
Policy-Driven System Design
Mostafa Mohajeri
University of Amsterdam

CCI Meeting
Feb, 2022

Project: LICCAM

● Legal Intervention in Connected Cooperative Automated Mobility

● Creating a demo implementation of the system
○ Monitoring roads and autonomous vehicles

○ Able to reason about possible future high risk states

○ Able to reason about possibility of intervention

■ Through 3rd party controllers (OEMs)

○ The legal process is part of the technical process

● My goals:
○ Exercising policy design as part of system design

○ Focus: Utilizing agent-based models of actors to reason about policies

System/Policy
Model

Model
execution

Trace Analysis

Violation to
Regulations

Utility Analysis

Modifying
System/Policy

Target System Attributes

System
Under
Design

Socio-Technical

Regulated

Data-Intensive

Open

Software Actors: service providers, routers, sensors

Social Actor: organizations

Regulated Entities: Actors, Groups of Actors and the System (as whole)

Regulator Entities: Monitors, Enforcers, Auditors

All communications and their purpose are important

Existence of external world affecting and getting affected

Regulated Data-intensive
Socio-Technical Open System

actors

Regulations/Policies

(limited)
monitors

Dynamic

enforcers

Environment

regulators

Regulations/Policies dictate the behavior of regulator actors which changes the behavior of the system

Dynamic policy changes affect the behavior of the regulator actors which propagates to the system behavior

Norms framework

Communication
Protocol

Example Design Cycle

System Spec

MAS framework

Physical world
(Infrastructure)

Social World
(Actors)

Institutional world
(Norms)

Controllers (OEMs)
Car Owners
Gov agencies (RDW)

Traffic Regulations,
System policies

Network, Sensors

Model
Execution
via
Scenarios

Result Analysis

Re-Design

Policy Design
Artifacts

System Design
Artifacts

An Example Case: LICCAM

● Design: Applying the mentioned method in System/Policy design cycle

● Desired output: An executable model of the system containing:

○ Design artifacts

○ Policy artifacts

● The rest of the presentation is a recap of the experience

Initial System Spec

Initial ASC2 Model

+!try_intervention(Id,Car,Speed,Confidence) : Speed >= 120 =>
 T = #java.time.Instant.now().getEpochSecond;
 +case(Id,Car,Speed,Confidence,T);
 #coms.achieve("enforcer",intervene(Id,Car,Speed,Confidence)).

We can execute scenarios to verify the system

Decoupling the Environment

Execute less predictable scenarios

Traffic Simulation

ASC2 is protocol agnostic

We had very limited and predictable scenarios

Policies vs. Control

Policies become part of the system design

￼

Example: The OEM
should execute an
intervention within a
timeframe if there is a
warrant from oracle

The verification happens on the
model at design time where it is still
feasible

Policy and System design feedback
to each other

Policy
Design
Artifacts

System
Design
Artifacts

straightforward
non-functional
requirement

not so
straightforward
regulation

What is the
incentive?

What are the
punishments?

What is the
evidence?

The system as a whole
should be verifiable
against regulations by
using execution traces

Explicit (dynamic) Policies

To have a formal specification of policies

Some actors act based
on explicit norms,
specially actors with
dynamic policies

They change the system
behaviour by changing
policies

￼

Example 1: In normal
situations, a warrant for
intervention should be
issued only with
intention to stop a HIGH
RISK state

Example 2: In extreme
situations (terrorist
attack), a warrant can be
issued in any intention

Policy Design
Artifacts

System
Design
Artifacts

Complex
Decisions

Even monitoring the environment can create liability! even more in affecting it
Do we want this system?

Usability: Automated Tests

Conclusion

● Applied an ABM approach to System/Policy design cycle

● Policy and System design should be done together

○ They are affected by each other

○ They feedback to each other

■ e.g, need for evidence requires adding monitoring

● Just like software tests, compliance verification can not be an afterthought

○ More challenging to test and verify

○ Much more challenging to fix

Policy-Driven System Design
Mostafa Mohajeri
University of Amsterdam

CCI Meeting
Feb, 2022

Thank You! :)

● Questions?

