EPI architecture: Brane

Onno Valkering
0.a.b.valkering@uva.nl

https://mns-research.nl Thursday 01 July 2021

mailto:o.a.b.valkering@uva.nl
https://mns-research.nl/

Table of Contents

* simplified, high-level overview

e ™
* Current features g) j o
1. Packaging “
2. Composition N P,
3. Deployment whitebox ~
* Features in-development ST
* Dissemination & adoption e e | / y

@ docs.brane-framework.org/package-builders/web-apis

https://docs.brane-framework.org

Current features

Build packages targeting (RESTful) Web APIs

EOEAR @ docs.brane-framework.org/package-builders/code
Brane Q
Installation
[]
Testbed The Brane Framework
Code
. .
Quickstart
Build packages based on arbitrary code
LOFAR
Bakery To build a package based on arbitrary code, you must explicitly describe, in a configuration file, how Brane
T can execute the code. The configuration file needs to be in the YAML format, follow the ECU specification

BraneScript on this page, and is conventionally called container.yml . Then, build the package using the command:

* Create self-contained and -
reusable building blocks.

Web APIs Bakery,

$ brane build container.yml

Bi 'S t . .
Workflows raneserp Specification @

Brane's specification to explicitly describe arbitrary code is called explicit container usage (ECU)

Code

* Code, Web APIs and Workflows.

Workflows Root-level

These root-level fields are for metadata and package-wide options

e Export and import packages.

version Yes Will be used as the version of the package
description No Will be used as the description of the package.
kind Yes Specifies the kind of package.
base No Sets the image base for the package
L]
° A utomatica | |y convert fo r comtributars No st the contbutors o this package
environment No Lists the environment variables for this package.

the container runtime on s et
the target infrastructure.

“T,‘ Currently, there is only one kind of package: compute

- —_—_——

https://docs.brane-framework.org/

@ docs.brane-framework.org/programming/branescript

https://docs.brane-framework.org

Current features

A C-like programming language with advanced multi-site constructs

LOFAR brane-framework.org/programming/bakery
Brane Q
Installation
[] []
Testbed The Brane Framework
° Bakery
Quickstart
An intuitive domain-specific language for end-users

LOFAR

Bakery Bakery is a high-level DSL for writing scientific applications. It has been designed such that Bakery code is
Instaliation intuitive to write and easy to reason about. This is beneficial for maintainability, but also makes Bakery

. BraneScript accessible for users with limited programming experience. The two main features of Bakery are its type
 Two s for different users
’ Quickstart
L) . L]
BraneScript for multi-site:
- Code
. Type safety ¢
Web APIs Bakery

Erio All variables must have an associated type. Based on these types, the Bakery type system is able to
Workflows identify type errors early during development. For instance: passing text to a function when a number is
expected. This prevents certain errors during runtime and improves the development productivity.

// Brings the relevant functions into scope
import distributed_dl;

Code Bakery has six built-in types, arrays, and supports custom types, i.e. objects:
let world_size := 3;
Web APIs
on "nodel" ({ Workflows
// The master service is running on node 1 Boolean represents logical true or false.
let master := startMaster (world_size);
master.waitUntilStarted(); Directory holds the location of a directory.
// After the master service is ready, workers Flle holds the location of a file
fva startea allel n nodes a
// are arted, in parallel, on nod 2 and 3 Integer number without a decimal part (64-bit)
parallel [
on "node2" { Real number with a decimal part (64-bit)
let wl := startWorker(
world_size, 1, master.address String unicode text (UTF-8)
)i
wl.waitUntilDone(); The Boolean , Integer , Real ,and string types have their own representations:
1
on "node3" {
let w2 := startWorker (i/Aboolean
world_size, 2, master.address // boolean
)i // Integer

.00 // Real

i . uSun" // s
w2.waitUntilDone(); un" // String

1i
The pirectory and File types are created as objects, where the file paths are URLSs:
// Let the application run until completion
master.waitUntilDone();

} new Directory { ur ile:///home/joyvan" }

new File { url: "file:///home/joyvan/test.txt" }

Listing 4: A deep learning application in the BraneScript DSL.

https://docs.brane-framework.org/

https://docs.brane-framework.org

Current features

3. Deployment

* Locally, optionally with simulated
VM, HPC, Kubernetes nodes.

* Single-site, on a Kubernetes cluster.

 Multi-site, centralized installation
with external compute nodes.

@ docs.brane-framework.org/getting-started/installation

The Brane Framework

Installation

Install dependencies and setup a Brane instance

EOEAR & docs.brane-framework.org/getting-started/testbed
Brane Q
Installation
Testbed The Brane Framework
Testbed
Quickstart N y
Set up a local testbed (simulation) with a VM node, Kubernetes cluster, and a Slurm cluster
LOFAR
Bakery This page contains instructions on how to setup a local testbed (simulation) with three different types of
CrrTD compute resources: a VM node, a Kubernetes cluster, and a Slurm cluster (HPC). Each of these compute
BraneScript resources uses a different container runtime: Docker, container.d, and Singularity respectivly.
Testbed
Quickstart The configuration is are added to the infra.yml and secrets.yml files (see the installation page)
Code =
\ﬁ A complete testbed configuration is available in the ./contrib/config directory.
Web APIs LTy
BraneScript
Workflows
VM node
Code
Web APIs We can use the machine where Brane is running to simulate a VM node, no additional setup is required:
Workflows

O This configuration is already present in the ./contrib/config/infra-local-vm.yml file.

Kubernetes cluster

To simulate a Kubernetes cluster, we make use of kind (Kubernetes in Docker). The first step is to install

kind. Either by following the instructions from the kind documentation, or by using an automated script

$ make install-kind

https://docs.brane-framework.org/

Web Service and Cloud-based Systems (MSc

* As part of the MSc WSCB course student teams have used the Brane
framework to implement various ML pipelines (Kaggle challenges)

e Result: multiple resuable “community” packages on GitHub.

& b comfhkst A WSCBS202)

& gthuboom O e & github comfucasc & gthubcom

Pullrequests Issues Marketplace Explor

Pullrequests Issuss Marketplace Explore 0- ™ Pullrequests Issuss Marketplace Explore Issues Marketplace Explore

mastar - | 1 o0 Gotofie | Addtie - 0 Gotofie | adatie- [[EiCadan| Avout

) rommune
Packages Packages

READMEma

Installation

data-utils

ion
PR ot 0 49957
README.md

READMEmd Contributors &

UvAWSCBS2021

WSCBS2021 Visualization

How to submit?

Installation
Import directy from GitHub:

Languages

Assignment 5: Programming project (Due 4 Jun at 23:59)

Requirements

. b

Releases

Languages

Features in-development

* Vantageb6
e Status: working “light” integration (API calls). VANTAGE)
* Next: a “deep” integration is under investigation. Dl franlage b

* Network functions (RQ6)

 Status: working low-level implementation (Rust).
* Next: a high-level interface is under construction (Python).

e Whitebox

 Status: gained insight in the technical operation of Whitebox.
* Next: adding a layer of indirection to Brane to support Whitebox.

white
oX

https://whiteboxsystems.nl

https://vantage6.ai/
https://whiteboxsystems.nl/

Dissemination & adoption

* Paper submitted to the ReWorDS21 workshop (eScience 2021).

e Software development
* Best practices: https://guide.esciencecenter.n|

Documentation and contributing guidelines.

Continuous Integration (Cl) and automated tests.

Release cycle with long-term archiving on Zenodo.
Publicly available on GitHub under the Apache-2.0 license.

https://guide.esciencecenter.nl/

