EPI Framework: Approach for traffic redirection through containerised network functions

Jamila Alsayed Kassem¹, Onno Valkering², Adam Belloum³, Paola Grosso⁴

Abstract

On the road towards personalised medicine, secure datasharing is an essential prerequisite to enable healthcare use-cases (e.g. training and sharing machine learning models, wearables data-streaming, etc.). On the other hand, working in silos is still dominating today's health data usage. A significant challenge to address, here, is to set up a collaborative data-sharing environment that will support the requested application while also ensuring uncompromised security across communicating nodes.

EPI Framework is a novel data- sharing framework to support healthcare applic-

ations via virtualising network Services and automating security function setup.

Results

DOCKER DOCKER 2

DOCKER 3

DOCKER 4

DOCKER 6

Table 1: The six network configurations used

in our experiments and the respective latencies;

three topologies (1-3) are related to

proxy-in-between setup and three topologies

(4-6) are related to the triangular setup.

Topology

Proxy-in-between

Triangular

CS (ms)

15

15

CP (ms) PS (ms)

10

The EPI Framework

Fig2: The EPI framework architecture with running the different components (including proxy node).

The need for a dynamic infrastructure in healthcare

- → The framework should adapt the underlying infrastructure per use case
- → The adaption is done according to norms and policy agreements, requested application workflow, and network and security policies.
- → Avoid the "one fits all" security standards

Fig1: The high level view of the infrastructure's considered inputs and outputs

The proxy mid-traffic

Fig3: An example setup of different nodes within domains belonging to different security areas.

Conclusion

Parameters	NGINX	SOCKS5	SOCKS6
Δt			
Processing rate	•		
Port scalability		√	√
Reconfiguration		✓	√
Dynamicity		√	√
Security		√	\checkmark

Table 2: The comparison between different proxy implementations according to six performance parameters; where the \(\strict{f}\) represents an advantage over other proxies.

Fig4: The overhead of Δt of different proxy Fig5: The overhead of Δt (ms) of different proxy implementations compared to no proxy with changing implementations compared to no proxy with changing configured distances. configured distances.

Fig6: The rate of processed transactions resulting via wrk of different proxy implementations with increasing concurrent connections.

Fig7: The reduction of processed requests per second of different proxy implementations compared to no-proxy.

Manipulating traffic is a core feature within the EPI framework to enforce network services route:

- We evaluated and benchmarked two different approaches
- Δt depends on positioning of the proxy What proxy to deploy? The choice depends on:
 - →The application requirements
 - ⇒Specific relevance of performance parameters
 - → Time-critical application, NGINX
 - →Data streaming application, SOCKS6

Ongoing work:

- Implementing more EPIF functionalities
- Bridging Function Chaining
- Uniform interfaces of bridging functions
- Extra plug-ins needed in the redirection tools

