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Project: LICCAM

● Legal Intervention in Connected Cooperative Automated Mobility

● Creating a demo implementation of the system
○ Monitoring roads and autonomous vehicles

○ Able to reason about possible future high risk states

○ Able to reason about possibility of intervention

■ Through 3rd party controllers (OEMs)

○ The legal process is part of the technical process

● My goals:
○ Exercising policy design as part of system design

○ Focus: Utilizing agent-based models of actors to reason about policies
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All communications and their purpose are important
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Regulations/Policies dictate the behavior of regulator actors which changes the behavior of the system

Dynamic policy changes affect the behavior of the regulator actors which propagates to the system behavior
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An Example Case: LICCAM

● Design: Applying the mentioned method in System/Policy design cycle

● Desired output: An executable model of the system containing:

○ Design artifacts

○ Policy artifacts

● The rest of the presentation is a recap of the experience



Initial System Spec



Initial ASC2 Model

+!try_intervention(Id,Car,Speed,Confidence) : Speed >= 120 =>
   T = #java.time.Instant.now().getEpochSecond;
   +case(Id,Car,Speed,Confidence,T);
   #coms.achieve("enforcer",intervene(Id,Car,Speed,Confidence)).

We can execute scenarios to verify the system





Decoupling the Environment

Execute less predictable scenarios

Traffic Simulation

ASC2 is protocol agnostic

We had very limited and predictable scenarios



Policies vs. Control 

Policies become part of the system design 

￼

Example: The OEM 
should execute an 
intervention within a 
timeframe if there is a 
warrant from oracle

The verification happens on the 
model at design time where it is still 
feasible

Policy and System design feedback 
to each other
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not so 
straightforward 
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What is the 
incentive?

What are the 
punishments?

What is the 
evidence?

The system as a whole 
should be verifiable 
against regulations by 
using execution traces



Explicit (dynamic) Policies

To have a formal specification of policies

Some actors act based 
on explicit norms, 
specially actors with 
dynamic policies

They change the system 
behaviour by changing 
policies 

￼

Example 1: In normal 
situations, a warrant for 
intervention should be 
issued only with 
intention to stop  a HIGH 
RISK state  

Example 2: In extreme 
situations (terrorist 
attack), a warrant can be 
issued in any intention
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Complex 
Decisions

Even monitoring the environment can create liability! even more in affecting it
Do we want this system?



Usability: Automated Tests



Conclusion

● Applied an ABM approach to System/Policy design cycle

● Policy and System design should be done together

○ They are affected by each other

○ They feedback to each other

■ e.g, need for evidence requires adding monitoring

● Just like software tests, compliance verification can not be an afterthought

○ More challenging to test and verify

○ Much more challenging to fix
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Thank You! :)

● Questions?


