A policy compliance architecture for secure data sharing

University of Amsterdam Lu Zhang 16th June 2022

Main research question

How to select application-tailored infrastructure patterns and enhance policy compliance capabilities in a DDM infrastruct

- RQ1: How to map an application request to a best-fit digital infrastructure pattern based on collaboration models?
- RQ2: How to select an optimal digital infrastructure with minimum risk?
- RQ3: How to develop policy compliance detection components during execution?
- RQ4: How to defend against adversarial machine learning attacks for the monitoring components?

RQ1: Map application request to a best-fit infrastructure pattern

Lu Zhang "Management of collaborations in digital marketplaces" in proceedings of the 2019 International Conference on High Performance Computing and Simulation (HPCS 2019).

Lu Zhang, Reginald Cushing, Leon Gommans, Cees De Laat, and Paola Grosso, "Modeling of collaboration archetypes in digital marketplaces" in journal IEEE Access, DOI: 10.1109/ACCESS.2019.2931762

RQ1: Evaluation metrics of a DDM

- Provide a-priori information for DDM providers and potential customers
- Allow for comparison and intelligent selection of competing DDMs

RQ2: Select an optimal digital infrastructure with minimum risk

- Collaborative
- Application-based
- Robust
- Risk analysis-driven

Modified Microsoft STRIDE/DREAD model

Risk Attributes	Low (0)	Medium (5)	High(10)			
Damage Potential (DP)	Depending on sensitivity value of Data Object, Compute Object and Result Object (Low, Medium, High)					
Accessibility (AC)	Only by consortium party member	By involving party e.g. 3rd party	By outsiders			
Skill Level (SL)	Advanced skills	Malware existing in Internet or using attack tools	Simple tools			
Affected Users (AU)	One party member	Partial party members	All party members			
Intrusion Detectability (ID)	Detectable without monitoring	Detectable by monitoring	Very hard to detect by monitoring			

Policy compliance detection architecture

- Monitor the run-time behaviors of containerized applications with system call tracing
 - Profile Generation and Verification
 - Intrusion Detection System (IDS)
 - Sanitization

RQ3: Profile generation and verification

- Allow data owners or a DDM infrastructure provider to accurately identify which algorithms are running inside the container
 - Profiling of a container image with occurrence distribution of n-grams
 - Compute dissimilarity with Laplace smoothing and mutual cross-entropy

RQ3: Experimental Results

The confusion matrix of the classifier for 6 applications running with various platform OSs and training data sets

	APP 1	APP 2	APP 3	APP 5	APP 6	APP 7	mean (%) \pm std	
APP 1	1529	0	209	0	22	0	86.7 ± 0.15	
APP 2	0	1760	0	0	0	0	100 ± 0	
APP 3	0	0	1623	137	0	0	92.2 ± 0.15	
APP 5	0	0	61	1483	216	0	84.2 ± 0.21	
APP 6	0	0	0	0	1760	0	100 ± 0	
APP 7	0	0	0	0	0	1760	100 ± 0	
							93.85	

- The accuracy varies with applications
- Overall accuracy for all applications is as high as 93.85%.

Policy compliance detection architecture

- Monitor the run-time behaviors of containerized applications with system call tracing
 - Profile Generation and Verification
 - Intrusion Detection System (IDS)
 - Sanitization

RQ3: Hybrid real time Intrusion Detection System

- One Class Support Vector Machine (OC-SVM) for anomaly detection
- Model retraining to adapt to dynamic characteristics of the application behavior

RQ3: Experimental Results

TABLE III: AUC, TPR, FPR values of different applications and attacks.

Application	Attack	AUC	TPR	FPR
CouchDB	Execute Arbitrary Code	0.995	1	0.067
Mongodb	Brute Force	0.959	1	0.020
Image Classification	PGD BIM CW FAB MIFGSM PGDDLR Square TPGD	0.917 0.949 0.929 0.951 0.851 0.857 0.858 0.799	1 0.972 0.988 0.961 1 1 0.55	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

- > Optimal Configuration:
 - > Feature extraction with *tf*
 - Segmentation Length = 30000
 - Gaussian Kernel
- ➤ The attacks arbitrary code execution and brute force performed on dynamic applications are easier to detect.
- More difficult to detect adversarial ML attacks who generates the adversarial samples in the runtime

Policy compliance detection architecture

- Monitor the run-time behaviors of containerized applications with Linux system call tracing
 - Profile Generation and Verification
 - Intrusion Detection System (IDS)
 - Sanitization

RQ4: Sanitization with DBSCAN algorithm

- Clustering is done based on density, not related to shapes
- Deal with non-linear issues
- Do not require initial normal points
- Independent of machine learning algorithm and attack types

Lu Zhang, Reginald Cushing, Paola Grosso, "Defending OC-SVM based IDS from poisoning attacks" in Proceedings of the 2022 5th IEEE Conference on Dependable and Secure Computing (IEEE DSC 2022)

RQ4: Experimental Results

- We apply 3 classic label flipping attacks to a public dataset and measure the accuracy
 - Before attack
 - After attack
 - After implementing defending mechanisms
- Poisoning attacks can degrade the performance of the OC-SVM classifier to a large degree, defending mechanisms are necessary
- Accuracy after the sanitization process is pretty close to the original accuracy

Public Dataset

Conclusions

- > An approach to model and measure mutual similarities of multi-lateral collaboration relationships
- > A framework to quantitatively assess and compare risk exposure of data exchange infrastructures
- A hybrid intrusion detection system
- A methodology to profile and discriminate running behaviors of a containerized algorithm
- A defence mechanism for poisoning attacks targeted machine learning based IDS

THANK YOU AND ANY QUESTIONS?

www.dl4ld.nl www.dl4ld.net

