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Abstract. Normative positions are sometimes illustrated in diagrams, in particular
in didactic contexts. Traditional examples are the Aristotelian polygons of opposi-
tion for deontic modalities (squares, triangles, hexagons, etc.), and the Hohfeldian
squares for obligative and potestative concepts. Relying on previous work, we show
that Hohfeld’s framework can be used as a basis for developing several Aristotelian
polygons and more complex diagrams. Then, we illustrate how logical theories of
increasing strength can be built based on these diagrams, and how those theories
enable us to determine in a computably efficient way whether a set of normative
positions can be derived from another set of normative positions.
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Introduction

Diagrams are acknowledged to be effective instruments for didactic purposes: they are
commonly used to illustrate in an intuitive and accessible way the most various concep-
tual models, procedures, systems. Examples abound in engineering and theoretical sci-
ences, but archetypes of diagrams include also the Aristotelian square of opposition [1]],
used in philosophical, linguistic, literary, and semiotic studies; and, within legal studies,
the two squares of fundamental normative relationships due to Hohfeld [2l/3]. Reference
to regular shapes may be not by chance; cognitive studies show that symmetries facil-
itate perception of structure, memorization and recall [4]]. Indeed, the motivating intu-
ition behind this research is that diagrams may be useful to create user-friendly inter-
faces for the analysis of legal/contractual constructs. Rather than inspecting hundreds of
sentences in the text of a contract, a subject may more easily figure out her normative
relations (duties, rights, etc.) with the other parties by navigating or exploring a diagram-
construed model. One may also ask whether these diagrams have similarly interesting
computational properties; if this is the case, unveiling diagrammatic theories may benefit
on multiple levels. For this reason, the present work focuses on the computational treat-
ment of Aristotelian diagrams to represent normative positions, building upon previous
interpretations of Hohfeld’s squares relating these two types of diagrams [[S16/7/8/9].
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Figure 1. The two Hohfeldian squares: (left) the deontic square, (also obligative or of the
first-order), and (right) the potestative square (or of the second-order).

The paper proceeds as follows. Section 1 introduces the notion of a normative po-
sition, the two Hohfeldian squares, and the notion of an Aristotelian diagram. Section
2 provides a formal language to encode normative positions and, reorganizing and ex-
tending previous results in [8], analyses the representation of Hohfeld’s deontic square
and of three versions of Hohfeld’s potestative square (change-centered, force-centered
and outcome-centered) in terms of Aristotelian diagrams. Section 3 shows how to de-
velop logical theories over a diagram relying on the syntactic notion of an inference tree.
These will be called diagrammatic theories. The analysis of a complex diagram which
combines the three potestative squares of opposition is used as an example. Section 4
focuses on the computational dimension of diagrams, many aspects of which have re-
cently gained attention in the literature (see, e.g., [10]). In particular, it shows that di-
agrammatic theories enable one to compute in polynomial time whether a finite set of
normative positions can be derived from another.

1. Normative positions on diagrams

A normative position is described by a statement involving a normative concept, one or
more normative parties related to that concept and a certain type of behaviour of one of
those parties. For instance, consider the following:

* it is obligatory for the company to pay an annual fee;
* borrowers have a duty towards lenders to bring back the relevant goods;
* by accepting a sale offer, a buyer creates a duty upon the seller to deliver.

Two families of normative positions have been extensively analysed by Hohfeld [2.3].
He proposed to graphically visualize their relations via two diagrams, a deontic and a
potestative square, which are reproduced in Fig. [I]

Many formal accounts of Hohfeld’s analysis have been proposed (see, e.g., Lindahl
[[L1]], Makinson [[12]], and, more recently, Markovich [13] or Sileno and Pascucci [14]).
Furthermore, some works [Sl6)7]] have shown that relationships on Hohfeldian squares
can be used to construct Aristotelian polygons of opposition. The fundamental advantage
of the latter over Hohfeld’s squares is that they unambiguously express logical relations
of a certain kind between normative statements. Aristotelian polygons can be combined
to form more complex figures, whence we will generally speak of Aristotelian diagrams.
At the basis of an Aristotelian diagram are four types of logical relations [[10].
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Figure 2. Aristotelian square for basic deontic modalities, with subaltern (green), contrary (or-
ange), sub-contrary (blue) and contradictory (red) bindings, and named vertices (A, E, I, O). Sub-
-alternity is directed: from A to I, and from E to O, i.e., from orange towards blue lines.

Definition 1 (Aristotelian Relation). An Aristotelian relation between two sentences ¢
and y is either subalternation, contrariety, sub-contrariety or contradiction, where:

* ¢ is a subalternate of y iff the truth of y implies the truth of ¢;

* ¢ and y are contrary iff at most one between ¢ and y can be true;

* ¢ and y are sub-contrary iff at most one between ¢ and y can be false;
* ¢ and y are contradictory iff ¢ is true precisely when  is false.

Definition 2 (Aristotelian Diagram). Given a finite set of sentences I', an Aristotelian
diagram over I is a graph whose vertices are labelled by elements of I'. Each vertex v is
labelled by a distinct sentence. An edge e of the graph connecting two vertices vi and v;
is associated with an Aristotelian relation R, between the sentences labelling vy and v,.

In the normative domain, the simplest example of Aristotelian diagram is the square of
opposition for basic deontic modalities (Fig.[2).

2. Formalization

To enable a more rigorous analysis of normative positions, we here use a language .Z of
first-order logic to encode sentences, following [11]. Moreover, refining and extending
recent work [8]], we show how to construct squares of oppositions starting from Hohfeld’s
squares and, subsequently, more complex Aristotelian diagrams.

2.1. Language

Language .Z has variables x, y etc. for normative parties and a, f3, etc. for action types.
It has constants p, g, etc. for normative parties and constants A, B, etc. for action types.
Symbol — (overline) denotes action complementation: A is the complement of A (the

type of any action not instantiating A). We assume that A = A. Hohfeldian (and other)
relations are encoded as n-ary predicates Finally, .Z has standard propositional con-
nectives (—, A, V, —, =) and quantifiers (V, 3). We omit quantification over variables
for normative parties, interpreting an expression ¢ (x,y,...) as implicitly having the form
VxVy...9(x,y,...). Thus, while Claim(x,y,A) means “for all x, for all y: x has a claim that
A be performed by y”, Claim(p,q,A) means “p has a claim that A be performed by ¢”.

2Sometimes the argument of a relation is a statement involving another relation. However, no quantification
on such statements is employed; therefore, . remains a first-order language.



2.2. First-order Hohfeldian relations

The formal renderings of the fundamental deontic relations identified in Hohfeld’s frame-
work, for two normative parties p and g and an action type A, are the following:
Claim(p,q,A), Liberty(p,q,A), Duty(p,q,A) and NoClaim(p,q,A). We can map all re-
lationships to a single primitive, e.g. Claim:

NoClaim(x,y,A) = —Claim(x, y,A)
Duty(y,x,A) = Claim(x,y,A)

Liberty(y,x,A) = —Claim(x,y,A)
This choice leads to the following set of labels DR with respect to a given action type A:
DR = {Claim(p,q,A), Claim(p,q,A),~Claim(p,q,A),~Claim(p,q,A)}

The set DR naturally gives rise to a deontic square of opposition. The only ad-
ditional principle needed is the following, used to characterize subalternate state-

ments: Claim(x,y,A) — —Claim(x,y,A), which can be seen as corresponding to the
Obligatory(¢) — Permitted(¢) axiom used in deontic logics.

2.3. Second-order Hohfeldian relations

Potestative relations concern actions that trigger changes of first-order or even second-
order relations, such as, for instance, an action B creating a duty for a party g with re-
spect to a party p to perform an action A. A possible way of writing that p has such a
power would be by means of a predicate expression Ability(p,B,R) (cf. the predicate
has_ability investigated in [14]]), where R is a Hohfeldian relation issued at B’s perfor-
mance by p; for instance, Ability(p,B,Claim(p,q,A)). Different characterizations of ac-
tions exist in human language, mapping to different levels of abstraction [[15], e.g. the
behavioural or procedural characterization, relating to the action task, or the productive
characterization, relating to its outcome. In the following, we similarly provide different
definitions of power constructed at different abstraction levels (force, outcome, change).

2.3.1. Force-centered power

At behavioural level, power relations can be seen in analogy to force fields determining
attraction, repulsion, and absence of those (independence) at the occurrence of interven-
tions ([[7]], [16} Ch.4]). To express this, we need to separate the stimulus component (a
particular type of action, such as a verbal command) and the consequent target mani-
festation (e.g. a type of action that is due or expected on the basis of the stimulus, cf.
the concept of pliance). If the action-manifestation is denoted by the action type sym-
bol A, then, the action-stimulus can be conveniently represented via the symbol "A" to
emphasize the shared connection between signal and expected performance.

If stimulus and manifestation converge, i.e. A is always performed in correspondence
to its stimulus, we have a positive force-centered power:

—

Power(x,y,A) = Ability(x,"A",Claim(x,y,A))



If stimulus and manifestation diverge, i.e. A is never performed in correspondence to its
stimulus, we have a negative force-centered power

—— _

Power(x,y,A) = Ability(x,"A", Claim(x,y,A))

-
From these concepts we can define a new set of potestative relations PR as labels for
a force-centered potestative square of opposition, obtained by taking into account all
possible combinations of positive- vs. negative-force power and Boolean negation:

“ —¢ —— —— —¢
PR™ = {Power(p,q,A),Power(p,q,A),~Power(p,q,A),~Power(p,q,A)}

—¢ ——
The subalternity is here captured by the logical principle: Power(x,y,A) — —Power(x,y,A)
which is acceptable because otherwise the same stimulus "A" would generate two con-
flicting first-order relations.

2.3.2. Outcome-centered power

At the outcome or productive abstraction level, we may abstract the triggering action
B, and focus only the output, e.g. R = Claim(p, q,A). Positive outcome-centered power,
expressed in the form Power(p,g,A), means that p has the power of issuing a duty upon
g to A. It can be defined via an existential quantification on the set of action types:

Power(x,y,A) = 3P : Ability(x, 3, Claim(x,y,A))
We can similarly define a negative outcome-centered power (to release a duty to A) as:
Power(x,y,A) = 3 : Ability(x, B, —Claim(x,y,A))

As before, we can form a set of potestative relations PR as labels for an outcome-centered
potestative square of opposition:

PR = {POWSF(p,q,A), Power(p,q,A), —|Power(p7q,A)7—\Power(p,q,A)}

where subalternity is captured by: Power(p,q,A) — —Power(p,q,A). This princi-
ple can be explained as such: to create a duty, this duty needs not to be hold-
ing: Power(x,y,A) — —Claim(x,y,A). Dually, to release a duty, this needs to exist:
Power(x,y,A) — Claim(x,y,A); its contrapositive provides the subalternity relation.

2.3.3. Change-centered power

Given a target relation R, e.g. a due performance Claim(p,q,A), one can define power
also as the ability of p to affect g in any sense with respect to this relation R. This
proposal, originally made by O’Reilly [6], can be reframed in our framework as the
ability of changing g’s position in the (e.g. deontic) square of opposition of which R is
part. Using the proposed notation we have:

Poweroreily (x,y, B,A) = Ability(x,B, Claim(x,y,A)) V Ability(x,B,Claim(x,y,A))
V' Ability(x,B,—Claim(x,y,A)) V Ability(x,B,~Claim(x,y,A))

3This position is neglected in the analytical literature but it is critically important in institutional-construction
terms: it posits the denial to recognize another normative system which attempts to positively enact a certain
power, see e.g. the Dutch Declaration of Independence, the Act of Abjuration (1581) towards Spain. [[7]
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Figure 3. Map of potestative relations defined in terms of triggering action (force-centered square of oppo-
sition, the left one), in terms of outcome (middle square), in terms of change or affecting outcomes (change—
centered square of opposition, the right one). For visual clarity, labels of vertices are simplified so as to con-
sist only of a (possibly negated) predicate without its arguments. Occurrences of negation before a predicate
are standard, whereas occurrences after a predicate denote action complementation; for instance, we denote
the power to issue a prohibition, i.e., Power(p,q,A), as Power—. Notice that the leftmost square is vertically
mirrored and the rightmost square underwent a 90 degree clockwise rotation. Colours are as usual.

A positive change-centered power corresponds to the ability of affecting the target rela-
tion by any triggering action:

Power ™ (x,y,A) = 3B : Poweroreily (x,y, B,A)

A negative change-centered power corresponds to the ability of the agent to perform an
action without affecting the target relation:

Power™ (x,y,A) = EIB : _'PowerOReilly(xvvavA)
Labels for an Aristotelian square are, this time:
PR™ = {Power™ (p,q,A), Power ™ (p,q,A),~Power™ (p,q,A),~Power™ (p,q,A)}

Subalternity is here encoded by: =Power™ (x,y,A) — Power™ (x,y,A).

2.3.4. Relationships amongst powers

The previous formulas can be applied to discover different relationships between the
distinct forms of powers. First, the convergence or divergence with due performance in
force-centered powers map directly or dually to outcome-centered powers:

— —— _

Power(x,y,A) — Power(x,y,A) Power(x,y,A) — Power(x,y,A)

Following the contrapositive, the absence of positive-outcome power to produce a duty
(meaning that there is no triggering action to obtain this) maps a fortiori to the absence
of a positive-force power for doing so:



—— _ ——
—Power(x,y,A) — —Power(x,y,A) —Power(x,y,A) — —Power(x,y,A)
Second, positive-change power holds if any outcome-center power holds:

Power ™ (x,y,A) <+ Power(x,y,A) V Power(x,y,A)
V Power(p,q,A) V Power(p,q,A)

Assuming again that there is always some available action, we have, dually, that:

Power™ (x,y,A) > —=Power(x,y,A) A =Power(x,y,A)
A —Power(p,q,A) A —Power(p,q,A)

Introducing those relationships, we obtain the Aristotelian diagram in Fig. 3]

3. Diagrammatic theories

It is possible to define logical theories of different strength based on an Aristotelian di-
agram. These can be called diagrammatic theories. A diagrammatic theory over a di-
agram & encodes at least all logical relations among formulas used as labels in 2. A
diagrammatic theory will be here defined in terms of the notion of an inference tree.

Definition 3 (Inference Tree). An inference tree T is an irreflexive and intransitive tree
(N,~) with a single root (N # & is a finite set of nodes and, for any n,m € N, n ~>m
means that m is an immediate successor of n) where each n € N is associated with a
finite set of formulas I" # & and has a rank. The rank of the root is 0; furthermore, if
rank(n) =i, n is associated with a set ®, and n ~ m, then rank(m) =i+1 and m is
associated with a set ¥ O ©. Nodes with no successors are said to be leaves of T. A
maximal ~-chain of nodes 6 = (ny, ...,ny) is a branch of T.

Formulas in sets associated with nodes of a tree T can be uniformly substituted. Further-
more, an equivalence relation Eq C £ x £ can be established in order to replace, in any
set I" associated with a node n, a formula ¢ with a formula v, provided that Eq(¢, ).

Definition 4 (Set Immediate Inference). If A is a set of formulas (associated with a node)
ranked with i and N a set of formulas (associated with a node) ranked with i+1 in a
branch o of a tree T, then we say that A’ can be immediately inferred from A within ©.

Definition 5 (Diagrammatic Theory). A diagrammatic theory DT based on a diagram
9 is a set of inference trees satisfying the following properties, for each formulas ¢ and
Y that label some vertex of 9 :

* if W is a subalternant of ¢ in &, then some branch & of a tree T in DT encodes an
inference of the form AU{¢} ~ AU{¢9,y}UT;

* if y and ¢ are contraries in 9, then some branch ¢ of a tree T in DT encodes an
inference of the form AU{¢} ~ AU{¢, -y} UT;

* if y and ¢ are sub-contraries in &, then some branch o of a tree T in DT encodes
an inference of the form AU{—¢} ~ AU{-¢,y} UL}

* if wand ¢ are contradictories in 9, then some branch ¢ of a tree T in DT encodes
an inference of the form AU{¢} ~~ AU{9,~w}UT and some branch ¢’ of a tree
T’ in DT encodes an inference of the form A'U{y} ~ A U{=¢,w} UT".



According to Definitions @] and 3] the relation of immediate inference in a diagrammatic
theory based on a diagram 2 encodes at least all Aristotelian relations between formulas
labelling vertices of 2. However, the use of the equivalence relation Eq allows one to
reduce the number to Aristotelian relations to be encoded, as we will clarify below. Here
we just assume Eq(¢,——¢), for every ¢ € Z.

T’ is a sub-tree of T iff the root of T’ is a node n € T and the other nodes of T’ are
all those that (i) occur in branches of 7' to which n belongs, and (ii) have a higher rank
than n in those branches. The cardinality of a set of formulas I" will be denoted as |T.
The notion of inference within a branch is obtained by combining the transitive closure
of the notion of immediate inference and the subset relation, as indicated below.

Definition 6 (Set Inference). A set of formulas I" can be inferred from a set of formulas
A within a branch 6 of a tree T iff there isT' DT s.t.:

 both A and T" belong to o;
o the rank of T in © is not lower than the rank of A in ©.

According to Definition[6] if ' C A, then I can always be inferred from A within a branch
of a tree. In order to check whether I' can be inferred from A in a branch ¢ of atree T', one
has to compare pairs of sets (checking whether they are identical, one is a subset of the
other, etc.). Derivation is a particular kind of inference, as per the following definition.

Definition 7 (Set Derivability - Trees). A set of formulas I is derivable from a set of
formulas A within a tree T iff there is a sub-tree T' of T whose root is a node n labelled
by A and T can be inferred from A within all branches of T'.

The derivability of I' from A within a diagrammatic theory DT is defined in terms of a
finite sequence of derivations within trees of DT, as below.

Definition 8 (Set Derivability - Diagrammatic Theories). A set of formulas I" can be
derived from a set of formulas A within a diagrammatic theory DT iff there are trees
Ti,....,T,—1 in DT and sets of formulas Ay, ...,A, s.t.:

e A=AjandT' =A,;
e for 1 < j<mn, Aji1 can be derived from A; within tree T;.

Example Below is an example of an inference tree that can be used in a diagrammatic
theory built over Fig. [3] It captures inferences from a set of formulas A including the
label of the E-corner in the change-centered (rightmost) square. Each line represents a
node of the tree (which, in this, case has no branches) and starts with the node’s rank:

: Ag = AU {—=Power™ (p,q,A)} ~

:Ap = AgU{Power™ (p,q,A)} ~

: Ay = A; U{—-Power(p,q,A) A ~Power(p,q,A) A —Power(p,q,A) A—Power(p,q,A)} ~
1 A3 = Ay U{—Power(p,q,A),-Power(p,q,A)} ~

—
A)

—
1Ay = A3 U{—Power(p,q,A)}

A WN=O

Any diagrammatic theory including this tree allows one (due to Definitions [4] [6] and
to derive any set I' C A;, for 0 <i <4, from the starting set of formulas Ayg.



4. Decidability and complexity

Given two finite sets I',) A C .Z, we will say that the problem of checking whether I" can
be derived from A within a diagrammatic theory DT is the derivability problem for finite
sets in DT. We now illustrate that such a problem can be effectively computed. First, we
need to define an auxiliary notion.

Definition 9 (Tree traversal). The traversal of a tree T with reference to a formula ¢ and

a set A'is a procedure which can be described as follows (we assume that A occupies the
root of T):

* Following the order of ranks, for any set of formulas I with rank i in T, we com-
pare ¢ with all formulas in T and keep track of whether ¢ occurs in T or not.

* The procedure terminates when either (positive outcome) there is a rank j s.t. all
sets of formulas with rank j include ¢ or (negative outcome) all sets of formulas
with all ranks available in T have been checked.

Notice that, in case of a positive outcome of the traversal, due to Definitions E] and
AU{¢} is derivable from A within 7. If the number of nodes in 7 is /, and max{|®\
Y| : rank(®) = 1+ rank(X)} = k (hereafter, the maximum successor difference), then a
traversal of 7' with reference to ¢ and A requires up to k * [ moves.

Definition 10 (Theory traversal). The traversal of a diagrammatic theory DT with ref-
erence to a formula ¢ and a set of formulas A is the traversal of all trees T in DT with
reference to ¢ and A. The outcome is positive iff it is positive for some T in DT.

If the number of trees in DT is A, the maximum number of nodes in a tree of DT is [,
and the maximum successor difference in a tree of DT is k, then a traversal of DT with
reference to ¢ and A requires up to (k*[) x h moves.

Theorem 1 (Decidability). The derivability problem for finite sets within a diagrammatic
theory is decidable.

Proof. Consider two finite sets of formulas A and I', such that max(|A|,|T']) = n. Let
DT be the diagrammatic theory at issue, consisting of / inference trees. To see whether
I" is derivable from A, we first need to compare the sets I and A, an operation with
time complexity O(n). There are four relevant Cases: (1) T =A; Q)T CA; B) T D A;
@D T ZATPHAand I' # A. In Cases 1 and 2, by Definition [8] we can immediately
conclude that I" is derivable from A within DT. In Cases 3 and 4 one considers the set
'\ A. Let [T'\ A| = m. We know that the elements of I"\ A can be enumerated (m < n
by construction). We take the first formula ¢; in I'\ A and perform a traversal of DT
with reference to ¢; and A. If the traversal produces a negative outcome, then the whole
procedure terminates and I” is not derivable from A. Otherwise, there is a tree T s.t., due
to Definitions[6] [7]and[9] AU{¢} is derivable from A within 7. We take A; = AU{¢; } and
then perform a traversal of DT with reference to ¢, and A;. The procedure is reiterated:
at each step a traversal of DT is performed with reference to a new formula ¢; € '\ A
and the set of formulas A;_; obtained at the previous step. In accordance with Definition

[8] I" is derivable from A iff each traversal of DT performed ends with a positive outcome.
O



Theorem 2 (Complexity). The algorithm to solve the derivability problem for finite sets
in a diagrammatic theory takes polynomial time.

Proof. In all Cases (1-4) mentioned in the proof of Theorem [T the procedure terminates
in at most ((k *1) * h) * m moves. O

5. Final remarks

Recent years have witnessed a renewed interest in diagrams and logical geometry: our
work provides a further contribution towards their application in the analysis of norma-
tive problems. We introduced a syntactic method of reasoning over Aristotelian diagrams
that encode relations between normative positions. The method can be automated and
allows one to derive a finite set of normative positions from another in polynomial time.
In our opinion, reasoning methods associated with diagrams are very promising and, due
to the cognitive efficacy of visual aids, they are potentially accessible to a broader au-
dience. Future investigations concern: (i) a theoretical and empirical comparison with
other methods for (normative) automated reasoning, (ii) an integration of temporal/causal
components within the definition of normative positions, and (iii) the consolidation of a
structured taxonomy of Aristotelian diagrams for normative reasoning.
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