
model configurations. Therefore wide range of NN depth,
width and types of nodes as well as hyperparameters were
examined. In addition to the experiments described in section
IV-E, several evaluations of the dataset and centralized model
were performed to further illustrate their characteristics. These
evaluations included a feature importance determination as
well as feature correlation matrices. Feature importance was
determined using [27], based on LIME [26]. The LIME
method measures how much the features of the data sets
cooperate to the final prediction for all the samples.

D. Experiment Set-up

In all experiments, only situations of data distribution
among 2 local nodes were considered. For vertical distribu-
tions, data will in most situations not be spread out over a large
set of locations. Moreover, the choice of two locations was also
preferred, as it might provide a more straightforward image
of the influence of feature distribution on the performance.
The dataset samples were divided 3:1:1, for the training,
validation and test set respectively. All tuning steps, including
the complete training of the centralized model, were performed
on the training set. With regards to the splitting on the MLP
among the local nodes, the division of the MLP, in terms of
nodes per layer, was proportional to the feature division among
the nodes. The k layer, where the local partial networks were
brought together depended on the depth of the network. All
experiments were tested with all available layers as k, with
the exception of the inputlayer. For the combination of outputs
in the k layers, we chose concatenation as our strategy. This
method was chosen above the other methods examined in
[11], for its simplicity and as drop out of local nodes was
not considered in these experiments. The focus of this paper
is on predictive performance, and drop out of one of the two
clients is not considered in these use cases. All experiments
were performed in Pytorch version 1.4.0.
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E. Performed Experiments

Three experiments were performed, illustrated in figure 3.

1) Split learning for all features, for one specific ordering of
features: For the first experiment, all features are ordered in a
specific ordering. This ordering is based on a logical distribu-
tions of the features. For example, in the stroke rehabilitation
data set, the features are ordered chronologically. Then, after
each feature in this ordering, a split distribution is established.

2) Centralized learning on the partial datasets: Using the
feature distributions created in experiment 1, 2 smaller central-
ized models are developed with the 2 partial datasets of each
feature distribution. The size of the model is proportionate with
the size of the partial dataset. Then, the highest performance is
picked. This experiment is performed in order to determine the
necessity for any form of collaborative learning, and whether
the partial datasets can explain the difference in performance.

3) Split learning for a set of features, with all possible
combinations: Lastly, this experiment was performed for a
more thorough overview of the influence of the interaction
between the different features in the data set. Therefore, in
this experiment we create a split NN for every possible feature
split, not limiting ourselves to one specific ordering of features,
as in the earlier two experiments. While not all of these
combinations would be expected in a real life scenario, it
limits possible bias in our results that could be caused by the
chosen feature ordering. Due to an exponentially increasing
set of combinations for each added feature, attempting this
experiment with all features would be too computationally
expensive. Therefore, this experiment was only performed with
a set of the most important features: the top 10 was by LIME
on the centralized model.

V. RESULTS

We chose to report predictive performance of the experi-
ments in Area Under the Curve (AUC). Tt gives the most
complete overview of accuracy, precision and recall. The
results of the three experiments will be highlighted in their
respective subsections.

A. Experiment 1
Figure 4 shows the results of experiment 1. The y-axis

shows AUC, and the x-as the split in the feature distribution.
The red horizontal line is the performance of the centralized
model. As expected, the results of the VSL approach, com-
pared to CL, is highly depended on the use case. In many of
these evaluated use cases (a, b, c and h), we notice only small
changes of predictive performance, both above and below the
centralized model, as can be seen by the small differences in
the AUC values on the y-axes. This could be by chance, caused
by the relatively small datasets. This argues that in these use
cases and feature distributions, VSL does not underperform
compared to CL. However, this is not the case for all datasets.
For both the cervical cancer (figure 4e) and the insurance
claim (figure 4f) datasets, there is a noticeable drop in AUC:
0.85 to 0.62 (4e) and 0.96 to 0.78(4e). These drops show two
of the same characteristics: they seem both depended on the
feature distribution split, as well as the chosen k layer. Here,
the higher the selected k layers (i.e. the more layers are trained
locally among clients), the lower the AUC is on average. This
indicates that the difference in predictive performance could
be due to the lack of interconnectedness in these networks.
However, this is not the case for all datasets. In the PaySim
datasetfigure 4g, we also notice a few drops in predictive
performance, but these occur when k=0. The drops disappear
when the same feature distribution is trained with k=1.
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Fig. 4. Results experiment 1, where the x-axis shows the feature split f and the y-axis the AUC on the test set. The y-axes contain different scales. The
horizontal red lines denote CL performance. a) Stroke, b) Heart Disease c) Rehabilitation d) Diabetes e) Cervical Cancer f) Insurance g) PaySim h) health
care provider

B. Experiment 2

In experiment 2, we build a central NN on the partial
datasets of each feature distribution. The same ordered feature
distributions as in experiment 1 were selected. The results
are shown in figure 5. In most of these figures (a,c,d,g,h),
we can see the expected result. Here, the partial datasets
with only very few features have low predictive performance,
and as more features are added, the performance rises. In
these cases one of the two partial datasets is not performing
well, indicating VSL would lead to increase in predictive
performance. In the cases where VSL did not function properly
(e and f), the change in best performing network happens
around the same value for f where performance dropped in
experiment 1. Moreover, what we can see in all datasets, is
that the addition of a few extra features does often not lead
to an increase of performance. This can be due to low feature
importance, or a high correlation of this feature to the other
features in the dataset. This demonstrates that adding extra
data does not necessarily lead to an increase in performance.
Therefore it should be carefully considered whether split
learning or centralizing data is even necessary in the first place.

C. Experiment 3

Figure 6 shows experiment 3, where all possible feature
distributions of the top 10 features were evaluated for each
dataset and each available k layer. As this leads to a multitude
of distributions, we chose to quantify each distribution for its
feature correlations in the partial dataset as we assume that the
correlation between features is relevant to the performance of
the split model. In this work we employ an evaluation metric
based on Pearson correlation coefficients, correlation feature

selection (CFS) measure [28]. When compared with the central
performances in figure 1, most datasets show small drops
of performance, but this could be explained by the selection
of only the top 10 most important features. Again we see
that most configurations perform well, with a few exceptions.
However the k at which this occurs differs per dataset. In
figure 6a, we see that a higher k generally leads to a lower
AUC. In 6f, we see the opposite to experiment one, the lowest
performance is obtained when k=0. In 6g, it happens around
the middle k layers. All these drops occur when the CFS is
near 0. This indicates that some subsets with low correlation
could benefit from tuning to a different k. For the cervical
cancer dataset (figure 6e), we do not see as clear of a drop in
predictive performance as we saw in experiment 1.

VI. DISCUSSION

The goal of this paper is to establish whether VSL can be
an alternative to centralizing vertically partitioned data for
deep learning. We tested a diverse set of vertically distributed
datasets in several settings. In most of these situations, there
was little difference in predictive performance between the
centralized learning (CL) and VSL. This implies that, in most
cases, VSL can serve as good alternative that eliminates the
need for centralizing data while keeping similar predictive
performance. Nevertheless, there are several situations in
our results that did not meet these conclusions and require
extra consideration. Firstly, when forming a decision on the
necessity of VSL or CL in a certain use case, it is important
to consider the results of experiment 2. Moreover, these
experiments showed that for all datasets, split configurations
can be found where one of the partial data sets does not
under perform the CL on the complete data set. This implies
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Fig. 5. Results experiment 2, where the x-axis shows the feature split f and the y-axis the AUC on the test set. Orange triangles show the results of the
centralized models with features after f, blue with the features before f. The y-axes contain different scales. The horizontal red lines denote CL performance.
Use cases are a) Stroke, b) Heart Disease c) Rehabilitation d) Diabetes e) Cervical Cancer f) Insurance g) PaySim h) health care provider

that the addition of the features of the matching partial data
would not lead to an increase in predictive performance.
Therefore, it remains essential to establish the necessity of
any kind of distributed learning, as addition of extra features
does not guarantee a better performance. Moreover, while
in most cases VSL and CL performed comparably, there
are several situations where VSL predictive performance
did drop compared to CL. This is displayed in experiment
1, where both the cervical cancer as well as the simulated
fraud data set have lower AUC in a specific set of feature
configurations. In these cases, we see that a lower k limited
the loss of performance, implying that the earlier the split
models combined, the better the performance of VSL. This
would fit with the expectations raised in section 2 as these
earlier combined models would have a higher level of
interconnectedness between the nodes. However, not all drops
in VSL performance follow this pattern, as we see in the
PaySim dataset, and further evidenced in experiment 3. We
see a lower performance in several datasets that occur a lower
k. We notice that this is dependent on the dataset and the
feature distribution.

Whether VSL will perform comparably to CL is likely
dependent on the dataset and the model architecture. While
it performs well in most cases, and we were able to
identify some patterns in the case of under performance, no
generalized explanation was inferable for these experiments.
To reliably use VSL to avoid centralization of data, a small
suitability test could be conducted, where only a subset of
data is centralized for a trial run of VSL. With a representative
sample, possible failures could be detected. Moreover, more
research is necessary to determine what characteristics of a

dataset lie at the base of these occasional performance drops.
To create a more comprehensive conclusion, a larger and
more diverse set of data sets should be evaluated with these
experiments. Currently, our evaluation method is applicable
to other VFL methods, a larger set of uses cases could form
a base to effectively compare their predictive performances.
There are several limitations that should be noted, apart from
the aforementioned limited set of datasets we could consider.
In our experiments, we limited the configurations of splits to
distributions of data of 2 clients. In some use cases, one could
imagine situations in which data is distributed among more
clients. However, due to the nature of vertically partitioned
data, we do not expect situations where this number is greatly
exceeded. Moreover, we did not apply a new hyperparameter
search for each split configuration. It is plausible that this
could negate the drop in predictive performance somewhat.

VII. CONCLUSION

In conclusion, VSL can be a viable alternative to centralized
learning, as its performance is comparable in most situations.
It occasionally underperforms depending on the use case, and
more research is needed to clarify these cases, to create a
better estimation on the possible gain of implementing VSL
for a given use case. Another important factor for estimation
of a payoff is efficiency, future work should aim to measure
and improve the efficiency of VSL. Moreover, for cases of
arbitrarily partitioning data or data where the samples on
the different vertical datasets do not perfectly match, this
technique does not suffice. Incorporating different techniques
of distributed learning or entity matching into VSL could
create a more robust system for a more diverse set of use
cases. Lastly, the viability of techniques like VSL should be
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Fig. 6. Results experiment 3, where the x-axis shows the CFS of the reported feature distribution and the y-axis the AUC on the test set. a) Stroke, b) Heart
Disease c) Rehabilitation d) Diabetes e) Cervical Cancer f) Insurance g) Paysim h) health care provider

investigated both in terms of risk of introducing bias as well
as its legality under laws such as GDPR.
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