- >I<COMPLEX
Xl S \ — CYBER
% INFRASTRUCTURE

Policy-Driven System Design

Mostafa Mohajeri

University of Amsterdam

£<'gl,\ll(.\]
CCl Meeting Date
Feb, 2022
L] x
” TKI DINALOG i T H A L E S E BiZdesign cwna evo ‘ pre X Gemeente
’ﬁ ' é onn . x Amsterdam UNIVERSITEIT VAN AMSTERDAM
NWo. AIRFRANCE KL M ORACLE X TNO i

connecting busineas end science

Project: LICCAM

Legal Intervention in Connected Cooperative Automated Mobility
Creating a demo implementation of the system

(@)

(@)

(@)

(@)

Monitoring roads and autonomous vehicles
Able to reason about possible future high risk states
Able to reason about possibility of intervention
m Through 3rd party controllers (OEMs)
The legal process is part of the technical process

My goals:

(@)

(@)

Exercising policy design as part of system design
Focus: Utilizing agent-based models of actors to reason about policies

System/Policy
Model

Modifying Model
System/Policy execution

Utility Analysis Trace Analysis

Violation to
Regulations

Target System Attributes

I ——
Software Actors: service providers, routers, sensors
—[Socio-Technical]7
Social Actor: organizations
Regulated } Regulated Entities: Actors, Groups of Actors and the System (as whole)

System

Under

Design

Regulator Entities: Monitors, Enforcers, Auditors

Data-Intensive All communications and their purpose are important

—

Open Existence of external world affecting and getting affected

L L

—

Regulated Data-intensive
Socio-Technical Open System

actors

Dynamic

Al

-| regulators

Regulations/Policies

Dynamic policy changes affect the behavior of the regulator actors which propagates to the system behavior

Regulations/Policies dictate the behavior of regulator actors which changes the behavior of the system

Example Design Cycle

Communication
N |
Protocol

System Spec ——

Physical world

(Infrastructure) B | R

Controllers (OEMs)
Car Owners
Gov agencies (RDW)

Social World
(Actors)

Traffic Regulations,
System policies

Institutional world
(Norms)

Re-Design

C) D) (@
System Design Policy Design
Artifacts Artifacts

MAS framework

—> Result Analysis

Scenarios

Norms framework

An Example Case: LICCAM

e Design: Applying the mentioned method in System/Policy design cycle
e Desired output: An executable model of the system containing:

o Design artifacts

o Policy artifacts

e Therest of the presentation is a recap of the experience

Initial System Spec

| got this warrant, you okay with it?

[eo]

YES / NO v

Y

can we intervene?——4————>|

OEM

Normative Oracle
UVA

(—7ﬁ hYES / NO—5

with warrant I

Enforcing Agent |«

=

Highway DT
Simulation of future
behaviour

Monitoring Agent

please enforce!

feedback loop is helpful, to increase priority

(External)

\

T A

L ifyes, brake!—@

80km/h, every 5s +20km/h

80km/h

Initial ASC2 Model

+!'try intervention (Id,Car, Speed,Confidence) : Speed >= 120 =>
T = #java.time.Instant.now () .getEpochSecond;

+case (Id,Car, Speed, Confidence, T) ;
#coms.achieve ("enforcer",intervene (Id, Car, Speed, Confidence)) .

-\

enforcer monitor

sensor

set_speedeet_speed ’—sense_speed

Environment: A simplistic road

We can execute scenarios to verify the system

enfo’cer m

'

!register(jFtOESPSTW) |

!set_speed(150)

setting speed to:150

PP, S

PR P p—

lalert(car1,150,1.0)

Speed > 120: Intervention Required

PR, SeyR Ss ey [P

¥

lintervene(carl_1,carl,150,1.0)

PR O g g O e

Intervention: set_speed(90)

-
' OEM:oeml
| T

b
'
'+ !give_warrant(carl_1,carl,oeml, monitor,set_speed(90))
L -
. >
?confirm_alert(carl_1,carl) >
= '
true :
' 'I
!serve_warrant(carl_1,warrant(carl,oeml,set_speed(90),enforcer,oracle,oracle_1)) > :
e ' '
+intervention_validated(carl_1) : ‘
- ' .
' 1
?intervention_access(carl,warrant(carl,oeml,set_speed(90),enforcer,oracle,oracle_1)) '
U '
7.9 1
‘ ?validate_warrant(warrant(carl,oeml,set_speed(90),enforcer,oracle,oracle_1)) :
' '
, true "

e
<

e eelinoacaaaaonoge

'
1
[
i
'
'
1
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
1
'
'
1
'
1
'
'
'
'

?execute_command(set_speed(90),jFtOE8P5TW)

\

]

setting speed t0:90

Detected: carl, Speed:90

T o i I
AP e [e P

REREEEET ST

speed_changed(90,90)

0 SO . R R PR [

executed_command(set_speed(90),speed_changed(90,90))

<.
-

!close_case(carl_1,speed_changed(90,90))

sensorl monitor enforcer oeml oracle

'
'
1
'
'
'
'
'

Decoupling the Environment

We had very limited and predictable scenarios

oracle

ASC2 is protocol agnostic

Traffic Simulation

S i

Execute less predictable scenarios

{08}

Example: The OEM
should execute an

POliCies vs. Contr0l intervention within a

timeframe if thereis a
warrant from oracle

I ——
Q D Q)
4 System Policy
« Design Design
racte Artifact Artifact
The system as a whole facts acts
should be verifiable <
against regulations by straightforward not so
using execution traces non-functional straightforward
requirement regulation
eﬂl nt What is the
incentive?
~ What are the

punishments?
The verification happens on the

model at design time where it is still
feasible

What is the
evidence?

WY

Policy and System design feedback
to each other

Policies become part of the system design

{08}

Explicit (dynamic) Policies

eflint

Some actors act based
on explicit norms,
specially actors with
dynamic policies

Example 1: In normal /—\
situations, a warrant for > oracle
intervention should be

issued only with

intention to stop a HIGH
RISK state

They change the system
behaviour by changing

Example 2: In extreme . s
policies

situations (terrorist
attack), awarrant can be
issued in any intention

Q) (@)
S)éztierr? Policy Design — T X
9 Artifacts

Artifacts

To have a formal specification of policies

Complex [
Decisions

raffic Laws No

Violation?

No
Intervene?

Damage?

Damage?
Damage?

Damage?

Even monitoring the environment can create liability! even more in affecting it

Do we want this system?

Usabili

ty: Automated Tests

"An oracle" should {
"always issue a warrant if there are proper evidence" in {
val oem = agents("oeml")

// Send the request to oracle
agents("oracle").send(warrant_request('case_1","set_speed(90)","oeml1")).
// Intercept response

val message = oem.receiveMessage()

// Assert

assert(message isInstanceOf [GoalMessage])

assert(message toString startsWith "warrant(execute(set_speed(90),carl")

Seamless Integration and Testing
for MAS Engineering

jeri Parizi!, Giovanni Sileno!, and Tom van Engers!

te, University of Amsterdam, Amsterdam, the Netherlands
hjeriparizi,g.sileno,t.m.vanengers}@uva.nl

ing undeniably plays a central role in the daily practice
neering, and this explains why better and more efficient
vices are continuously made available to developers and
H the MAS developers community similarly benefit from
f-the-art testing approaches? The paper investigates the

Mostafa Mohajeri Parizi

m.mohajeriparizi@uva.nl

H H Informatics Institute, University of Amsterdam
C I rC e c I Amsterdam, the Netherlands
Tom van Engers
vanengers@uva.nl

Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

®
Abstract
V I The paper introduces an Agent-Oriented Programming (AOP)

framework based on the Belief-Desire-Intention (BDI) model
of agency. The novelty of this framework is in relying on

the Actor model, instantiating each intentional agent as an
ry i 9 L ¥y Tl loi L.

Run, Agent, Run! Architecture and
® Benchmarking of Actor-Based Agents

Giovanni Sileno
g.sileno@uva.nl
Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

Sander Klous
s.klous@uva.nl
Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

1 Introduction

Agent-based models have an intuitive mapping to behavioural
descriptions, and for this reason are extensively used for
modeling and simulations of social systems. However, agent-

based programming is not only relevant for simulation. Data-
o} infs dicital 3 1 Lihis th,

Conclusion

e Applied an ABM approach to System/Policy design cycle
e Policy and System design should be done together
o They are affected by each other
o They feedback to each other
m e.g needfor evidence requires adding monitoring
e Just like software tests, compliance verification can not be an afterthought
o More challenging to test and verify

o Much more challenging to fix

- >I<COMPLEX
Xl S \ — CYBER
% INFRASTRUCTURE

Policy-Driven System Design

Mostafa Mohajeri

University of Amsterdam

£<'gl,\ll(.\]
CCl Meeting Date
Feb, 2022
L] x
” TKI DINALOG i T H A L E S E BiZdesign cwna evo ‘ pre X Gemeente
’ﬁ ' é onn . x Amsterdam UNIVERSITEIT VAN AMSTERDAM
NWo. AIRFRANCE KL M ORACLE X TNO i

connecting busineas end science

Thank You! :)

e Questions?

