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Enabling Personalized Interventions

® EPIM project broadly aims to create a Digital Health Twin

O The digital reflection of a person in terms of health related data and allows algorithms

O Enables distributed processing of disparate relevant data, e.g. perform monitoring or predict outcomes of treatments

Medical

Health product
Use Cases

manufacturers

Health
Practitioners
Context &

Experience

Digital
N Health
Patient Twin
Data
Delivery
System
RQ 5:
Regulatory
Constraints &
Data Governance

Patient
RQ 6:
\_ Infrastructure Y,
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Basic Setting

® RQ4-1-How To Achieve Differential Privacy Through
Compression?

e RQ4-2-How to generate differentially-private synthetic
tabular data in a distributed setting?

® RQ4-3-What is the effect of non-i.i.d data distribution on
the performance of differentially private machine learning
models?

® RQ4-4-How can we measure the privacy level of DP
machine learning methods from the perspective of privacy
attacks?
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Evaluation, Constraints

RQ2 - Synthetic Data Generation

RQ1 - Compression >

>
»

RQ3 - Data Distribution
RQ4 - Privacy Against Attack

v

Development of New Methods



Basic Setting

e Medical use-cases (EPIM)
e Private, distributed, large datasets

e Common goal: train a machine learning model on these datasets while preserving privacy of the
individuals in the datasets

https://enablingpersonalizedinterventions.nl/
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Basic Setting

e Medical use-cases (EPIM)
e Private, distributed, large datasets

e Common goal: train a machine learning model on these datasets while preserving privacy of the
individuals in the datasets

e Initial solution: accumulate data, train a centralized model

e Poses challenges, e.g. privacy, communication, etc.

https://enablingpersonalizedinterventions.nl/
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Threat Model in Training Phase

[Hospital]

oooooo

> ©
Ze0

eooo
o0
®

[Global Model]

o000
o0 0
o0

[Clinic]

[Local Model] [Local Mbdel]

[End User]

A UNIVERSITY OF AMSTERDAM |
E® Informatics Institute I I



Impact of non-i.i.d Distribution on Federated Learning



The Problem w/ Federated Learning

e Privacy

o FL solves the problem of data sharing

o The training process is vulnerable

o The model could leak information after being trained
e Data distribution

o i.i.d assumption about data

o 4 main types of imbalance in the data
m Feature
m Label
m  Temporal

m Node

o Has disparate impact on performance, fairness
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The Problem w/ Federated Learning

Adult dataset

Tage 2 workclass 3 education Zcducation—num |5 marital—status
Min 17, Private 22696 |HS-grad 10501 Min 1. Married-civ-spouse 14976
1st Qu 28. Self-emp-not-inc 2541 |Some-college 7291 1st Qu 9. Never-married 10683
Median 37. Local-gov 2093 |Bachelors 5355 Median 10. Divorced 4443
Mean  38.5816 1836 |Masters 1723 Mean  10.0807 |Separated 1025
3rd Qu 48. State-gov 1298 |Assoc-voc 1382 3rd Qu 12. Widowed 993
Max 90 Self-emp-inc 1116 |11th 1175 Max 16 Married-spouse-absent 418
(Other) 981 (Other) 5134 Married-AF-spouse 23
p: 7 Srace 9sex 10 capital—gain
Prof-specialty 4140 |Husband 13193 |White 27816 [Male 21790 |1st Qu 0.
Craft-repair 4099 |Not-in-family 8305 Black 3124 |Female 10771 |3rd Qu 0.
Exec-managerial 4066 |Own-child 5068 Asian-Pac-Islander 1039 Median 0.
Adm-clerical 3770 |Unmarried 3446 Bmer-Indian-Eskimo 311 Min 0.
sales 3650 |Wife 1568 Other 271 Mean  1077.65
Other-service 3295 |Other-relative 981 Max  99999.
(Other) 9541
11 capital I 12 hours—per—week T3 native—country T4 ncome
st Qu 0. Min 1. United-States 29170 <=50K 24720
3rd Qu 0. 1st Qu 40. Mexico 643 >50K 7841
Median 0. Median 40. ? 583
Min 0. Mean  40.4375 Philippines 198
Mean  87.3038 3rd Qu 45. Germany 137
Max  4356. Max  99. Ccanada 121
(Other) 1709

hours-
education- | marital- ital- | capital- tive-
age| workclass |fnlwgt | education | 29402tON" (M2 occupation | relationship [race  |sex |C2Ptal [capltal- | o natives el
num s gain  |loss country
week
o |17 |Pivate  |124130|%°™ g Separate |rotective | Notin- White  |Male |30 o 20 Haiti <=50K
college serv famiy
sian-
1 |26 |Private  |168914|HS-grad |10 Married- |Handlers- |3 g |Pac- | Female|21 1 39 Yugoslavia |<=50K
civ-spouse |cleaners
Islander
2 |as |9 | 516757 | Hs-grad |11 Maried= [Mechine:{Motins White  |Male |20 0 24 United- | _gokc
not-inc civ-spouse |op-inspct | family States
3 [e2 |5¥*™ 558635 Bachelors |9 Newr R Wife White  |Male |51 1 40 United- 1 __soK
notnc married | specialty States
Priv-house- United-
4 |27 |2 143612 | Masters |13 Separated | "% | Unmarried  |White  |Male |89 2 20 nite <=50K
serv States
995(44 |Private  |179779|HS-grad |9 Never |\ m-clerical |Husband | White | Male |2 3 20 United- | __co
married States
906(28 |S#e™P" |1g0885 | Bachetors |11 Married- 1 y-clerical | O Black | Female |43 5 40 united- | _sok
not-inc civ-spouse relative States
907(15 |Private  |166548 | Bachelors |6 Married- | Protecive- | Other- White | Female |23 7 38 United- 1 __sok
civ-spouse [serv relative States
998(19 |Private  |158057 | Doctorate |8 Never: | Other Notin e | male |9 El 40 Jnited- sk
marmied  [service | family States
990(19 |Private  |119228| Bachelors |13 Divorced | 21" Unmarried |White | Male |69 5 40 united- | _sok
service States
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The Problem w/ Federated Learning

Adult dataset

hours-
education- | marital- ital- | capital- tive-
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not-inc civ-spouse |op-inspct | family States
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serv States

995(44 |Private  |179779|HS-grad |9 Never |\ m-clerical |Husband | White | Male |2 3 20 United- | __co
married States

906(28 |S#e™P" |1g0885 | Bachetors |11 Married- 1 y-clerical | O Black | Female |43 5 40 united- | _sok
not-inc civ-spouse relative States

907(15 |Private  |166548 | Bachelors |6 Married- | Protecive- | Other- White | Female |23 7 38 United- 1 __sok
civ-spouse [serv relative States

998(19 |Private  |158057 | Doctorate |8 Never: | Other Notin e | male |9 El 40 Jnited- sk
marmied  [service | family States

990(19 |Private  |119228| Bachelors |13 Divorced | 21" Unmarried |White | Male |69 5 40 united- | _sok
service States
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Tage 2 workclass 3 education Zcducation—num |5 marital—status
Min 17, Private 22696 |HS-grad 10501 Min 1. Married-civ-spouse 14976
1st Qu 28. Self-emp-not-inc 2541 |Some-college 7291 1st Qu 9. Never-married 10683
Median 37. Local-gov 2093 |Bachelors 5355 Median 10. Divorced 4443
Mean 38.5816 1836 |Masters 1723 Mean 10.0807 [separated 1025
3rd Qu 48. state-gov 1298 |Assoc-voc 1382 3rd Qu 12. Widowed 993
Max  90. Self-emp-inc 1116 |11th 1175 Max  16. Married-spouse-absent 418
(Other) 981 (Other) 5134 Married-AF-spouse 23

p: 7 8 race 9sex 10 capital—gain
Prof-specialty 4140 |Husband 13193 White 27816 |Male 21790 1st Qu 0.
Craft-repair 4099 [Not-in-family 8305 Black 3124 |Female 10771 3rd Qu 0.
Exec-managerial 4066 |Own-child 5068 Asian-Pac-Islander 1039 Median 0.
Adm-clerical 3770 |Unmarried 3446 Amer-Indian-Eskimo 311 Min 0.
Sales 3650 |Wife 1568 Other 271 Mean 1077.65
Other-service 3295 [Other-relative 981 Max 99999,
(Other) 9541
11 capital-loss 12 hours—per—week 13 native—country 14 income.
1st Qu 0. Min 1. United-States 29170 <=50K 24720
3rd Qu 0. 1st Qu 40. Mexico 643 >50K 7841
Median 0. Median 40. ? 583
Min 0. Mean  40.4375 Philippines 198
Mean 87.3038 3rd Qu 45. Germany 137
Max 4356. Max 99. Canada 121

(Other) 1709
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Our Research: Impact of non-i.i.d
data on private FL
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Distribution among 10 participants, alpha=100.

Distribution among 10 participants, alpha=10.
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Our Research: Impact of non-i.i.d
data on private FL
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Differentially Private Synthetic Data Generation



Our Research: Differentially Private Synthetic Data
Generation

e Adding DP to ML models is costly

e Alternatively, we can make the data “privacy preserving”

e How?
o Use a differentially private generative model to estimate the distribution of the data
o Train the model on real data
o Use model to generate a synthetic dataset

o Due to post-processing theorem, any model trained on our synthetic data is at least
differentially private with the same level as our generative model
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Our Research: Differentially Private Synthetic Data
Generation

e Generate privacy preserving synthetic data from original data
e Differentially private with an acceptable privacy budget

e On tabular data

e Preserve statistical properties

e Maintain machine learning efficacy

e Distributed environment

e Noi.i.d assumptions about data distribution

A UNIVERSITY OF AMSTERDAM
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Our Research: Differentially Private Synthetic Data
Generation

e Generate privacy preserving synthetic data from original data
e Differentially private with an acceptable privacy budget

e On tabular data

e Preserve statistical properties

e Maintain machine learning efficacy

e Distributed environment

e Noi.i.d assumptions about data distribution

e Data quality: Semantic integrity

A UNIVERSITY OF AMSTERDAM
E® Informatics Institute



Our Research: Differentially Private Synthetic Data

Generation

e Why semantic integrity?

A UNIVERSITY OF AMSTERDAM
E® Informatics Institute

Percentage of people

Percentage of women and men with female condition

BN Pregnant Men
0.8 1 B Ovary Cancer Men
BN Pregnant Women
0.6 1 N Ovary Cancer Women
0.4 1
0.2 1

No MSN

No TBS

No Condition
Hinge

No Classifier
No Infoloss
No AE

=
<
G
w
=
o
i
o
M

Baseline TableGAN
Baseline MedGAN



Our Research: Differentially Private Synthetic Data
Generation MLP F-Scores

F2 Adult °
) F3 Adult
e Proposed model’s performance 0961 *
0.94
a,sj 0.92
5 °
0.90
0.88 - .
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Our Research: Differentially Private Synthetic Data
Generation

e Proposed model's quality =
125 -
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Synthetic data generation for data with long tailed
distributions



Synthetic data generation for data with long tailed

distributions = -
e Long tailed data N l l
o Have a generative model that is able to capture the tail ~~ = = & & =, "5 ===
behavior of long-tailed distributions N = - Z:
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Synthetic data generation for data with long tailed
distributions |

xxxxx

11111

2000 o

e Long tailed data “ l

o Have a generative model that is able to capture the tail "= =
behavior of long-tailed distributions -

e Initial approach: GANs with a differentiable
generalized Gaussian base distribution
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Synthetic data generation for data with long tailed
distributions

e Second approach: normalizing flows

© A normalizing flow
m describes the transformation of a probability density through a sequence of invertible mappings.

m  Transforms a simple distribution into a complex one by applying a sequence of invertible transformation
functions.

m  Flowing through a chain of transformations, we repeatedly substitute the variable for the new one according
to the change of variables theorem and eventually obtain a probability distribution (i.e. normalized) of the
final target variable

m  Normalizing flows can exactly estimate the density function

m Thereis theory on capabilities of NFs on capturing the tail behavior of long-tailed distributions
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Synthetic data generation for data with long tailed
distributions

e Second approach: normalizing flows

©  How does a flow-based model compare to a GAN?

° FLOW GAN

Variable normalizeAmount  VarisbleV2s  VarableV27  VarisbleV2e  Vamblev2s . VuriablenomaizesAmount VariableV2s VariableV27
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Synthetic data generation for data with long tailed
distributions

e Second approach: normalizing flows

O  Next step: dual training with ML-based training for the flow model and a loss function utilizing tail-adaptive
alpha divergence for the base parameters
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Synthetic data generation for data with long tailed
distributions

® Last step: flexible mixture base distribution

O

Smooth contraction/expansion of the base mixture distribution to help the flow-based model capture the
tail properties of the target distribution
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Thank Youl!



