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Main research question

How to select application-tailored infrastructure patterns
and enhance policy
compliance capabilities in a DDM infrastruct
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> RQ1l: How to map an application request to a best-fit digital
infrastructure pattern based on collaboration models?

> RQ2: How to select an optimal digital infrastructure with minimum risk?

> RQ3: How to develop policy compliance detection components during
execution?

> RQ4: How to defend against adversarial machine learning attacks for the
monitoring components?
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RQ1: Map application request to a best-fit infrastructure pattern
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Lu Zhang “Management of collaborations in digital marketplaces” in proceedings of the 2019 International Conference on High Performance Computing and Simulation (HPCS

2019).

Lu Zhang, Reginald Cushing, Leon Gommans, Cees De Laat, and Paola Grosso, “Modeling of collaboration archetypes in digital marketplaces” in journal IEEE Access, DOI:

10.1109/ACCESS.2019.2931762
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RQ1: Evaluation metrics of a DDM

> Provide a-priori information for DDM providers and potential customers
> Allow for comparison and intelligent selection of competing DDMs

Coverage =) how well the overall application requests can be satisfied by supported archetypes of a DDM
DMP Extensibility =) richness a DDM can achieve by decomposing and composing current archetypes
App Extensibility mm) how elastic of an application request can achieve a perfect match with a given DDM
Precision mm) how well the supported archetypes fit an application request

mmm) how easily the application request can be satisfied
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RQ2: Select an optimal digital infrastructure with minimum risk

> Collaborative

DDM customers
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Lu Zhang, Arie Taal, Reginald Cushing, Cees de Laat, Paola Grosso, “A risk level assessment system based on the STRIDE/DREAD model for Digital Data Marketplaces” in
journal International Journal of Information Security
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Modified Microsoft STRIDE/DREAD model
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Policy compliance detection architecture
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RQ3: Profile generation and verification
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** Allow data owners or a DDM infrastructure provider
to accurately identify which algorithms are running
inside the container

= Profiling of a container image with occurrence
distribution of n-grams

=  Compute dissimilarity with Laplace smoothing and
mutual cross-entropy

Lu Zhang, Reginald Cushing, Ralph Koning, Cees de Laat, Paola Grosso, “Profiling and discriminating of containerized ML applications in Digital Data Marketplaces (DDM)”
in Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021). 9
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RQ3: Experimental Results

The confusion matrix of the classifier for 6 applications running with various platform OSs and training data sets

APP1 APP2 APP3 APPS5S APP6 APP7 mean (%) + std
APP1 1529 0 209 0 22 0 86.7 £ 0.15
APP 2 0 1760 0 0 0 0 100 £ 0
APP 3 0 0 1623 137 0 0 92.2 £0.15
APP 5 0 0 61 1483 216 0 84.2 £ 0.21
APP 6 0 0 0 0 1760 0 100 £ 0
APP 7 0 0 0 0 0 1760 100 £ 0
93.85

The accuracy varies with applications

Overall accuracy for all applications is as high as 93.85%.

10
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Policy compliance detection architecture
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RQ3: Hybrid real time Intrusion Detection System
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Lu Zhang, Reginald Cushing, Cees de Laat, Paola Grosso, “A real-time intrusion detection system based on OC-SVM for containerized applications” in proceedings of the
24th IEEE International Conference on Computational Science and Engineering (CSE 2021).
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RQ3: Experimental Results

TABLE III: AUC, TPR, FPR values of different applications » Optimal Configuration:
and attacks. » Feature extraction with tf
» Segmentation Length = 30000
Application Attack AUC  TPR FPR > Gaussian Kernel
CouchDB Execute Arbitrary Code ~ 0.995 1 0.067 > The attacks arbitrary code execution and brute
Mongodb Brute Force 0959 1 0.020 force performed on dynamic applications are
PGD 0917 1 0.12 easier to detect.
BIM 0.949 0.972 0.12
CW 0.929 0988 0.12 » More difficult to detect adversarial ML attacks who
. , FAB 0951 0.961 0.12 generates the adversarial samples in the runtime
Image Classification MIEGSM 0851 1 0.12
PGDDLR 0.857 1 0.12
Square 0.858 1 0.12
TPGD 0.799  0.55 0.12

13
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Policy compliance detection architecture
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RQ4: Sanitization with DBSCAN algorithm
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Lu Zhang, Reginald Cushing, Paola Grosso, “Defending OC-SVM based IDS from poisoning attacks” in Proceedings of the 2022 5th IEEE Conference on Dependable and
Secure Computing (IEEE DSC 2022)
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RQ4: Experimental Results

» We apply 3 classic label flipping attacks to a public
dataset and measure the accuracy
= Before attack

= After attack
= After implementing defending mechanisms

» Poisoning attacks can degrade the performance of the
OC-SVM classifier to a large degree, defending
mechanisms are necessary

» Accuracy after the sanitization process is pretty close
to the original accuracy
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Conclusions

» An approach to model and measure mutual similarities of multi-lateral collaboration relationships
» A framework to quantitatively assess and compare risk exposure of data exchange infrastructures
» A hybrid intrusion detection system

» A methodology to profile and discriminate running behaviors of a containerized algorithm

» A defence mechanism for poisoning attacks targeted machine learning based IDS
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