
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Reflections on the design and application of eFLINT

L. THOMAS VAN BINSBERGEN, Informatics Institute, University of Amsterdam, The Netherlands

ACM Reference Format:
L. Thomas van Binsbergen. 2022. Reflections on the design and application of eFLINT. In Informal proceedings
of Programming Languages and the Law 2022. ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
Following advancements in autonomous and distributed computing, software systems are increas-
ingly more integrated with social systems. Compliance with laws, regulations and (contractual)
agreements regulating such systems is a top priority for many organisations and regulators, as
is evidenced by the impact of the EU’s privacy regulations (GDPR) and the anticipated impact of
the forthcoming regulations on the use of AI. In various project, the University of Amsterdam is
experimenting with approaches to automate compliance in software systems through the inte-
gration of so-called regulatory services tasked with enforcing explicit, formal interpretations of
relevant norms. This presentation discusses the design of eFLINT, a domain-specific language for
formalising norms used within these projects.
Compared to existing languages, eFLINT is novel in several respects and is most similar to

languages based on the event calculus such as Symboleo [13] and InstAL [10]. A significant body of
work exists concerning the formalisation, analysis and enforcement of specific kinds of norms [7]
such as policies for access control [14], network policies [1] (e.g. firewall configurations) and
contracts [3, 12, 13]. Instead, eFLINT is designed for describing a wide variety of normative sources
such as laws, regulations, policies and contracts. Other formal languages for expressing norms
are based on deontic logics [5], action logic [8] and defeasible logic [4, 9]. An important aspect of
eFLINT is that the language is action-based and supports the legal concept of power – the ability to
change the normative positions of (other) actors. The benefit of the action-based approach is that
checking the compliance of software systems is simplified because they are inherently action-based.
Together, these features enable eFLINT for various types of applications requiring online or offline
compliance-checking, monitoring, traceability and explainability.

This presentation will discuss the connection between fundamental notions in computer science
and the normative theory forming the basis of our approach. This analysis reveals interesting
similarities between the processes of drafting regulations and software engineering. In particular, the
importance of modularity, inheritance, versioning and specialisation are discussed. The presentation
reflects on the first phases of eFLINT’s development, each widening the scope within which eFLINT
is applicable, and lays out the plans for the next phase, in which usability is the primary concern.

2 REFLECTIONS
Figure 1 provides an example specification.

Phase 1: Legal and computational concepts. Inspired by earlier work on FLINT [18, 19], the first
version of eFLINT (executable FLINT) connects the normative concepts of ‘power’ and ‘duty’, as
described by Hohfeld [6], to the concepts of configuration and transitions over configurations
in Plotkin-style transition systems [11]. As described in [16], an eFLINT program consists of a
collection of type declarations (a specification) and a sequence of statements (a scenario). The type
declarations determine the structure of the transition system, with every configuration a set of

ProLaLa ’22, January 16, 2022, Philadelphia, PA
2022.

1

HTTPS://ORCID.ORG/0000-0001-8113-2221


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

ProLaLa ’22, January 16, 2022, Philadelphia, PA L. Thomas van Binsbergen

Fact person Identified by String

Fact doctor Identified by person

Fact mayor Identified by person

Fact registered Identified by person

Placeholder parent For person

Placeholder child For person

Fact natural -parent -of

Identified by parent * child

Holds when birth -parent -of(parent ,child)

,co-parent -of(parent ,child)

Fact birth -parent -of

Identified by parent * child

Holds when birth -certificate ()

Fact birth -certificate

Identified by doctor * parent * child

Fact undue -delay

Identified by birth -certificate

Fact co-parent -of

Identified by parent * child

Holds when child -recognized ()

Fact child -recognized

Identified by parent * child

Listing 1. Knowledge representionwith fact-types.

Act sign -certificate

Actor doctor Recipient parent Related to child

Conditioned by doctor

Creates birth -certificate ()

Holds when True

Act observe -birth

Actor mayor Recipient parent Related to child

Conditioned by mayor

Creates duty -to-register ()

Holds when birth -certificate ()

Duty duty -to-register

Holder parent Claimant mayor Related to child

Enforced by observe -late -registry

Act register

Actor person Recipient child

Conditioned by !registered(child)

Creates registered(child)

,child -recognized(parent=person)

When !birth -parent -of(parent=person)

Holds when birth -certificate ()

Act observe -late -registry

Actor mayor Recipient parent Related to child

Conditioned by mayor , undue -delay(birth -certificate ())

Creates registered(child)

Holds when duty -to-register ()

Listing 2. Act-type and duty-type declarations.

Fig. 1. Example inspired by the treatment of legal parenthood and child registration in The Netherlands.

facts (a knowledge base) and the transitions determined by the (postconditions of) the action-types.
Listing 1 in Figure 1 shows fact-type definitions that establish atomic facts (e.g. person), predicates
(e.g. doctor) and relations (e.g. natural-parent-of) of which instances are considered to ‘hold true’ if they
are in the current configuration.
A scenario describes a trace in the transition system, which may be action-compliant and/or

duty-compliant depending on the preconditions and violation conditions of action-types and duty-
types respectively. For a scenario to be action-compliant, every transition labelled with an instance
of sign-certificate, for example, must have been performed by a doctor (see Listing 2). For a scenario
to be duty-compliant, every instance of a duty in the knowledge base must be terminated before a
configuration is reached in which the enforcing acts of that duty are enabled. Violation conditions
can also be associated with duties directly. In the example, the existence of a birth certificate gives
a mayor the power to place a duty on the birth-parent of the child. The duty is terminated by
registering the child; if this is done by the second parent, this is considered as recognising the child
with the person becoming a co-parent of the child. Undue delay in the registration gives the mayor
the power to register the child without co-parent. Because the action observe-late-registry is listed as an
enforcing act of duty-to-register, the duty is considered violated.
The tools supporting phase 1 of the development of eFLINT make it possible to automatically

assess scenarios for compliance and to perform rudimentary simulations by iteratively stepping
through the underlying transition system by choosing transitions to execute. These tools require the
‘domain of discourse’ to be bounded such that every type has a finite number of possible instances
and every configuration a finite number of outgoing transitions. This is problematic for checking
the compliance of running software as, for example, the set of users of particular application is not
know in advance.

2



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Reflections on the design and application of eFLINT ProLaLa ’22, January 16, 2022, Philadelphia, PA

Phase 2: Dynamic specification and assessment. The second version of eFLINT can be used to
check the compliance of running software. The semantics of the Foreach operator, (implicitly and
explicitly) used to enumerate the instances of a type, was modified such that it enumerates all the
instances of the type when possible or enumerates those instances that hold true in the existing
knowledge base. This pragmatic design decision ensures that enumeration terminates in static
scenarios (with a bounded domain of discourse) and dynamically produced scenarios.
The second version of eFLINT also has a more flexible syntax that enables type-declarations

and statements to be mixed freely. As a result, both scenarios and specifications can be developed
incrementally. This language extension was performed by applying the principled approach to
REPL-style interpreters presented in [17]. The resulting interpreter can be embedded as a service
in service-oriented software system – an important step towards realising the regulated systems
mentioned in the introduction. At any time, the eFLINT services can be queries about active duties
and permissions. Moreover, eFLINT services inform enforcement actors (human or otherwise)
about any violations, potentially triggering these actors to invoke their powers to enforce norms.

Phase 3: Modularisation and specialisation. In the third phase, eFLINT was evaluated with respect
to important software engineering principles such as reuse, separation of concerns, and modularity.
In [15], a case study was performedwithin the health-care domain, resulting in additional extensions
to the language. Within this case study, a consortium agreement between hospitals ‘imports’
concepts from the GDPR, the European Union’s privacy regulation [2]. The paper demonstrates
how the connection between the two documents is formalised in eFLINT and how this is achieved
with a GDPR specification that does not anticipate how it used within other specifications. In this
version of eFLINT, alternative interpretations of norms and open terms such as ‘undue delay’ can
be specified as replaceable parts (i.e. with versioning). Moreover, interpretations can be composed
and can be reused across applications with different specialisations of certain concepts, e.g. a
banking application considers clients as data subjects according to the GPDR, whereas a healthcare
application considers patients as such.

Phase 4: Usability and application. This is how eFLINT exists today. The next phase is aimed at
improving the usability of the language and at demonstrating its usage in pilots with industrial
partners. The features introduced in the second and third phase made eFLINT very flexible. As a
negative consequence, users can now easily ‘break’ a specification, e.g. by overriding type definitions
so that other types are no longer well-defined. The aim is to build a higher-level language on top of
the existing language. This language should have a basic module-system, additional static analyses
for discovering inconsistencies and verifying properties, a clearer separation between normative
and computational concepts, and a development and testing environment suitable for use by legal
experts. Moreover, we wish to achieve interoperability with formalisms and tools designed for
knowledge representation and knowledge derivation, such as those used within Semantic Web
communities.

3 CONCLUSION
Experiments with the eFLINT language have demonstrated its potential to serve as a language with
which to formalise interpretations of norms from a variety of sources and to use these interpretations
to automatically assess the compliance of software statically (off-line) and dynamically (on-line).
This presentation provides an overview of the development of the language, the experiments
performed, and the lessons learnt. The next phase is to improve the usability of the language and
to demonstrate its usage within regulated systems as part of significant pilot projects.

3



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

ProLaLa ’22, January 16, 2022, Philadelphia, PA L. Thomas van Binsbergen

ACKNOWLEDGMENTS
This work is part of the EPI project supported by NWO in the Commit2Data – Data2Person program
(628.011.028), the SSPDDP project supported by NWO in the Big Data: Real Time ICT for Logistics
program (628.009.014) and the AMdEX Fieldlab project supported by Kansen Voor West EFRO
(KVW00309) and the province of Noord-Holland.

REFERENCES
[1] E. S. Al-Shaer and H. H. Hamed. 2004. Modeling and Management of Firewall Policies. IEEE Transactions on Network

and Service Management 1, 1 (2004), 2–10. https://doi.org/10.1109/TNSM.2004.4623689
[2] Council of the EU. 2016. General Data Protection Regulation. Official Journal of the European Union 59 (2016).
[3] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and X. Xu. 2018. On legal contracts, imperative and

declarative smart contracts, and blockchain systems. Artificial Intelligence and Law 26, 4 (2018), 377–409. https:
//doi.org/10.1007/s10506-018-9223-3

[4] G. Governatori, M.J. Maher, G. Antoniou, and D. Billington. 2004. Argumentation Semantics for Defeasible Logic.
Journal of Logic and Computation 14, 5 (10 2004), 675–702. https://doi.org/10.1093/logcom/14.5.675

[5] H. Herrestad. 1993. Norms and Formalization. In Proceedings of the 3th International Conference on Artificial Intelligence
and Law (ICAIL 1993). ACM, 175–184. https://doi.org/10.1145/112646.112667

[6] Wesley Newcomb Hohfeld. 1917. Fundamental legal conceptions as applied in judicial reasoning. The Yale Law Journal
26, 8 (1917), 710–770. https://doi.org/10.2307/786270

[7] A.A. Jabal, M. Davari, E. Bertino, C. Makaya, S. Calo, D. Verma, A. Russo, and C. Williams. 2019. Methods and Tools
for Policy Analysis. Comput. Surveys 51, 6, Article 121 (2019). https://doi.org/10.1145/3295749

[8] A.J.I. Jones and M. Sergot. 1996. A Formal Characterisation of Institutionalised Power. Logic Journal of the IGPL 4, 3
(06 1996), 427–443. https://doi.org/10.1093/jigpal/4.3.427

[9] D. Nute. 2003. Defeasible Logic. In Web Knowledge Management and Decision Support, O. Bartenstein, U. Geske,
M. Hannebauer, and O. Yoshie (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 151–169.

[10] J. Padget, E. Elakehal, T. Li, and M. De Vos. 2016. InstAL: An Institutional Action Language. Law, Governance and
Technology Series, Vol. 30. Springer Verlag, 101.

[11] Gordon D. Plotkin. 2004. A Structural Approach to Operational Semantics. Journal of Logic and Algebraic Programming
60–61 (2004), 17–139. https://doi.org/10.1016/j.jlap.2004.05.001 Reprint of Technical Report FN-19, DAIMI, Aarhus
University, 1981.

[12] P.L. Seijas, A. Nemish, D. Smith, and S. Thompson. 2020. Marlowe: implementing and analysing financial contracts on
blockchain. In Workshop on Trusted Smart Contracts (Financial Cryptography 2020).

[13] S. Sharifi, A. Parvizimosaed, D. Amyot, L. Logrippo, and J. Mylopoulos. 2020. Symboleo: Towards a Specification
Language for Legal Contracts. In 28th IEEE Int. Requirements Engineering Conf. (RE 2020). IEEE.

[14] OASIS Standard. 2013. eXtensible Access Control Markup Language (XACML) Version 3.0. http://docs.oasis-open.org/
xacml/3.0/xacml-3.0-core-spec-os-en.html.

[15] L. Thomas van Binsbergen, Milen G. Kebede, Joshua Baugh, Tom van Engers, and Dannis G. van Vuurden. 2021.
Dynamic generation of access control policies from social policies, In The proceedings of the 11th International
Conference on Current and Future Trends of Information and Communication Technologies in Healthcare. Procedia
Computer Science.

[16] L. Thomas Van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers. 2020. eFLINT: A Domain-Specific
Language for Executable Norm Specifications. In Proceedings of the 19th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE 2020). ACM, 124––136. https://doi.org/10.1145/3425898.
3426958

[17] L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jeanjean, Tijs van der Storm, Benoit Combemale, and
Olivier Barais. 2020. A Principled Approach to REPL Interpreters. ACM, 84–100. https://doi.org/10.1145/3426428.3426917

[18] R. van Doesburg, T. van der Storm, and T. van Engers. 2016. CALCULEMUS: Towards a Formal Language for the
Interpretation of Normative Systems. In AI4J Workshop at ECAI 2016 (AI4J 2016). 73–77.

[19] R. van Doesburg and T. van Engers. 2019. The False, the Former, and the Parish Priest. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Law (ICAIL 2019). ACM, 194–198. https://doi.org/10.1145/3322640.
3326718

4

https://doi.org/10.1109/TNSM.2004.4623689
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1093/logcom/14.5.675
https://doi.org/10.1145/112646.112667
https://doi.org/10.2307/786270
https://doi.org/10.1145/3295749
https://doi.org/10.1093/jigpal/4.3.427
https://doi.org/10.1016/j.jlap.2004.05.001
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1145/3322640.3326718
https://doi.org/10.1145/3322640.3326718

	1 Introduction
	2 Reflections
	3 Conclusion
	Acknowledgments
	References

