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Abstract—A Digital Data Marketplace (DDM) is a digital
infrastructure to facilitate policy-governed data sharing in a se-
cure and trustworthy manner with container-based virtualization
technologies. An intrusion detection systems (IDS) is essential to
enforce the policies. We propose a real-time intrusion detection
system that monitors and analyzes the Linux-kernel system
calls of a running container. We adopt the One-Class Support
Vector Machine (OC-SVM) to detect anomalies. The training
data of the OC-SVM algorithm is collected and sanitized in a
secure environment. We evaluate the detection capability of our
proposed system against modern attacks, e.g. Machine Learning
(ML) adversarial attacks, with a customized attack dataset. In
addition, we investigate the influence of various feature extraction
methods, kernel functions and segmentation length with four
metrics. Our experimental results show that we can achieve a low
FPR, with a worst case of 0.12, and a TPR of 1 for most attacks,
when we adopt the term-frequency feature extraction method
and we choose segmentation length of 30000. Furthermore, the
optimal kernel functions depends on the concrete application
being examined.

Index Terms—Data sharing, Intrusion Detection, Anomaly
Detection, OC-SVM

I. INTRODUCTION

A Digital Data Marketplace (DDM) is a digital infras-
tructure that facilitates secure data exchange and federation.
For instance, different DDM parties may want to gather
their local data together and run a machine learning (ML)
algorithm on their joint data, so that they can gain benefits
from a more accurate prediction model. Those parties could
be competing, so they concern about the confidentiality of
their data and whether the computing result is trustworthy [1],
[2]. In a DDM, there is a unique identifier for each data and
compute object. The parties agree on permissible actions on
specific data and compute objects and express them into a
policy [3]. The compute objects are containerized for better
portability. Containers are operating system level virtualization
abstractions. A container image is a lightweight, executable
package including source code, program runtime and libraries

[4].
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The DDM infrastructure implements policy enforcement
components to mitigate possible vulnerabilities faced by such
data exchange applications. For example, most ML models are
vulnerable to adversarial attacks, which degrades the model
performance by modifying training samples in the runtime [5].
Container technology also creates new vulnerabilities, such
as container escalation attack [6]. Preventive countermeasures
must be implemented as the first line of defense. However,
attackers will keep developing novel techniques to bypass
the existing security mechanisms. Hence, a real-time intrusion
detection system (IDS) is essential for such digital infrastruc-
tures.

The system call is an interface between an application and
Linux kernel and is a widely used monitoring metric for intru-
sion detection. System calls are used by user-level applications
for various reasons including file management, process control,
device management and communication. These system calls
give us a way to monitor what user-level applications are
doing. An IDS can be mainly classified into two categories,
namely, signature-based and anomaly-based. The signature-
based IDS detects attacks by matching the monitoring metrics
with existing patterns. Consequently, it can not identify zero-
day attacks. An anomaly-based IDS learns a profile describing
normal behaviors and flag a potential attack if a sufficient
deviation from the normal profile occurs [7].

We propose a hybrid real-time intrusion detection system
with system calls generated by a running container. We adopt
One Class Support Vector Machine (OC-SVM) as the anomaly
detection algorithm due to its capability of dealing with com-
plex non-linear problems. To detect malicious behaviors in a
real-time manner, the streaming system calls are separated into
segments before being mapped into feature vectors. Then we
apply the signature-based methodology to reduce false alarms.
For each compute object, an anomaly detection algorithm
is trained if it was used for the first time. Adapting to
the dynamic characteristics of the application behavior, the
anomaly detection algorithm is retrained whenever new data



is available. It is vital to ensure that both training and retraining
data are attack-free. In our proposed system, the training data
is collected in a secured environment and retraining data is
analyzed and sanitized.

We also evaluate how the OC-SVM algorithm works for
detecting anomalies with system call traces. The performance
highly depends on the statistical distribution of the attack
traces and modern attacks are more difficult to distinguish
[8]. We construct a new dataset including system call traces
of modern container-specific attacks and adversarial ML at-
tacks. Three numeric metrics are measured to evaluate the
performance, namely, True Positive Rate (TPR), False Positive
Rate (FPR) and Area under the ROC curve (AUC). We also
investigate how the different feature extraction methods, kernel
functions, segmentation lengths, influence the IDS perfor-
mance.

In Section II we compare our system and methodology
with existing ones. We present the full architecture of our
system in Section III. The details of the Detection Engine
(DE) are explained in Section IV. Section V and Section VI
present the constructed dataset and the experimental setups.
Our results, analysis and conclusions are discussed in Section
VII, SectionVIII and Section IX.

II. RELATED WORK

There is a large amount of literatures using system calls to
detect potential malicious behaviors.

The work in [9] was one of the first to use system call
traces to characterize the behaviors of a running program.
It builds a dataset of normal behaviors with a fixed length
system call subsequences. After this, a test trace is identified as
anomalous if the number of mismatch subsequences exceeds a
user-defined threshold. The problem with this approach is that
it lacks generalization and consumes huge storage capacity.
The work in [10] uses system call to model the normal profiles
as a Hidden Markov Chain (HMM), but tuning parameters of
an HMM is extremely time consuming.

Recently, machine learning techniques have started to also
be widely used for building anomaly-based IDS. The work
in [11] proposes an IDS with K-nearest-neighbor (KNN)
algorithm and evaluates the performance with the DARPA
dataset. This approach does not require a separate profile for
each program but the detection accuracy for novel attacks is
only 75%. The work in [12] uses ngrams as feature vectors
and compares multiple learning algorithms, namely, Support
Vector Machine (SVM), Multilayer Perceptron (MLP) and
Naive Bayes. They evaluate the performance with the ADFA-
LD public dataset and observed that SVM outperforms the
other two. There are also work that similarly to ours use OC-
SVM as underlying technique. [13] evaluates the performance
of the OC-SVM algorithm with different kernel functions
also with the ADFA-LD public dataset. The work shows
that OC-SVM can gain satisfactory performance with low
computational cost. [14] proposes an OC-SVM based anomaly
detection system using frequency distribution of various length

n-grams as the feature vector. They also conclude that OC-
SVM outperforms sequential anomaly detection models with
the ADFA-LD dataset. However, both works fail to address
the real time requirement of modern IDS systems, which we
do cover in our work.

III. SYSTEM DESCRIPTION

Figure 1 describes the architecture of our proposed real-time
intrusion detection system based on OC-SVM. In general, the
training stage is conducted offline in a secured environment, a
authorized party, in a centralized manner and then distributed
to the endpoint execution platform, for real time anomaly
detection. The centralized authorized party consists of an
Initial Training module, an Integrity Verification and Retrain-
ing module and a Model Database. The Endpoint Execution
Platform contains a System Call Monitoring module and a
Decision Engine.
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Fig. 1: The architecture of the intrusion detection system.

Before delegating a data exchange application to a DDM,
the collaborating parties first agree on a policy describing
permissible actions on the data and compute objects. The
policy and compute objects are sent to a trustworthy au-
thorized party. The security experts check the source code
manually and verify whether it complies with the policy. Then
the authorized party generates the initial training data and
trains the anomaly detection algorithm. This ensures that the
training data is clean and not contaminated by adversaries.
Both the pre-trained detection model and verified compute
objects are sent to the endpoint execution platform via a
secured communication channel. The authorized party signs
and encrypts the pre-trained detection model and the compute
object, normally a container image, with the public key of the
endpoint execution platform to ensure integrity.

On the endpoint execution platform, the containerized com-
pute object may perform operations on the data objects agreed
in the policy. The system call monitoring module gathers the



system call traces with Sysdig. It sends the streaming system
calls to the Detection Engine module. This module detects
anomalies with the pre-trained OC-SVM model and decides
whether it is necessary to apply countermeasures. The details
of this module will be discussed in Section IV.

In the meantime, the System Call Monitoring module also
sends the system calls back to the authorized party for model
retraining if needed. The behaviors of some applications are
dynamic in nature, so it is necessary to retrain the model
periodically. The Integrity Verification and Retraining module
checks the integrity of the received system call traces and
verifies whether they are attack free. The same anomaly
detection model, with exactly the same parameters, is run in
parallel with the received streaming system call traces in the
authorized party. The receiving system calls are recognized
as attack-free if the alarm rate is close to the recorded FPR
value of this model in the initial training. Then these system
call traces are allowed to retrain the model. We adopt this
mechanism to reduce the likelihood that the model is retrained
with contaminated samples.

IV. DETECTION ENGINE

The Detection Engine (DE) is comprised of three com-
ponents: a Pre-Processing Module, an Anomaly Detection
module and an Anomaly Analysis model.

A. Pre-processing Module

When the container runs, the System Call Monitoring mod-
ule captures the system calls and passes them to the Pre-
processing module. This divides the streaming system calls
into segments with a fixed window size: this is needed because
the inputs of the classic ML algorithms are fixed length
vectors. Furthermore this segmentation allows us to perform
our detection while the systems calls are coming in real time.

The Pre-Processing module also maps these segments sys-
tem call traces into vectors in the feature space. In our work we
considered three feature extraction methods, namely tf, #f-idf
and ngram. We will describe them in more detail in Section
VI-B

B. Anomaly Detection Module

A pre-trained IDS learning algorithm is running in the
Anomaly Detection module and determines whether an input
feature vector is anomalous or not. Here we adopted One-
class Support Vector Machine (OC-SVM) as the IDS learning
algorithm. Our choice stems from the fact that OC-SVM is
good at dealing with complex non-linear problems. This results
in it being widely used for intrusion detection systems [13].

The general idea of an SVM algorithm is to find a hy-
perplane that separates the normal and abnormal data points
with a maximized geometry margin by solving an optimization
problem. It maps the input data points into a new feature space
of higher or even infinite dimensions with kernel functions.
Therefore, the original linearly non-separable data patterns
may be converted into, with high likelihood, linearly separable
patterns in the high dimensional space [15].

Similar to standard SVM, the OC-SVM also aims to find
a decision boundary with a maximum geometry margin [16].
However, it is an unsupervised learning algorithm and does not
require any labeled training data. This is suitable for usage in
anomaly detection, where training datasets are normally unbal-
anced. The OC-SVM algorithm considers the anomalous data
points to be close to the origin, while the normal data points
are far from the origin. It uses a spherical decision boundary
instead of a plane in the higher-dimension feature space [17].
The algorithm aims to find a sphere with minimal volume that
contains the most normal data points. The objective function
is:
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The spherical decision boundary is characterized with its
center @ and the radius R. X; is the ith training data in
input space I and N is the total number of training samples.
®() denotes a feature map from the input space I to a high-
dimensional feature space F'. &; is a slack variable to prevent
over-fitting from some noisy data points by creating a soft
margin. It allows some data points to lie within the margin.
C is a constant to determine the trade-off between the sphere
volume and the number of data points it can hold.

A kernel function is defined as:

K(X;, X;) = ®(X;) - &(X;)" )

Given two data points X;, X;, the output of the kernel
function is the dot product of their mapping in new space F'.
As the decision boundary of an SVM algorithm only relies on
the dot product in feature space F, the explicit projection is not
necessary. In our work, we chose two popular kernels, linear
and Gaussian, to evaluate the performance of our system. The
details will be discussed in section VI-C.

C. Anomaly Analysis Module

The Anomaly Analysis module analyses the anomalies
identified by the Anomaly Detection module and provides
information to the security experts determining whether to take
countermeasures or not. For an input segment tracefile, which
is flagged as an anomaly, this module conducts the following
operations:

e Match the system call sequences with existing attack
database;

o Check the neighboring segments of system call traces and
determine whether this is a standalone anomaly or not;

An identified anomaly is recognized as standalone if all
the data points in the neighboring area (/N points before and
N points after) are identified as normal. Ny is an adjustable
parameter to define the range of the neighboring area of a data
point. The Anomaly Analysis module assigns each anomaly



a level based on the outcomes of the above operations. An
anomaly is marked as "High’ if the traces match any existing
attack in the database. An anomaly is marked as "Low” if it
is a standalone point. The remains are marked as "Medium”.
The detailed matching approach and its performance has been
explained in our previous paper [18]. The effectiveness of
recognizing standalone points will be discussed in Section
VIIL.

V. EXPERIMENTAL DATASET CONSTRUCTION

The emerging microservices pose many challenges for real-
time intrusion detection systems, due to their highly dynamic
natures. Also, the performance of IDS learning algorithms
highly depends on the statistical properties of the training
dataset. When starting our evaluation we found out that there
are currently no public databases containing system call traces
of container-specific applications or attacks. We therefore
set out to construct our own training dataset, in order to
validate how oc-svm works for detecting modern attacks for
containerized applications.

To tailor our work to the DDMs we first identified the most
typical applications expected to run in such environments:
databases services and training machine learning models are
the most likely type of use cases. The former are examples
of dynamic applications with many users interacting with the
system; the latter are more static applications that do not have
many users involved and have a more constant execution path
every time. For each one of them we implement an attack with
penetration tools which provides us with a suitable dataset.

A. Dynamic Applications: CouchDB and MongoDB

As example of dynamic applications we select two
NoSQLMap databases, CouchDB and MongoDB, to inves-
tigate the performance of the proposed intrusion detection
system.
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Fig. 2: Platform for generation of normal and abnormal traces
for dynamic applications (CouchDB and MongoDB).

Figure 2 shows the experimental platform we built for
generating normal and abnormal system call traces. To avoid
the inferences of other user activities, we set up a Docker
container running CouchDB or MongoDB server in a virtual
machine (VM1). Sysdig is implemented in the kernel space to
collect system call traces generated by the running container.

To simulate the dynamic behaviors of real-world database
users, we send requests to the container from the same virtual
machine (VM1). This is conducted with Apache JMeter, which
is an open-source workload generation tool. For abnormal
traces, we conduct attacks with exploitation tools, e.g Nmap
and Metasploit, in another virtual machine (VM2).

For CouchDB, we use the HTTP sampler of JMeter. This
sampler enables choosing the proper HTTP traffic types, e.g
GET or POST. For MongoDB we use JSR 223 Sampler of
JMeter to generate the traffic. Web requests are sent to the
server to induce database operations. For each application,
there are two threads in JMeter, thread 1 and thread 2,
which send requests to the containerized server simultane-
ously. Thread 1 includes 100 users, who perform operations
of inquiring documents and basic information in different
databases. Thread 2 includes 3 users, who perform operations
including updating, creating and deleting databases. While
JMeter is generating dynamic traffic, Sysdig monitors the sys-
tem calls of the server container, which is used as the normal
traces of the application. Table I shows the information of
the performed attacks and tracefile sizes for the two dynamic
applications.

B. Static Application: Machine Learning (ML) Applications

Another common application for DDM is to train a ML
learning model with data from multiple parties. We chose
image classification with Concurrent Neural Networks (CNN)
with MINST dataset to validate the performance of our
anomaly detection system.

Recent research shows that deep learning algorithms are
vulnerable to adversarial attacks. [19]. This attack generates
adversarial training samples in the runtime. The adversarial
samples are nearly unnoticeable for humans but can fool
the model with high confidence. There are a number of
adversarial sample generation approaches in the literature [20].
Concretely, we adopted the Projected Gradient Descent (PGD),
Basic Iterative Method (BIM), Carlini and Wagner (CW), Fast
Adaptive Boundary (FAB), multiple steps fast gradient symbol
method (MIFGSM), PGDDLR, Square and TPGD method to
generate adversarial samples [21].

The ML algorithms is encapsulated with a Docker container.
For normal traces of the application, Sysdig collects system
calls for the entire training stage. For abnormal traces, Sysdig
gathers system calls when the block of code, which generates
the adversarial samples, is executed. Table II shows the in-
formation of the performed attacks and tracefile size for the
image classification application.

VI. EXPERIMENTAL DESIGN

In this section, we implement the proposed architecture and
evaluate its performance. The key question we want to answer
is: How does the OC-SVM based DE perform for detecting
modern attacks?

More precisely, we want to investigate the influence of
different feature extraction methods, different kernel functions
and different segmentation lengths.



TABLE I: Applications and attacks of the constructed dataset for the two dynamic applications

Application  Attack Exploitation Tool ~ Jmeter Sampler Number of System Call Symbols
Normal Abnormal

CouchDB Container Escalation + Execute Arbitrary Code = Metasploit HTTP Sampler 7458046 5199817

MongoDB Brute Force Nmap JSR 223 Sampler 40463150 4449052

TABLE II: Applications and attacks of the constructed dataset for the ML static application

Application Attacks Exploitation Tool =~ Number of System Call Symbols
Normal Abnormal
Adversarial ML: PGD 4360000
Adversarial ML: BIM 960967
Adversarial ML: CW 4728113
. Adversarial ML: FAB . 1394676

Image Classification Adversarial ML+ MIFGSM Proof of Concept 2798258 118007
Adversarial ML: PGDDLR 466024
Adversarial ML: Square 182813
Adversarial ML: TPGD 87884

The experiments are conducted with the dataset discussed
in Section V. OC-SVM is an unsupervised learning algorithm;
the model is trained with only normal data and tested with
both normal and abnormal data. To avoid over-fitting, in our
experiments we use K-fold (KX = 10) cross validation. We
first shuffle the normal data points randomly and split them
into K folds. For each interaction k € [1, K], one fold of
the normal data points and all the abnormal data points are
used for testing. The remaining 9 folds are used for training
the model. After K interactions, every fold has been used
once for testing. The final value of the evaluation metric is
the average of K values [22].

We deployed our experiments in a VM equipped with 4 CPU
cores at 2.9 GHz and 16 GB memory. The OS is Ubuntu 18.04
LTS, kernel 4.15.0.

A. Segmentation Length

As already discussed in Section III, the streaming
system calls are divided into segments to achieve detection
results in the real time. The window size that segments
the trace is called segmentation length and denoted
as Lg. Hence a trace of L system call symbols can
be spit into |L/Ls| + 1 segments. To investigate the
influence of different segmentation lengths, we set Ly €
{1000, 2000, 5000, 10000, 15000, 20000, 25000, 30000, 50000}.

B. Feature Extraction

Three feature extraction methods are used in our exper-
iment, namely term-frequency (zf), term frequency-inverse
document frequency (#f-idf) and ngram. We use S to denote
a system call symbol, T to denote the trace of a segment.
tf(S,Ts) denotes the weight of symbol s in trace T and is
computed as the occurrence frequency.

count of symbol S in Ty

tf(S7 TS) = 3)

count of system calls in Ty

tf-idf also considers how rare a system call symbol occurs
in an entire trace set. We use 7T to represent the entire trace
set and N7 to represent the total number of traces in 7. The
tf-idf of a symbol s is the product of term-frequency and the
inverse-document frequency of that symbol.

tfidf (s, Ts,T)) = tf (s, T5) - idf (s, T)

‘ Nr
idf(s,T) = ZOQ(count(Ts eT:seTs)+ 1)

ngram captures the sequential information of system call
traces. A trace is divided into fixed length sub-sequences,
called n-grams, with a sliding window of length n. The feature
vector is essentially the distinct n-grams weighted by their
occurrence frequency. In our experiment, we use n equal to 3.

“4)

C. Kernel Functions

We use two kernel functions for the OC-SVM learning
algorithm in our experiment, namely linear and Gaussian. As
described in Equation 2, the kernel function computes the
dot product of two feature vectors in feature space F' with
a function of vectors in input space I. Let X; and X; be two
feature vectors in input space I. The linear kernel is simply
the dot production of X; and Xj.

K(X;, X;) = X+ (X5)" (5)
The Gaussian kernel is computed as following:
2
X, — X,
K(X,L',Xj) :exp(—u) (6)

202
D. Evaluation Metrics

To evaluate the performance of the DE, we measure four
metrics, namely true positive rate (TPR), false positive rate
(FPR), area under the ROC curve (AUC) and execution time.

The values of TPR and FPR are calculated as following:

TP

TPR= ——
i TP+ FN

(7
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" TP+FP

TP (true positive) indicates the number of anomalies that are
classified correctly. FN (false negative) indicates the number
of anomalies that are not detected by the classifier. FP (false
positive) represents the number of normal samples that are
classified as anomalies.

A ROC curve is a graphical plot that illustrates the perfor-
mance of a classifier with different discrimination thresholds.
This curve plots TPR (y-axis) against FPR (x-axis). The OC-
SVM algorithm essentially does not provide any probability
score. In the experiment, we approximate the score as a
function of the distance from the input data point to the
decision boundary. AUC measures the total 2-dimensional
area under the ROC curve. It summaries the information of
the ROC curve and measures the capability of a classifier to
distinguish between positive and negative classes. The higher
the AUC value, the better performance a classifier can achieve.
The AUC value ranges from 0 to 1 and the classifier is perfect
it AUC = 1.

FPR ®)

VII. PERFORMANCE OF ANOMALY DETECTION MODULE

We focused our attention to the evaluation metrics, namely
TPR, FPR, AUC and execution time, of the Anomaly Detection
module. In Figure 3 we show their values for different kernels
and feature vectors as function of the segmentation lengths. In
Table III we evaluate the same metrics for different applica-
tions and attacks.

1) Comparison among different segmentation length: The
choice of a specific segmentation length is part of the DE
configuration and it is important for us to determine what is
the impact of its value.

As shown in Figure 3, both TPR and FPR values show a
growing trend with larger segmentation length values for all
applications and features. The TPR converges at a specific
point with a value close to or equal to 1. The performance of
the Anomaly Detection model degrades with higher FPR if the
segmentation length exceeds that point. The performance of
the DE degrades significantly with an improper segmentation
length, particularly in the region of lower values. It is therefore
vital to choose the most appropriate value.

We observe that there is a segmentation length which can
provide optimal performance for the module. According to
the experimental results of the three applications we used, the
optimal segmentation length is 30000.

2) Comparison among different features and kernels: As
seen in Figure 3, the feature #fidf performs significantly worse
than the ngram and tf features for all applications. In the worst
case, the FPR values can be as high as 0.78, 0.91, 0.92 and the
TPR values can be as low as 0.38, 0.42, 0.15 for CouchDB,
MongoDB and Image Classification respectively. This is not an
acceptable performance of an IDS and there are two possible
explanations. Firstly, we must observe that the idf factor is
extracted from only the training dataset to avoid information
leakage. A distortion will occur when applying it to the testing
dataset, especially for the abnormal data. Secondly, our results

TABLE III: AUC, TPR, FPR values of different applications
and attacks.

Application Attack AUC TPR FPR
CouchDB Execute Arbitrary Code 0995 1 0.067
Mongodb Brute Force 0959 1 0.020
PGD 0917 1 0.12

BIM 0949 0972 0.12

Ccw 0929 0988 0.12

Imace Classification FAB 0951 0961 0.12
€ HEation — MIFGsM 0851 1 0.12
PGDDLR 0857 1 0.12

Square 0.858 1 0.12

TPGD 0.799 0.5 0.12

indicate that the rareness of a syscall symbol across traces
in the entire dataset (measured with idf) is not an effective
indicator for real anomalies (intrusions).

ngram and tf produce nearly identical results along various
segmentation lengths for a given kernel.

To determine the preferred feature vector we focused our
attention to the execution for both of them. Figure 3d illustrates
the execution time of training the model with ngram and tf
features for all 3 applications with the ideal segmentation lengt
of 30000. The execution time includes parsing the raw traces,
extracting features, training and testing the model. The Image
Classification with feature #f and linear kernel takes minimum
time and we use it as the basic time unit Ty (T = 8.2s).
All the execution times are represented as multiples of Tj.
As shown in Figure 3d, ngram always takes a longer time
compared to #f for each application and the time difference is
positively related to the number of system call symbols (see
Table I and Table II).

Given our results, we can conclude that the feature #f is
the best choice since it provides almost the best detection
performance with a lower workload.

The optimal kernel mainly depends on the spatial distri-
bution of the normal (application traces) and abnormal data
points (attack traces) in the input space I. Linear kernel works
better if the data points are essentially linearly separable and
vice versa.

3) Comparison among applications and attacks: Table III
summarizes the AUC, TPR and FPR values of the OC-SVM
algorithm for all applications and attacks described in Section
V. The OC-SVM model is trained with ¢f feature extraction
method and Gaussian kernel. The segmentation length is set
to 30000. We chose these parameters because they are the
optimal choices according to our discussion in Section VII-1
and Section VII-2.

The attacks arbitrary code execution and brute force per-
formed on dynamic applications are easier to detect. The DE
is able to detect 100% of attacks at a FPRof 6.7% for arbitrary
code execution and 2% for brute force. The AUC values can
reach as high as 0.995 and 0.959.

It is more difficult to detect adversarial machine learning
attacks because the distinctions between normal and anoma-
lous traces are weak. For the Image Classification application,



£ = e e
e > PR linear_TF FPR_bI_TFIDF
° ® PR TF
5 o FPR_1bf_TF
o« @ TPRincar TFDF *® TPR
Q- o4 == FPR linear TFIDF  *X FPR_rbf N_GRAM
[ Liinear IO
02
__________ ooonons

o«
- &= PR inear TF TPR_1bLTFIOF
e = o inear TF FPR_bI_TFIDF
o ® R @ TPr_inear N_GRAM
S > FPR_rbf TF > for
o« @ TPRincar TFDE *® TPR_bN_GRAM
Qo4 == FPR_linear THIDE 4 FPR_1bf_N_GRAM
[
02 3
v ..x.a*"*‘-‘-r,_ mmmmmmAnmm e
o ——— - o
- e
ot LIS /

20000 30000 20000 50000
Segment Length (# system call)

(c) Image Classification and Adversarial ML Attack (PCA)

= PR bl TF
=@~ TPR_inear TFIDF
== FPR inear TADF  *X

TPR and FPR

(b) MongoDB and Brute Force Attack

& 27 mmm N_GRAM_linear

= TF_linear
. N_GRAM_rbf
pos4 . TF_rbf
50
026 908
©
20
10 913 8.7
212 [ o6 193 | s
o | BN S

MongoDB CouchDB Image Classification

Execution Time (To)

(d) Execution Time

Fig. 3: The FPR and TPR values (Figure 3b, 3a, 3c) and execution time (Figure 3d) of the OC-SVM with different segmentation
lengths, features and kernel functions. The TPR values are shown as circles and the FPR values are shown as crosses.

the FPR is relatively high (12%). The TPR rate varies with
different adversarial sample generation methods. For PGD,
MIFGSM, PGDDLR and Square, 100% of the attacks can be
detected. However, only 55% attacks of TPGD can be caught
by the DE of the IDS.

VIII. PERFORMANCE OF ANOMALY ANALYSIS MODULE

We evaluated the effectiveness of the Anomaly Analysis
module discussed in Section IV-C. The Anomaly Analysis
module recognizes the standalone anomalies and we measured
the TPR and FPR values before and after filtering out those
standalone anomalies. Figure 4 shows the metrics for differ-
ent segmentation lengths for the MongoDB application with
feature #f and linear kernel.

As shown in Figure 4, the TPR values are equal to 1 for all
segmentation lengths before and after filtering. This indicates
there is no additional performance loss, in terms of TPR, after
filtering.

The FPR values drop significantly. The original FPR ranges
from 0.013 to 0.021 with various segmentation lengths. After
filtering, the maximal FPR (with segmentation length equal
to 50000) is only 0.014. The values can even reach 0 when
optimal segmentation length is chosen.
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Fig. 4: The TPR and FPR values as function of the segmen-
tation length before and after filtering standalone anomalies
in the case of the MongoDB application with #f feature and
linear kernel

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an intrusion detection system
based on OC-SVM that monitors and analyzes system calls.
For each uniquely identifiable compute object, an IDS model is



trained centrally in an authorized party and distributed to local
nodes via a secure channel. An anomaly analysis model was
implemented to reduce false alarms of the system. A dataset
was established containing system calls for one container
escalation attack, one brute force attack and a number of
adversarial ML attacks.

The experimental results demonstrated that the OC-SVM
algorithm can successfully detect modern attacks with satis-
factory FPR, ranging from 0.02 for the brute force attack up
to 0.12 for adversarial ML attacks. In addition, we observed
that the system gains the optimal performance with feature
extraction method term-frequency with TPR equal to one
for large part of our attacks. Furthermore, the choice of
segmentation length is vital. The system performance degrades
significantly if the segmentation length is too small. For the
applications we examined the optimal segmentation length is
30000 in terms of number of system call symbols. In addition,
we observed that the optimal kernel functions are application
dependent.

In the future, we aim to detect intrusions of distributed
applications by monitoring multi-dimensional metrics, e.g. the
network traffic among nodes of an application and CPU usage.
This will allow us to achieve richer information and detect
malicious behaviors more accurately. In addition, we want
to extend our system to be able to apply countermeasures
automatically based on the output of the DE module.
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