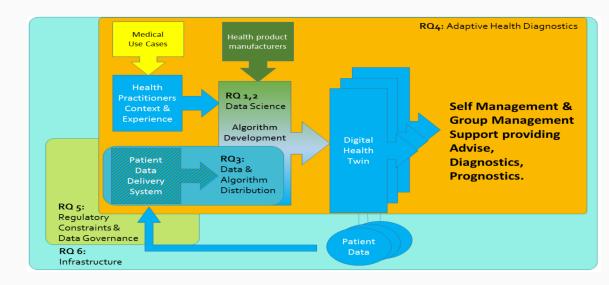
Private Federated Machine Learning The EPI Project

Saba Amiri Adam Belloum, Sander Klous, Leon Gommans, Eric Nalisnick

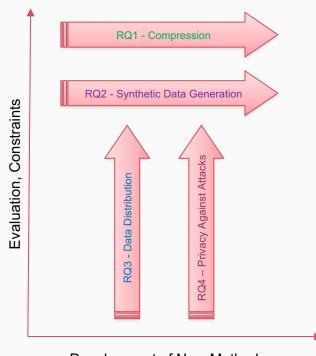
Enabling Personalized Interventions

- EPI^[*] project broadly aims to create a Digital Health Twin
 - O The digital reflection of a person in terms of health related data and allows algorithms
 - O Enables distributed processing of disparate relevant data, e.g. perform monitoring or predict outcomes of treatments



Basic Setting

- RQ4-1 How To Achieve Differential Privacy Through Compression?
- RQ4-2 How to generate differentially-private synthetic tabular data in a distributed setting?
- RQ4-3 What is the effect of non-i.i.d data distribution on the performance of differentially private machine learning models?
- RQ4-4 How can we measure the privacy level of DP machine learning methods from the perspective of privacy attacks?



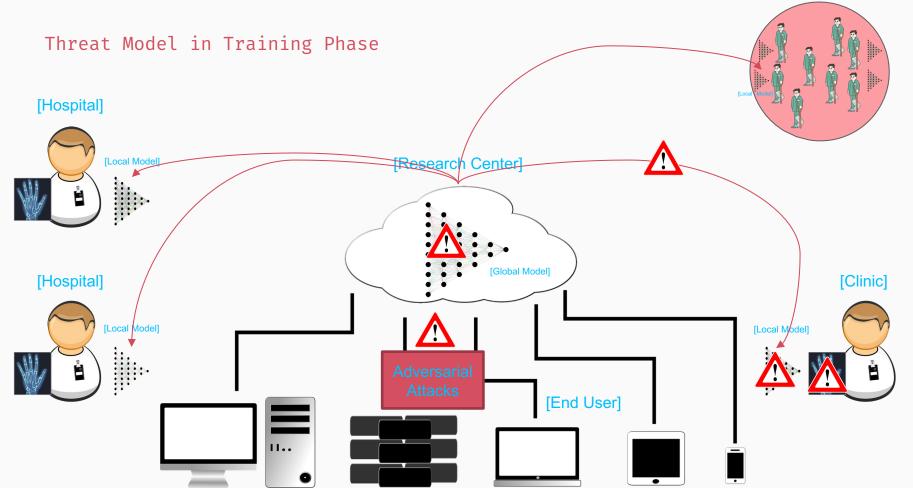
Development of New Methods

Basic Setting

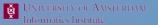
- Medical use-cases (EPI^[*])
- Private, distributed, large datasets
- Common goal: train a machine learning model on these datasets while preserving privacy of the individuals in the datasets

Basic Setting

- Medical use-cases (EPI^[*])
- Private, distributed, large datasets
- Common goal: train a machine learning model on these datasets while preserving privacy of the individuals in the datasets
- Initial solution: accumulate data, train a centralized model
- Poses challenges, e.g. privacy, communication, etc.



Impact of non-i.i.d Distribution on Federated Learning



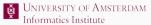
The Problem w/ Federated Learning

Privacy

- FL solves the problem of data sharing
- The training process is vulnerable
- The model could leak information after being trained

Data distribution

- i.i.d assumption about data
- 4 main types of imbalance in the data
 - Feature
 - Label
 - Temporal
 - Node
- Has disparate impact on performance, fairness



The Problem w/ Federated Learning

Adult dataset

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	label
0	17	Private	124130	Some- college	9	Separated	Protective- serv	Not-in- family	White	Male	30	0	40	Haiti	<=50K
1	26	Private	168914	HS-grad	10	Married- civ-spouse	Handlers- cleaners	Husband	Asian- Pac- Islander	Female	21	1	39	Yugoslavia	<=50K
2	33	Self-emp- not-inc	218757	HS-grad	11	Married- civ-spouse	Machine- op-inspct	Not-in- family	White	Male	29	0	24	United- States	>50K
3	62	Self-emp- not-inc	558635	Bachelors	9	Never- married	Prof- specialty	Wife	White	Male	51	1	40	United- States	<=50K
4	27	?	143612	Masters	13	Separated	Priv-house- serv	Unmarried	White	Male	89	-2	40	United- States	<=50K
995	44	Private	179779	HS-grad	9	Never- married	Adm-clerical	Husband	White	Male	2	-3	40	United- States	<=50K
996	28	Self-emp- not-inc	180882	Bachelors	11	Married- civ-spouse	Adm-clerical	Other- relative	Black	Female	43	5	40	United- States	<=50K
997	15	Private	166548	Bachelors	6	Married- civ-spouse	Protective- serv	Other- relative	White	Female	23	7	38	United- States	<=50K
998	19	Private	158057	Doctorate	8	Never- married	Other- service	Not-in- family	White	Male	9	-1	40	United- States	>50K
999	19	Private	119228	Bachelors	13	Divorced	Other- service	Unmarried	White	Male	69	5	40	United- States	<=50K

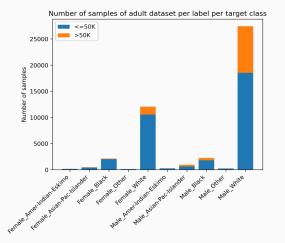
												_	
1 age			2 workclass	3		3 education			4 education	n-num	5 marital-	-status	
Min	17.		Private		22 696	HS-grad	10501		Min	1.	Married	l-civ-spouse	14976
1st Qu	28.		Self-emp	-not-inc	2541	Some-college	7291		1st Qu	9.	Never-n	married	10 683
Median	37.		Local-go	v	2093	Bachelors	5355		Median	10.	Divorce	ed	4443
Mean	38.5816		?		1836	Masters	1723		Mean	10.0807	Separat	ed:	1025
3rd Qu	48.		State-go	v	1298	Assoc-voc	1382		3rd Qu	12.	Widowed	l	993
Max	90.		Self-emp	-inc	1116	11th	1175		Max	16.	Married	l-spouse-absent	418
			(Other)		981	(Other)	5134				Married	l-AF-spouse	23
6 occupat	ion		7 relationsh	iip		8 race			9 sex		10 capital	-gain	
Prof-sp	pecialty	4140	Husband	1	3 193	White		27 816	Male	21 790	1st Qu	0.	
Craft-r	repair	4099	Not-in-f	family 8	305	Black		3124	Female	10 771	3rd Qu	0.	
Exec-ma	anagerial	4066	Own-chil	Ld 5	068	Asian-Pac-Isl	ander	1039			Median	0.	
Adm-cle	erical	3770	Unmarrie	ed 3	446	Amer-Indian-E	skimo	311			Min	0.	
Sales		3650	Wife	1	568	Other		271			Mean	1077.65	
Other-s	service	3295	Other-re	elative 9	81						Max	99999.	
(Other))	9541											
11 capital	-loss		12 hours-p	er-week		13 native-country			14 incom				
1st Qu	0.		Min I	1.		United-States	29 17	0	<=50K	24 720			
3rd Qu	0.		1st Qu 4	40.		Mexico	643		>50K	7841			
Median	0.		Median 4	40.		?	583						
Min	0.		Mean 4	40.4375		Philippines	198						
Mean	87.3038		3rd Qu 4			Germany	137						
Max	4356.		Max 9	99.		Canada	121						
						(Other)	1709						

The Problem w/ Federated Learning

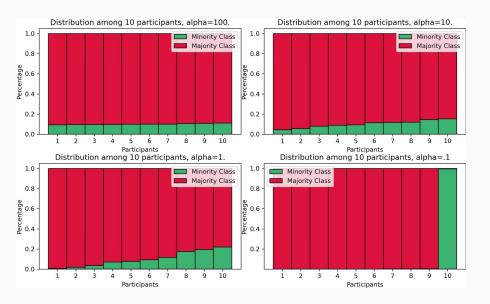
Adult dataset

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	label
0	17	Private	124130	Some- college	9	Separated	Protective- serv	Not-in- family	White	Male	30	0	40	Haiti	<=50K
1	26	Private	168914	HS-grad	10	Married- civ-spouse	Handlers- cleaners	Husband	Asian- Pac- Islander	Female	21	1	39	Yugoslavia	<=50K
2	33	Self-emp- not-inc	218757	HS-grad	11	Married- civ-spouse	Machine- op-inspct	Not-in- family	White	Male	29	0	24	United- States	>50K
3	62	Self-emp- not-inc	558635	Bachelors	9	Never- married	Prof- specialty	Wife	White	Male	51	1	40	United- States	<=50K
4	27	?	143612	Masters	13	Separated	Priv-house- serv	Unmarried	White	Male	89	-2	40	United- States	<=50K
995	44	Private	179779	HS-grad	9	Never- married	Adm-clerical	Husband	White	Male	2	-3	40	United- States	<=50K
996	28	Self-emp- not-inc	180882	Bachelors	11	Married- civ-spouse	Adm-clerical	Other- relative	Black	Female	43	5	40	United- States	<=50K
997	15	Private	166548	Bachelors	6	Married- civ-spouse	Protective- serv	Other- relative	White	Female	23	7	38	United- States	<=50K
998	19	Private	158057	Doctorate	8	Never- married	Other- service	Not-in- family	White	Male	9	-1	40	United- States	>50K
999	19	Private	119228	Bachelors	13	Divorced	Other- service	Unmarried	White	Male	69	5	40	United- States	<=50K

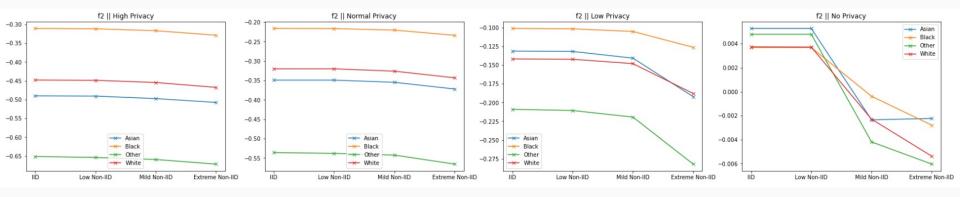
1 age		2 workclass		3 education			4 education	n-num	5 marital-	-status	
Min 17.		Private	22 696	HS-grad	10501		Min	1.	Marrie	l-civ-spouse	14 97
1st Qu 28.		Self-emp-not-inc	2541	Some-college	7291		1st Qu	9.	Never-	married	10 68
Median 37.		Local-gov	2093	Bachelors	5355		Median	10.	Divorce	d	4443
Mean 38.5816		?	1836	Masters	1723		Mean	10.0807	Separat	ed	1025
3rd Qu 48.		State-gov	1298	Assoc-voc	1382		3rd Qu	12.	Widowed	ı	993
Max 90.		Self-emp-inc	1116	11th	1175		Max	16.	Marrie	l-spouse-absent	418
		(Other)	981	(Other)	5134				Marrie	l-AF-spouse	23
6 occupation		7 relationship		8 race			9 sex		10 capital	-gain	
Prof-specialty	4140	Husband	13 193	White		27 816	Male	21 790	1st Qu	0.	
Craft-repair 409		Not-in-family 8	3305	Black		3124	Female	10 771	3rd Qu	0.	
		Own-child 5068		Asian-Pac-Islander		1039			Median	0.	
Adm-clerical	3770	Unmarried 3446		Amer-Indian-Eskin		311			Min	0.	
Sales	3650	Wife 1568		Other 271		271			Mean	1077.65	
Other-service	3295	Other-relative 9	981						Max	99999.	
(Other)	9541										
11 capital-loss		12 hours-per-week		13 native-country			14 incom	•			
1st Qu 0.		Min 1.		United-States	29 17	0	<=50K	24 720			
3rd Qu 0.		1st Qu 40.		Mexico	643		>50K	7841			
Median 0.		Median 40.		?	583						
Min 0.		Mean 40.4375		Philippines	198						
Mean 87.3038		3rd Qu 45.		Germany	137						
Max 4356.		Max 99.		Canada	121						
				(Other)	1709						

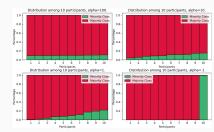


Our Research: Impact of non-i.i.d data on private FL

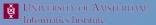


Our Research: Impact of non-i.i.d data on private FL

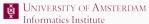




Differentially Private Synthetic Data Generation



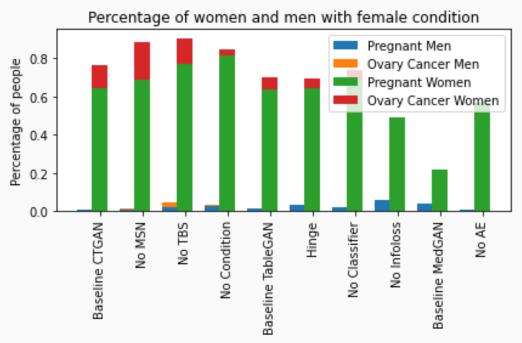
- Adding DP to ML models is costly
- Alternatively, we can make the data "privacy preserving"
- How?
 - Use a differentially private generative model to estimate the distribution of the data
 - Train the model on real data
 - Use model to generate a synthetic dataset
 - Due to post-processing theorem, any model trained on our synthetic data is at least differentially private with the same level as our generative model



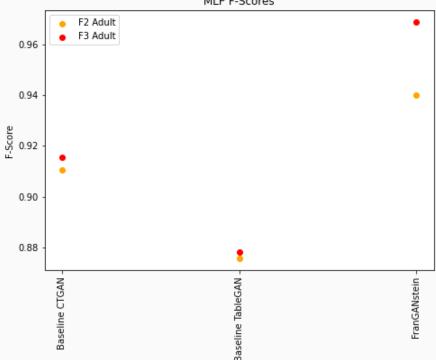
- Generate privacy preserving synthetic data from original data
- Differentially private with an acceptable privacy budget
- On tabular data
- Preserve statistical properties
- Maintain machine learning efficacy
- Distributed environment
- No i.i.d assumptions about data distribution

- Generate privacy preserving synthetic data from original data
- Differentially private with an acceptable privacy budget
- On tabular data
- Preserve statistical properties
- Maintain machine learning efficacy
- Distributed environment
- No i.i.d assumptions about data distribution
- Data quality: Semantic integrity

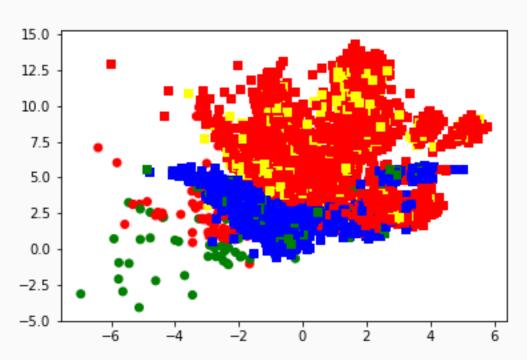
Why semantic integrity?

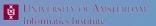


Proposed model's performance

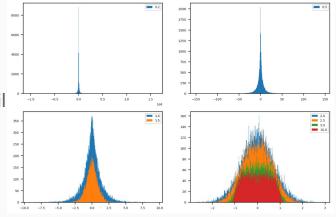


Proposed model's quality

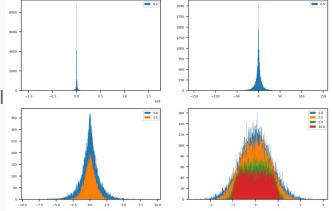




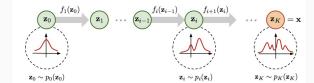
- Long tailed data
 - Have a generative model that is able to capture the tail behavior of long-tailed distributions

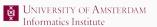


- Long tailed data
 - Have a generative model that is able to capture the tail behavior of long-tailed distributions
- Initial approach: GANs with a differentiable generalized Gaussian base distribution



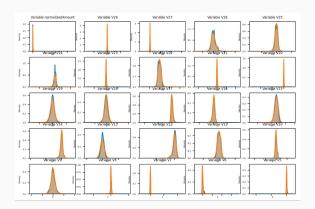
- Second approach: normalizing flows
 - A normalizing flow
 - describes the transformation of a probability density through a sequence of invertible mappings.
 - Transforms a simple distribution into a complex one by applying a sequence of invertible transformation functions.
 - Flowing through a chain of transformations, we repeatedly substitute the variable for the new one according to the change of variables theorem and eventually obtain a probability distribution (i.e. normalized) of the final target variable
 - Normalizing flows can exactly estimate the density function
 - There is theory on capabilities of NFs on capturing the tail behavior of long-tailed distributions

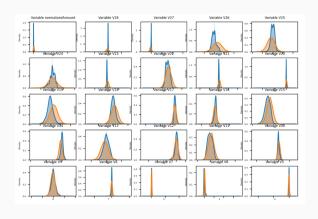




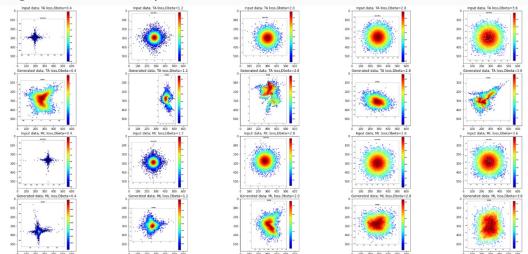
- Second approach: normalizing flows
 - O How does a flow-based model compare to a GAN?

FLOW

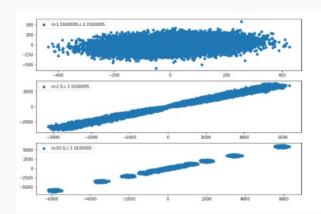


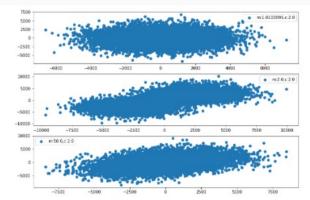


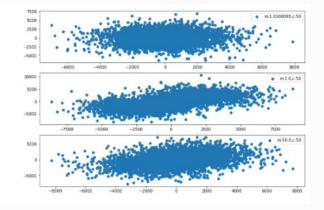
- Second approach: normalizing flows
 - Next step: dual training with ML-based training for the flow model and a loss function utilizing tail-adaptive alpha divergence for the base parameters



- Last step: flexible mixture base distribution
 - Smooth contraction/expansion of the base mixture distribution to help the flow-based model capture the tail properties of the target distribution







Thank You!

