
September 2020

Digital Enforceable Contracts (DEC):
Making Smart Contracts Smarter

Lu-Chi LIU a,1, Giovanni SILENO a and Tom VAN ENGERS b,a

a Informatics Institute, University of Amsterdam, Amsterdam, Netherlands
b Leibniz Institute, University of Amsterdam/TNO, Amsterdam, Netherlands

Abstract. The combination of smart contracts with blockchain technology enables
the authentication of the contract and limits the risks of non-compliance. In prin-
ciple, smart contracts can be processed more efficiently compared to traditional
paper-based contracts. However, current smart contracts have very limited capabil-
ities with respect to normative representations, making them too distant from actual
contracts. In order to reduce this gap, the paper presents an architectural analysis to
see the role of computational artifacts in terms of various ex-ante and ex-post en-
forcement mechanisms. The proposed framework is assessed using scenarios con-
cerning data-sharing operations bound by legal requirements from the General Data
Protection Regulation (GDPR) and data-sharing agreements.

Keywords. Smart contracts, Norm representation, Normative reasoning, Automated
enforcement, Data sharing infrastructures, GDPR

1. Introduction

Smart contracts were originally motivated by the wider purpose of facilitating the per-
formance and enforcement of traditional paper-based contracts [1], but today there is no
reference in smart contracts to normative constructs as those to be found in legally bind-
ing contracts. Several studies have shown that it is possible to perform reasoning tasks
on blockchain via smart contracts, typically by querying an off-chain, trusted oracle [2]
(e.g. a reasoner module [3]); this integration enables more (normative) expressiveness.
Enforcement can also be achieved by means of dedicated social infrastructures. For in-
stance, [4] proposes a model of incentives to enable enforcement for off-chain activities.
On similar lines, in production settings, consider e.g. Kleros [5], a blockchain-based de-
centralized application was developed for multipurpose dispute resolution; smart con-
tracts can assign Kleros as their arbitrator infrastructure in case a dispute occurs (see also
Codelegit, Juris, Oath, etc.). Yet, these solutions are heterogeneous in methods and cover
different aspects of compliance. The core of our contribution is to frame the problem in
terms of possible types of enforcement mechanisms, to provide a modular architecture
that covers the distinguishable application types. Rather than focusing on technology-
dependent functions of smart contracts, this paper advances the concept of digital en-
forceable contract (DEC), with the purpose of highlighting the higher-level functions
that any sound computational normative artefacts are expected to provide.

1Corresponding Author: l.liu@uva.nl. This research is funded by the Dutch Organisation for Scientific
Research (NWO) under contracts 628.009.014 (SSPDDP project) and 628.001.001 (DL4LD project).



September 2020

2. Implementing Enforcement Mechanisms

Types of enforcement Enforcement mechanisms can be distinguished in two main ap-
proaches, depending on when they play a role with respect to violations: ex-ante (before
the facts) and ex-post (after the facts). In computational domains, most of the attention
is put on the first approach; in socio-legal settings the term typically refers to the second
approach, plausibly because legal activity is usually triggered by the occurrence of vi-
olations. We identified the following patterns. To avoid violations to occur (ex-ante en-
forcement) it is necessary to check: (a) whether a program/an action is permitted before
executing; (b) whether any positive duties holds. As to identify that a violation has oc-
curred (ex-post enforcement), we need to check: (c) whether a prohibited action has been
performed; (d) whether a positive duty has not been fulfilled. The last two conditions
requires active monitoring by an ‘enforcement agent’, i.e. an agent that has an institu-
tional power to force that the duty is fulfilled, or that some other remedy is provided,
and/or to ‘punish’ the agent that hasn’t fulfilled the duty.2 Additional design dimensions
can also be taken into account. First, all enforcement mechanisms rely on some condi-
tions that need to be evaluated (about occurrence of events, or properties of agents, etc.).
This evaluation can be lazy (computed only at the moment of need), or eager (as soon
as relevant conditions become true). Second, regulation can be internal (the agent on it-
self) or external (by a enforcer agent). Third, the monitoring task can be internalized, as
when they are set up by claimants of duties, or externalized, e.g. by some infrastructural
component, or by witnesses.

A modular architecture for enforcement To deal with the richness observed above, we
propose a architectural model consisting of a number of modules associated to dedicated
control and enforcement mechanisms that can be imported at need. This minimal set of
modules has been selected as capturing and providing the functionality necessary to run
all enforcement constructs.

We assume a distributed computation setting, representative of e.g. data-sharing in-
frastructures. We consider as minimal unity of agency a computational actor, charac-
terized with a name/id. In a data-sharing infrastructure one might expect actors running
applications for users of the infrastructure, as well as actors running applications for the
owners/maintainers of the infrastructure, as e.g. for enforcement purposes. Actors can
be then decomposed to a number of components, having unique functions. A program
is a list of instructions which can be regarded as a plan to achieve a given design goal
associated to that actor. Actors can have more than one programs (plans) to opt from
depending on the situation. An executor provides the internal control of the actor. It
follows the execution of the currently selected program or modifies the control flow if
needed. A message queue is the communication channel for actors to interact with each
other. It delivers and receives messages to/from other actors. A monitor manager cre-
ates and destroys monitors which hook to certain events or facts. For example a user can
set up a monitor to observe whether its action has failed or not, while an enforcer can
set up monitors for violations. A regulator is the module dedicated to normative reason-
ing. It is initiated with specifications of norms and should be fed up with factual data. It

2Considering power merely as a conditional obligation (e.g. if this action is performed, then this duty comes
to hold), one cannot model the fact that powers themselves can be created and destroyed, depending on the
dispositions set by the contract. The ex-ante/ex-post distinction needs thus to be inflected to the case of power.



September 2020

provides regulatory information, for example whether a certain instruction or program is
permitted to run, and/or whether the instruction will lead to any positive duties.

Technically the regulator can be realized as an external component to the actors as
well, so that a group of actors can share the same normative reasoner. It can be regarded
as a “legal” consultant who provides conclusions from the associated normative specifi-
cations when queried by the executors with some input information. The interactions of
a shared regulator are not functionally dissimilar from that of any other actor, therefore
this module follows the same communication channels used by other actors. With re-
spect to content, a few query templates can be identified for the communication between
executor and regulator: e.g. (a) What position do self/other actor have now (with respect
to a certain action)? (b) If self/other actor performs a certain action, what kind of posi-
tion self/other will take? (c) Given a source self/other actor’s position, which actions can
self/others perform in order to reach a certain target position?

3. Proof of Concept

To provide an example of application, we assessed the proposed architecture on a data-
sharing scenario in a context relevant to the GDPR. According to the GDPR, the data-
controller needs to have consent from the data-subject to process his/her data. Once
given, the data-subject can at any moment modify or revoke his/her consent. We modeled
this normative content into a logic-based representation3 and set up a server interfacing
with a suitable reasoner. This server acts as an externalized regulator, and is implemented
as an actor itself, receiving normative requests from other actors and answering them.

We considered then three agents/actors: (1) a data-controller “Bank”, (2) a data-
subject “John”, and (3) a data-processor “Adcom”. For the three actors, we created pos-
sible actions which could be performed to interact with each other, for example ”give
consent”, “share data” and “send advertisement”. Finally, for each type of enforcement
we set up a simulation to test whether the proposed solution functions as expected.4

In the following paragraphs we show how our proposed architecture and the reasoning
mechanism can be used for ex-ante enforcement as well as for ex-post enforcement.

Ex-ante enforcement for permission checking The Bank attempts to use John’s data for
analysis. By sending a query regarding the permission of such action to the regulator,
the regulator will inform the executor of Bank that, for being allowed, it must obtain a
consent from John. The Bank will then send this request to John, setting up an adequate
monitor for the reply. At the reception of the message, the executor of John will select the
program giving consent and execute it. A new message is created and sent to the request-
ing Bank. This message is captured by the monitor of Bank and eventually delivered to
its executor, which is now aware of the consent and can start using John’s data.

Ex-ante enforcement of positive duties Continuing the previous scenario, now John (the
user) changes his mind. He wants to modify his consent by asking the Bank to replace
the old purpose “data analysis” to “marketing”. By means of its regulator, Bank is aware

3More concretely, the models we used were written in eFLINT [6], a language for specifying policies based
on normative frames. Note however that any other choices would have been equally good in functional terms.

4The code used for the proof of concept can be found on https://gitlab.com/evelynliu324/

digital-enforceable-contract.



September 2020

that the modification consent request will lead to a duty and can thus set up a monitor for
it. Receiving the request message from John triggers the monitor, creating a notification
about taking action.

Ex-post enforcement of violations of duty Adcom acts as a service provider for Bank to
place advertisements. Since John now consents to have his data used for marketing pur-
pose, Bank is permitted to share his data to Adcom. However, after receiving too many
advertisements, John revokes his consent and requsets to remove his data. According to
the GDPR, Bank, as data-controller, has the duty to fulfill these requests. In the model
we set up a made-up norm that if the data-controller did not respond to the request within
two weeks, the duty would be regarded as being violated. On this basis, John sets up a
monitor with a timeout mechanism to check for violation. When the duty is due and not
fulfilled, the monitor will send a message to the executor, notifying a violation of duty.

Ex-post enforcement of violations of prohibitions Even if removal and revocation have
been confirmed, John sets up monitors for Bank and Adcom for known illicit behaviors.
Suppose that Bank has performed the duty to revoke John’s consent but Adcom keeps
processing John’s data sending promotions to John. As a result, the monitor notifies the
reception of advertisements from Adcom, concluding that this is a violation of prohibi-
tion. The executor of John consults the regulator for deciding how to act upon it.

4. Conclusions

The limited norm representation capability makes smart contracts unable to work with
norms similarly to traditional paper-based contracts. To address this limit, this paper
started investigating architectural possibilities for digital enforceable contracts, with rea-
soning capacities enabling ex-ante and ex-post enforcement through an integrated nor-
mative reasoner and possibly a dedicated social infrastructure. The usability and effectiv-
ity of the proposed framework have been assessed by a practical scenario case involving
data sharing operations subjected to the GDPR, showing that the overall architecture is
sound and can support automated enforcement. The example was sufficient for our pur-
poses, but we do not claim that it covers all perspectives and complexity of real-world
contracts. In typical data-sharing environments, operations are not only subjected to the
GDPR, but also many other regulations. Second, a proper ex-post enforcement requires
an adequate design, reflecting the essentials of social infrastructures and the capacity to
automatically find solutions, remedies or repairs based on diagnostic modules.

References

[1] Nick Szabo. Smart contracts: building blocks for digital markets. EXTROPY: The Journal of Transhu-
manist Thought,(16), 18:2, 1996.

[2] Luc Desrosiers and Ricardo Olivieri. Extend your blockchain smart contracts with off-chain logic, 2018.
[3] Michele Ruta, Floriano Scioscia, Saverio Ieva, Giovanna Capurso, Agnese Pinto, and Eugenio Di Scias-

cio. A blockchain infrastructure for the semantic web of things. In SEBD, 2018.
[4] Huan Zhou, Xue Ouyang, Jinshu Su, Cees de Laat, and Zhiming Zhao. Enforcing trustworthy cloud

sla with witnesses: A game theory–based model using smart contracts. Concurrency and Computation:
Practice and Experience, page e5511, 2019.

[5] Clément Lesaege, Federico Ast, and William George. Kleros: Short paper v1.0.7. 2019. https://

kleros.io/assets/whitepaper.pdf.
[6] L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers. eflint: a domain-

specific language for executable norm specifications. In Proceedings of GPCE ’20. ACM, 2020.


