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Abstract—Regardless of the context and rationale, running
distributed applications on geographically dispersed IT resources
often comes with various technical and organizational challenges.
If not addressed appropriately, these challenges may impede
development, and in turn, scientific and business innovation. We
have developed the Brane framework to support implementers
in addressing these challenges. Brane utilizes containerization to
encapsulate functionalities as portable building blocks. Through
programmability, application orchestration can be expressed
using an intuitive domain-specific language. As a result, end-
users with limited programming experience are empowered to
compose applications by themselves, without having to deal with
the underlying technical details. They can do this from user-
friendly interactive notebooks. In this paper, we introduce Brane,
describe its components and features, and validate the framework
with an implementation of a real-world scientific use case.

Index Terms—Containerization, Domain-Specific Languages

I. INTRODUCTION

There are different reasons why scientific and business

endeavors must rely on multi-site infrastructures, i.e., the

combined use of IT resources across different and typically

geographically dispersed infrastructure domains. It might be

because a single infrastructure provider cannot entirely ful-

fill an application’s computing and storage requirements [6].

Alternatively, it might be because privacy constraints restrict

centralized data aggregation, demanding federated data pro-

cessing schemes [8]. Regardless of the context and rationale,

the use of multi-site often comes with a variety of challenges

[7], on top of the inherent requirement for applications to be

distributed. Critical technical challenges are, e.g., achieving

interoperability between heterogeneous resources, guarantee-

ing seamless portability of applications, and establishing inter-

domain data management. Organizational challenges may also

arise due to distributed collaboration with divided respon-

sibilities, i.e., separate work needs to be integrated. The

associated complexities of such challenges impede multi-site

applications’ development compared to applications targeting

a single domain. If not addressed appropriately, this may lead

to delayed or even missed scientific and business innovation.

This work received funding from the Dutch Science Foundation (NWO) in
the Commit2Data program, through the EPI project (grant no. 628.011.028).

This paper introduces Brane1, a framework that aims to

simplify and streamline the development and deployment

of complex multi-site applications. To achieve this, Brane

provides a barebone system consisting of generic services

and components as a starting point for multi-site applications.

On top of that, Brane offers a uniform development method

based on containerization for extending the initial barebone

system. By not focusing on a single application class but

rather emphasize the generic aspects and extendability, Brane

is usable for myriad multi-site applications. Integration options

are available to conveniently incorporate existing source code

and/or to utilize optimizations of specialized external systems.

A. Separation of concerns

The development of a multi-site application often touches

all layers of the stack [7], simplified here as the application,

infrastructure, and network layers. For the infill of each

layer, the responsibility typically lies with separate roles.

Therefore, we’ve applied the separation of concerns (SoC)

design principle to accommodate various roles with tools that

correspond to their usual abstraction level and development

method. Currently, Brane accommodates three different roles:

system engineer, software engineer, and (data/domain) sci-

entist. Each of these roles can make contributions to multi-

site application development. Brane ensures seamless integra-

tion between contributions. The engineering roles typically

contribute functionality to the infrastructure and networking

layers, e.g., data transfers, integrations with external systems,

and compute tasks. Such functionality contributions can be

combined, as illustrated in Figure 1, into hierarchical routines

using an expressive domain-specific language (DSL). Scien-

tists operate in the application layer and contribute to top-

level orchestration, which combines engineers’ contributions

into complex and coherent applications, e.g., data processing

pipelines. To express the orchestration logic, scientists use a

concise and intuitive DSL. Section III further describes the

tools, DSLs, and the technical details underlying this SoC. An

implementation following the SoC is provided in section IV.

1https://github.com/onnovalkering/brane
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Figure 1. Brane’s separation of concerns follows the roles and layers of the technical stack.

II. RELATED WORK

A. Function-as-a-Service

Brane’s SoC approach is inspired by Cookery [4]. The

Cookery framework also offers a DSL to compose applications

from separately prepared building blocks, i.e., functionalities.

However, Cookery focuses explicitly on cloud services and

function-as-a-service (FaaS) [13]. It proposes a method to

abstract away from the numerous vendor-specific APIs in order

to develop cross-cloud applications. Fly [5] has a similar goal

as Cookery, but takes a different approach. It employs source-

to-source compilation to support different FaaS platforms and

targets multi-cloud [20] deployments and cost-effectiveness.

B. Workflows

Scientific applications classifiable as data processing

pipelines, i.e., workflows, are traditionally implemented using

a workflow management system (WfMS) [17]. Typically,

WfMSs do not allow users to fully control the underlying

infrastructure’s technical stack [21], making them not ideal

for addressing multi-site challenges. Still, this does not mean

that WfMSs are obsolete. Their reliability and performance

are significant for distributed and on-site computation. The

surrounding multi-site orchestration and operations can be

performed by Brane, combining the strengths of both systems.

C. Microservices

Microservices [10], i.e. services with a single or minimal set

of responsibilities, are used to create scalable and maintainable

software architectures. Brane promotes the principles behind

microservices to make functionality contributions (Section

I-A) fine-grained and reusable. A popular industry practice

is to use containers and container cluster managers [2], e.g.

Kubernets2, to deploy and manage microservice architectures.

Brane is able to delegate running containers to such systems.

III. ARCHITECTURE

Conceptually, the Brane framework architecture is com-

posed of two loosely coupled parts: a programming model

and a runtime system. The runtime system, by default, is a

barebone starting point with only a minimal set of generic

functionalities (Section I). The programming model is used to

extend the runtime system, i.e., make contributions (Section

I-A), in order to satisfy application-specific requirements.

2https://kubernetes.io

A. Programming model

The nucleus of Brane’s programming model is the concept

of packages. A package is the final product of an engineer’s

effort to encapsulate functionality as an extension for the run-

time system. The encapsulation process consists of explicitly

describing how Brane can execute the functionality’s imple-

mentation, which can be arbitrary source code or a compiled

binary. This description is in the form of one or more function

definitions. Each function definition dictates a different way

to execute the implementation. Brane provides a package

builder tool3 that combines the function definitions with the

target implementation into a package. Brane also provides

two additional package builders that can automatically derive

function definitions from implementations that are based on a

well-known specification. The first targets workflows written

in the CWL specification [1]. This builder is Brane’s initial

step towards integration with WfMSs (Section II-B). The

second builder targets Web APIs, e.g., cloud services and FaaS

(Section II-A), and takes OpenAPI4 specification as input. This

builder also automatically generates the corresponding API

client implementation to perform the specified HTTP requests.

All packages, regardless of the builder used, are in the

OCI5 image format. This containerization permits packages

to be self-contained, i.e., to include all the necessary files

and dependencies. Furthermore, all packages contain Brane’s

branelet binary. This binary is the image entrypoint and

acts as a proxy between the runtime system and the encapsu-

lated implementation, as illustrated in Figure 2. It uniformly

exposes the packages’ functions, verifies the input and output,

and is responsible for runtime initialization and execution.

The characteristics mentioned above qualify packages as stan-

dalone and composable building blocks. Uploading a package

to the runtime system’s registry makes it available to use in

applications. Brane provides the tooling for uploading and

managing packages. Several packages for generic tasks, e.g.,

basic mathematical operations and creating files, are built-in.

Brane features two DSLs, Bakery6 and BraneScript7. Both

are imperative programming languages and supports basic con-

structs: variables, objects, conditionals, loops, and functions.

3https://onnovalkering.gitbook.io/brane/package-builders/code
4https://github.com/OAI/OpenAPI-Specification
5https://github.com/opencontainers/image-spec/blob/master/spec.md
6https://onnovalkering.gitbook.io/brane/programming/bakery
7https://onnovalkering.gitbook.io/brane/programming/branescript
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Figure 2. Source code is compiled into an intermediate representation (IR). The IR format preserves the reference to the package(s) that contain the function(s).

In the DSLs, after importing a package, as illustrated in Figure

2, its functions are callable as if they were functions from the

DSL itself. The DSLs also facilitate hierarchical functionality.

A DSL routine, wrapping one or more packages, can be

uploaded to the registry and be treated as a new package.

In the Bakery language, statements follow an English

sentence-like structure and typically take up only a single

line. This makes Bakery source code easy to reason about and

well-suited for scientists with limited programming experience

(Section I-A). The Bakery call syntax of each function is

part of its definition. It follows a pre-/in-/postfix pattern,

e.g., a binary function has the template: [prefix] arg1
[infix] arg2 [postfix]. The rules for specifying the

pattern differ based on the number of arguments. This mecha-

nism enables the English sentence-like statements. Moreover,

it allows for adaptation to domain jargon, which helps (fellow)

scientists to modify and reason about Bakery source code.

BraneScript targets the engineering roles and scientists with

sufficient programming experience. It has a C-like syntax and,

compared to Bakery, has more advanced constructs, including

ones specifically for multi-site applications (Section III-B).

Unlike Bakery, the function call syntax is C-like as well, e.g.,

fn(arg1, arg2). Moreover, DSL native functions, i.e.

subroutines, and custom types can be declared in BraneScript.

Before any DSL source code can be executed, it first

must be compiled into an intermediate representation (IR), as

illustrated in Figure 2. This IR is what the runtime system

understands and operates on. The IR functions as a decoupling

between the programming model and the runtime system

and opens the door for alternative DSL implementations. A

type system is in place to ensure consistency between the

DSLs, packages, and runtime system. All variables in Brane’s

programming model must have an associated type. Built-in

value types are boolean, integer, real, and string.

Arrays and custom types, i.e., objects, are supported as well.

The compiler connects to the registry to discover which

packages are available in a Brane runtime system. This mech-

anism avoids the need to download potentially large packages

locally when using the DSL to express orchestration logic.

Brane provides two programming interfaces. For the engi-

neering roles, there is a read-eval-print-loop (REPL) [3]. Sci-

entists may use an interactive Jupyter notebook, with support

for widgets, which they are likely already familiar with [19].

on "location_1" {
f();

}

on queryLocations("AMS") {
g();

}

Listing 1: The on keyword annotates at which infrastructure

site any package function (container) must be executed.

let results := parallel [
{

f();
},
on queryLocations("AMS") {

return h();
}

];

Listing 2: The parallel keyword indicates that the follow-

ing array of closures (code blocks) can be executed in parallel.

B. Multi-site constructs

By default, the runtime system (Section III-C) will deter-

mine where it’s most appropriate to run a package function,

i.e., where to instantiate the corresponding container. To exert

more control over this decision, BraneScript offers the on
keyword. With the on keyword, code blocks can be annotated,

as shown in Listing 1, to indicate where any scoped package

function must be executed. The location can be identified using

a constant literal, a variable, or an expression that will be

evaluated at runtime, e.g., one or more function calls. There-

fore, custom application-specific logic might be implemented

to determine which location to use. This is especially useful

if the Brane runtime system installation happens to be multi-

tenant, i.e., used by multiple distinct applications and users.

The second multi-site specific construct is the parallel
keyword. When put before an array of closures, i.e., code

blocks with lexically captured variables, it indicates that the

closures can be executed in parallel. Execution is unordered

and the achieved degree of parallelism depends on the avail-

ability of resources at runtime. The closures’ return values are

made available as an aggregated array, as shown in Listing 2.

Combining the on and parallel keywords enables basic

multi-site orchestration, an example is provided in Section IV.
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C. Runtime system

The implementation of the runtime system is based on mi-

croservices (Section II-C). It comprises multiple fine-grained

services that work together to interpret IR (Section III-A) and

execute it as an application. Coordination between services

is primarily event-driven [7], i.e., services can independently

produce and react to events, and backed by Apache Kafka8.

This design decouples the services and improves the ability

to scale. Moreover, the resulting application event logs, stored

in an Apache Cassandra database [16], are usable for repro-

ducibility and auditing purposes [14]. The Xenon middleware

[18] is employed to abstract away from remote access mech-

anisms, which might differ per resource, e.g., SSH for cloud

virtual machines (VMs) and Slurm [24] for high-performance

computing (HPC) clusters. The runtime system delegates the

secure storage of credentials and other confidential information

to a local HashiCorp Vault9 instance. Figure 3 provides an

overview of the runtime system’s services and components.

The runtime system has two modes of operation. It can

execute an application based on its complete IR. Alternatively,

it can operate open-ended. In this mode, the runtime system

sequentially processes chunks of IR for as long as they are

received. In the Jupyter interface, a notebook cell corresponds

to an IR chunk. This mode can be used for interactive

and exploratory computing [9]. In both modes, when the

runtime system encounters a function call IR instruction, it

will schedule the corresponding package as a container on an

appropriate remote resource. It will halt local IR processing

until the output is received. Other instructions, e.g., loops and

variable manipulations, are handled within the runtime system.

Next, a brief summary of each of the services is given.

1) API: Interaction with the runtime system is primarily

done through the API, e.g., uploading and managing packages.

Driver

Planner

Job

REPL Notebook

Callback Log

1, 7

2

3, 6

4

5 8

Resources
(compute & storage)

EventsVault

Registry

API

Figure 3. The services and components of the runtime system. The arrows
indicate the typical execution loop when execution IR and package functions.

8https://kafka.apache.org
9https://www.vaultproject.io

2) Driver: The driver service interprets and runs IR and

maintains the application state. When it encounters a package

function call, it will emit a corresponding function call event.
3) Planner: If the driver emits a function call event without

the location specified (section III-B), the planner service will

determine the location and add it to the event. Due to the

loose coupling, the planner service can easily be replaced by a

custom implementation that conforms to the same interface10.
4) Job: The job service translates complete function call

events, i.e., those with a target location specified, to an

execution of the corresponding container on a remote resource.
5) Callback: Updates and results from containers running

on remote resources can enter the runtime system through the

callback service. For every callback an event is generated.
6) Log: The log service constructs application event logs,

and exposes them through a real-time) GraphQL [12] API.

Infrastructure site B

Brane (runtime system)

Job

Infrastructure site B

Infrastructure site A

Kubernetes

Ambassador

Kubernetes

Ambassador

VM1 VM2 VM3

Slurm

Figure 4. Layer(s) of indirection can be added between Brane and resources.

D. Remote resources

Apart from a compatible access mechanism, the only re-

quirement for remote resources is the ability to run containers.

Brane supports Docker and Singularity [15], as well as Kuber-

netes clusters. The runtime system can automatically convert

packages (OCI images) to the proper container image format.

Package authors do not have to prepare the conversions in

advance. Because of the ability to convert and adapt, choosing

a target from a pool of heterogeneous remote resources can be

deferred and be programmatically determined during runtime.

By default, Brane requires direct access to remote resources.

If this is not desired, a layer of indirection can be added using

the ambassador service, as illustrated in Figure 4. With the

ambassador service, organizations remain in full control over

their infrastructures. It’s possible to create custom implementa-

tions, as long as it adheres to the well-specified interface. The

ambassador service can also be used to segment infrastructure

sites, e.g., based on resource costs or desired scheduling rules.

10https://github.com/onnovalkering/brane/tree/master/specifications
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// Brings the relevant functions into scope
import filesystem;
import lofar_lta;
import prefactor;

// ID of the LOFAR observation is the input
observation := 246403;
directory := new_directory;

// Files are staged from tape drives to a cache (remote)
staging := stage observation files;
wait until staging status = "success";

archives := download observation files to directory
measuresets := extract archives to directory;

skymap := calibrate measuresets;
return skymap; // The sky map is the output

Listing 3: A LOFAR calibration pipeline in the Bakery DSL.

IV. APPLICATION

As a real-world validation, a calibration pipeline from the

LOFAR project [11] has been implemented using Brane. It

generates sky maps from LOFAR observations, which as-

tronomers use for exploratory research. The pipeline demands

specific skills from outside the astronomy domain [22]. In-

cluding experience with HPC clusters to meet the pipeline’s

high hardware requirements. Since software from different

packages has to be combined, knowledge of scripting is also

required. With Brane, these technical tasks are performed and

prepared by engineers with the relevant expertise. They only

have to do this once and do not have to worry about compati-

bility with other engineers’ work. Astronomers, i.e., scientists,

are then free to compose, modify, and run the pipeline by

themselves from the convenience of a JupyterLab notebook

(Section III-A). Listing 3 contains the Bakery source code that

corresponds to the calibration pipeline. The observation
variable is the primary input variable. The statements that

follow are self-explanatory. It downloads the observation files

to a newly created directory, calibrates them, and marks the

resulting sky map as output. Credentials are side-loaded from

the vault (Section III-C), and the location of the new directory

is determined during runtime. These details are hidden, out of

convenience, from the astronomer. A detailed walkthrough and

demonstration of the calibration pipeline is available online11.

Listing 4 shows a BraneScript application, also available

online12, that exemplifies the training of a deep learning model

using PyTorch’s distributed data-parallel (DDP) training13. It

starts by deploying a master service on node1 and waits

until the service is up and running. Then, in parallel (Section

III-B), two worker services are started on node2 and node3.

The worker services receive the address of the master node as

input. Once the world size is complete, i.e., a total of three

nodes are started, PyTorch automatically starts coordinating

the training. The application then waits until the master and

worker services finish, which indicates training completion.

11https://onnovalkering.gitbook.io/brane/demonstrations/lofar
12https://github.com/onnovalkering/brane/tree/master/examples/pytorch
13https://pytorch.org/tutorials/beginner/dist overview.html

// Brings the relevant functions into scope
import distributed_dl;

let world_size := 3;

on "node1" {
// The master service is running on node 1
let master := startMaster(world_size);
master.waitUntilStarted();

// After the master service is ready, workers
// are started, in parallel, on nodes 2 and 3
parallel [

on "node2" {
let w1 := startWorker(

world_size, 1, master.address
);

w1.waitUntilDone();
},
on "node3" {

let w2 := startWorker(
world_size, 2, master.address

);

w2.waitUntilDone();
}

];

// Let the application run until completion
master.waitUntilDone();

}

Listing 4: A deep learning application in the BraneScript DSL.

V. FUTURE WORK

There are various opportunities for improving and ex-

tending the Brane framework. Additional package builders

for well-known specifications, e.g., AsyncAPI14 and gRPC15,

are possible. Furthermore, advanced multi-site constructs are

needed to express more elaborate orchestration scenarios,

such as synchronization between computing tasks and error

handling. Allowing functions to emit custom status updates

and render these as JupyterLab notebook widgets will improve

exploratory computing. Further integration with WfMSs might

include WfMSs, e.g., Toil [23], as compute targets and the

conversion between Brane’s DSLs and CWL. The network-

ing layer currently remains underexposed. A distributed file

system and multi-domain networking are crucial extensions.

VI. CONCLUSIONS

In this paper, we introduced the components and features

of the Brane framework. The framework not only provides

technical solutions to multi-site challenges but, through the

SoC principle, also takes organizational aspects into account.

The significant feature of Brane is the ability to convert and

adapt locally developed functionalities to run on a variety of

heterogeneous resources while guaranteeing seamless integra-

tion with other functionalities. Furthermore, scientists are em-

powered to compose and run applications by themselves and

do exploratory research from the convenience of JupyterLab

notebooks. Combined, this improves the overall productivity

and ultimately speeds up scientific and business innovation.

14https://www.asyncapi.com
15https://grpc.io
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