
Dynamic generation of access control policies from social policies

L. Thomas van Binsbergen, Milen G. Kebede, Joshua Baugh, Tom van Engers,
Dannis G. van Vuurden

Informatics Institute, University of Amsterdam
m.g.kebede@uva.nl

November 3, 2021



Motivation

Problem

Assuring compliance is labour intensive, costly and complex

Conventional Access Control Techniques have limitations in capturing and
enforcing policies from social norms such as the General Data Protection
Regulation(GDPR)

There are not many policy specification languages for specifying both social
policies and system-level policies

Goal

Enable the implementation of legally-aware data sharing infrastructure



Overview

1 What is eFLINT?

2 Extensions to eFLINT

3 The DIPG registry use-case

4 Evaluation

5 Conclusion



eFLINT

Domain Specification Language

Formalizes norms in social policies (for e.g. GDPR, DSA) and System-level
policies(access control policies).

Normative foundation in Hohfeld’s framework - power-liability and duty-claim
relations

Interpretations and scenarios

eFLINT semantics are formalized as transition systems

Facts, actions, events and duties change over time due to the effects of actions
and events

Assessing Compliance

Action-Compliance : every action labelling a transition is enabled in the source
configuration

Duty-Compliance : all duties in all configuration are not violated



eFLINT Example

GDPR – Article 6(1)(a):

Personal data can be collected for a specific purpose if consent has been given
for that purpose

GDPR – Article 5(1)(d):

Data must be accurate for purpose specified

1 Act collect -personal -data

2 Actor controller

3 Recipient subject

4 Related to data , processor , purpose

5 Conditioned by accurate -for -purpose(data , purpose), subject -of(subject ,data)

6 Creates processes(processor , data , controller , purpose)

7 Holds when consent(subject , controller , purpose)



Extensions to the eFLINT language

Extend Keyword

To add derivation clauses to type definitions, to add pre- and post-conditions to
action types and to adding violation conditions to duty types

Modular and declarative extension of types

Sync Keyword

Automate high level compliance decisions through lower level enforcement
mechanisms



Use-case DIPG Registry

- Diffuse Intrinsic Pontine Gliomas(DIPG) registry: rare disease repository that allows
researchers to access patient data that can lead to discovering new treatment and
prognosis factors.



Compliance questions

According to the GDPR and the DIPG regulatory document:

1 What conditions need to be fulfilled by a member before making data available?

2 What conditions need to be fulfilled when accessing data from the registry?



Compliance Question 1

DIPG Regulatory document – Article 4(2):

Members should transfer data to the DIPG registry in a coded form only

1 Fact coded Identified by dataset

2 Act make -data -available

3 Actor institution

4 Recipient dcog

5 Related to dataset

6 Conditioned by coded(dataset) Holds when member(institution)



Compliance Question 1

1 Extend Act make -data -available Syncs with (Foreach donor:

2 collect -personal -data(controller = institution

3 ,subject = donor

4 ,data = dataset

5 ,processor = "DCOG"

6 ,purpose = "DIPGResearch ")

7 When subject -of(donor , dataset))

An institution can make a dataset available when (for each donor (subject) in the dataset):

The institution should be a member of the consortium

Data should be coded

Consent is given by the donor for the processing of their personal data by the
DCOG for the purpose of DIPGResearch

Data should be accurate for the purpose DIPGResearch



Compliance Question 2

1 Fact actor

2 Fact recipient

3 Fact asset

4 Act access Actor actor Recipient recipient Related to asset

5 Holds when read(actor ,recipient ,asset), write(actor ,recipient ,asset)

6 Act read Actor actor Recipient recipient Related to asset Syncs with

access(actor ,recipient ,asset)

7 Act write Actor actor Recipient recipient Related to asset Syncs with

access(actor ,recipient ,asset)

Read and write action are instances of access action

1 Extend Act read Holds when (Exists project , institution:

2 selected(asset ,project) && approved(project ,institution) &&

affiliated(actor , institution))

An actor can read an asset when (there exists a project and an institution for which):

The asset is selected for the project

The project is approved for the institution

The actor is affiliated with the institution



More Examples

Granting read and write permission to dataset owners

1 Fact owner -of Identified by institution * dataset

2 Extend Act make -data -available Creates owner -of(institution , dataset)

3 Extend Act write Holds when affiliated(actor ,institution)

4 && owner -of(institution , asset)

5 Extend Act read Holds when affiliated(actor ,institution)

6 && owner -of(institution , asset)

An actor can write or read an asset when:

The actor is affiliated with an institution

The institution is the owner of the asset

the previous extension to read holds



Evaluation

Experimentation based on Haskell implementation of eFLINT

First scenario

Members make data available to the registry with eFLINT deciding on compliance
according to DIPG network regulatory document and GDPR

Member institutions can run an instance of eFLINT server

?Enabled(make-data-available(<X>),DCOG,<Y>)

Second scenario

Researcher of a member attempting to read a dataset in the DIPG registry with
eFLINT determining whether an access request is permitted

An eFLINT server running alongside the registry

?Enabled(read(<X>,DCOG,<Y>))



Conclusion

Answer compliance questions

eFLINT as a Policy Administration Point(PAP) by generating access control
policies such as XACML or ODRL policies

eFLINT is used to specify higher-level concepts (collect-personal-data) and
lower-level concepts (read and write)

We introduced eFLINT extensions that enable us to connect higher-level and
lower-level concepts : as demonstrated by the generation of access control rules

The approach in the paper is for a centralised solution

Future work

Develop a decentralised solution



Dynamic generation of access control policies from social policies

L. Thomas van Binsbergen, Milen G. Kebede, Joshua Baugh, Tom van Engers,
Dannis G. van Vuurden

Informatics Institute, University of Amsterdam
m.g.kebede@uva.nl

November 3, 2021


