
On Multilateral Agreements
And

Multidomain Applications
Reggie Cushing

r.s.cushing@uva.nl
28/06/2021

Story so far...

● Actors = Containers
● Actors cryptographically

addressed
● Multidomain

communication through MQ
using actor keys as topics.

● Auditor actors give
permission to actors to
carry out actions

● Planner actors encapsulate
the notion of a workflow

○ Planners coordinate with
auditors to execute
workflow

Moving forward...multi-domain coordination

● A multidomain application is a workflow whereby the (data|control)flow
crosses domain boundaries.

● Domain boundaries are controlled through rules/agreements derived from
policies.

● A use case can be considered as having multiple facets.
○ The application functional components (functions)
○ The data assets
○ The coordination logic (controlflow)

● Controlflow is a program in itself that is owned by multiple domains.
● The challenge is:

○ How to execute a control program owned by multiple domains?

ArenA use-case multi-domain process model in

ArenA use-case multi-domain process model in

- Track, control, coordinate
cross-border processes.
- Traditionally a static layer
using API keys etc.
- In a marketplace we propose a
programmable layer.
- We need to capture and
coordinate these set of rules in
a transparent and secure way.
- We propose state machines to
keep track of the state of the
border.
- Each party/domain updates
the state machine thus signaling
the other parties to take action.

Functional containers

Process model to infrastructure

Multidomain infra

Use-case BPMN

Graph interpreter

Coordination through smart contract/s

Functional containers

Process model to infrastructure

Coordination through smart contract/s

Multidomain infra

Use-case BPMN

Graph interpreter

- Generic dataflow/petrinet executor
running on a blockchain i.e. every peer is
running the executor.
- Domains/actors are assigned a set of
tokens.
- Actors define functions as a task with
token input, token outputs and webhooks
to interact with the outside world.
- So actors own tokens and tasks
- A task needs certain amount of tokens
to fire
- Blockchain transactions copy tokens
between actors.
- When a task has enough input tokens it
will fire which in turn generates
blockchain events.
- Containers monitor the ledger to trigger
a process inside a container (the task).
- The container will make blockchain
transactions to signal the task is
completed and move the state machine.

Functional containers

Process model to infrastructure

Coordination through smart contract/s

Multidomain infra

Use-case BPMN

Graph interpreter

- a petrinet that regulates how multi
parties collaborate.
- the rationel is that a party can only
perform a certain task given a certain
context.
- Context is a set of multi domain
preconditions that have to met.
- The movement of tokens within the
graph changes the context.
- Tasks running outside the their agreed
context are deemed as illegal.
- The approach should be generic
enough that it can be applied to event
driven scenarios.
- Petrinets have strong mathematical
foundations.
- Can be analysed for behaviour and
structure properties e.g. reachability,
boundedness liveness, reversibility,
coverability...

Functional containers

Process model to infrastructure

Coordination through smart contract/s

Multidomain infra

Use-case BPMN

Graph interpreter

Beneath the blockchain buzz words; a computer scientist’s view

● Is a distributed database.
● Instead of storing the DB data, store the transactions the made the data.
● Data ‘asset|token’ is cryptographically signed data struct by users ‘owners’.
● Changing owner’s signature of data is a ‘transaction’.
● Users have pki keys. ‘accounts|wallets’.
● Use a linked list to store the transactions ‘blockchain’.
● Reference(hash) the previous list’s recordset ‘block’ in the new block.
● Multiple nodes need to agree on recordset order ‘consensus’.
● Multiple nodes can rebuild the data from the linked list.
● Since multiple nodes can do something then they can also run scripts ‘smart

contracts’.
● End result is a distributed network that can run deterministic scripts to manipulate a

shared linked list where records are owned by different users.

Blockchain primitives

● Participants
○ Users with an x509 cert given by a CA peer on the network.

● Assets
○ User defined data structs owned by a participant.
○ Cryptographically signed data structs.

● Transactions
○ Move assets between participants

● Chaincode(smart contracts)
○ Javascrip/go/java programs to create programs with these primitives.
○ The chaincode runs on all/multiple peers of the network
○ Transactions are recorded in the DB(Ledger)

● The challenge:
○ How to map the controlflow program to a chaincode.
○ Make it generic.
○ How to interface actors to the chaincode (we want actors to affect state changes in the controlflow)

Petrinet to blockchain mapping
● A place receives is a placeholder for tokens.
● It is owned by a domain.
● Can be represented as an Asset.

Petrinet to blockchain mapping

● Tokens are passed between places.
● They are owned by domains.
● They are represented as assets.
● Tokens change ownership when moved between places.
● As is with web tokens, tokens also represent authorization. A

function can only execute if it has to correct tokens from the
different domains.

Petrinet to blockchain mapping

● Transitions are what move tokens between places.
● They are represented as an asset.
● They are owned by domains.
● They map to container functions.
● A transition fire implies a container function execution.

Petrinet to blockchain mapping

● Arrows show the control flow of the network.
● They indicate the required input tokens for a transition and the

number of output tokens.
● A transition (container function) fires when the required input

tokens are ready.

Petrinet life cycle

Development &
Analyses

Authorization &
Deployment

Activate

Terminate

Develop the petrinets as ‘smart contracts’. Analyse petrinets. We can
only deploy once to a blockchain.

Deployment needs authorization from multiple peers on the network.
This will need an audit layer to authorize deployments.

Once deployed it is in a start state. Moving from the start state activates
the petrinet.

A petrinet can terminate it can not move to any other state.

