Integrating Preferences in Reactive BDI Agents

Mostafa Mohajeri Parizi', Giovanni Sileno’ and Tom van Engers®

Abstract.

The belief-desire-intention (BDI) model of agency is based on the
notion of reactivity of agents towards internal or external events by
selecting, instantiating and executing an applicable goal-plan rule
from agent’s procedural knowledge. Current BDI agent-architectures
consider the reaction to an event by selecting plans via a “first ap-
plicable choice” principle. Recent works attempt to include in BDI
agents explicit preferences, but do so as a “rationale” thus distorting
their reactive nature and modifying the deliberation cycle. This paper
proposes a method to include in the agent’s specification preferences,
and to use them in a manner that preserves reactivity.

keywords BDI agents, CP-nets, Preferences, Reactive agents

1 Introduction

Preferences are recognized to be a core concept of decision making
[LO]. This implies the general principle that when there are multi-
ple goals that should be achieved or multiple ways to achieve a cer-
tain goal or even multiple sets of states that can be reached, the best
course of action is the one that abides the most to agent’s preferences
[10]. An agent’s preferences can vary from the implicit “maximize
utility” in optimizing agent [9]] to explicit preferences specified in a
preference representation language [[14].

Unexpectedly in all of the current BDI languages, preferences are
only represented implicitly by the sequential ordering of plans pro-
vided by the modeler. There are works that add verbalized prefer-
ences to BDI agents [14! 9l 4], but these works all add preferences
as a rationale step in the agent’s deliberation cycle. This approach
has a negative impact on the performance (because of the reflective
step in the deliberation cycle) and the traceability of the script. We
argue that modifying the deliberation cycle also affects the reactivity
because if behavior is not (sufficiently) automatic the agent has to
perform potentially complex, time-consuming deliberations to select
the appropriate response to an event and for this she may become
not (adequately) reactive. This insight is analytically supported a.o.
by Heiner’s theory of predictable behaviour [7]]. To overcome these
problems, this paper considers to integrate preferences as an explicit
specification, to be used for an offline, pre-runtime step rewriting the
agent script, and so guaranteeing both traceability and reactivity of
the agent.

1.1 Background

Goal-plan rules BDI agents act based on their goal-plan rules, i.e.
uninstantiated specifications of the means for achieving a goal [12].

I m.mohajeripariziQuva.nl

2 g.sileno@uva.nl
3 tom.vanengers@tno.com

These rules capture the procedural knowledge (how-to) of the agent.
More formally, a goal-plan rule pr is a tuple (e, ¢, p), where: e is a
triggering event, addressing a invocation condition or unistantiated
goal; ¢, the context condition, is a first-order formula over the agent’s
belief base, making the rule applicable; p, the plan body, consisting
of a finite sequence of steps [a1, az, ..., a,] Where each a; is either
a goal (i.e. an invocation attempting to trigger a goal-plan rule), or a
primitive action. A goal-plan rule pr; is then an option or a possibility
for achieving a goal g, if the invocation condition of pr; matches with
g, and the preconditions of pr; matches the current state of the world,
as perceived or encoded in the agent’s beliefs.

We will refer to a syntax close to that of AgentSpeak(L) [1L1]]. As
an example of script, consider:

+!g : c <= la.
+!lg <= !~b.

This code means that if the triggering event +! g occurs, if ¢ holds,
the agent commiits to achieve a, otherwise (that is, ¢ does not hold)
the agent commits to achieve ~b, or equivalently, to escape b.

Primitive actions Primitive actions are the lowest-level actions
that can be used in the procedural knowledge of an agent; they are
the actual means for the agent to change the environment (or itself)
Also for primitve actions we will refer to the following syntax:

#a { cl = +p,—q. c2 => +q. }

meaning that (the agent expects that) if the primitive action a occurs,
if c1 holds, then p will become true, if c2 holds, then g will become
true.

Preference Language In this work the explicit preferences of the
agent are presented with CP-Nets. Conditional ceteris paribus pref-
erences networks (CP-nets) are a compact representation of prefer-
ences in domains with finite attributes of interest [3]. An attribute of
interest is an attribute in the world that the agent has some sort of
preference over its possible values. CP-nets build upon the idea that
most of the preferences people make explicit are expressed jointly
with an implicit ceteris paribus (“all things being equal”) assump-
tion. For example, when people say “I prefer a sunny day to a rainy
day”, they do not mean at all costs and situations, but that they prefer
sunny day, all other things being equal to their current situation. We
denote the preference for achieving/maintaining the condition g over
avoiding/escaping it in condition c as:

P>~p: C.

2 Method

To integrate the CP-net preferences we need the contextualized out-
come of each plan. To do so we translate the agent’s script into an
ASP program and use an off the shelf ASP solver to find out all the

outcomes of each plan under each possible context condition, i.e. in
each condition c, the most optimistic final state after execution of a
plan is considered the outcome of adopting that plan in c. There are a
few works in the literature that link BDI programs to logic programs
[2]], but for this work, we use an approach close to [6], in which a
formal method for translation from HTN planning domain to logic
programs is presented. The close connection between BDI and HTN
has been explored extensively in the literature [S]]. To support the in-
cremental nature of scripts in a logic program we use discrete event
calculus (DEC) [8]. We omit the full translation process in this ab-
stract but an example translation can be found in [1].

We will present the preference integration method with an ex-
ample: A player can play a match in three ways: just playing for
fun, do whatever needed to win, or play conservative to avoid to
lose. Suppose now that you might want e.g. to enjoy your game as
much as winning, but you might also prefer to gain support from
observers, unless your position in the ranking (captured by proposi-
tions as first and last) is really low. Let us start from the following
(non-prioritized) procedural knowledge:

+!match => #funny playing..
=> #robust_playing.
=> ffopportunistic playing.

And the following expectations about primitive actions:

#funny playing { => +support, +enjoy, -win. }
#robust_playing { => +support, -lose, —enjoy. }

#opportunistic playing { => +win, —support, —-lose. }

We then specify our agent by the following preferences:

support > ~support : ~last.
enjoy > ~enjoy : first.
win > ~win : support, ~last.

win > ~win : last.

By translating this script to an ASP program and solving it with
clingo, we obtain multiple answer sets. unique outcomes for all
plans (in accordance to different context conditions). An example of
condition and outcome extracted from a trace of plan match [0] is:

condition: ~win, ~support, ~enjoy,~lose, first, ~last
outcome: ~win,support,enjoy,~lose, first, ~last

Each answer set is evaluated in terms of the given CP-net pref-
erences, resulting in a partial ordering between different outcomes
of answer sets. For instance, the answer sets with outcome 1 are pre-
ferred over the answer sets with outcome 2. The dominance checking
is done with CRISNER tool [[13]].

outcome 1: ~win, support,enjoy, ~lose, first, ~last
outcome 2: win, ~support, ~enjoy, ~lose, first, ~last

Plan ranking Following the ranking, we can give a contextualized
priority to plans. In each unique context condition ¢, a plan is pre-
ferred if it has a preferred outcome, observing that e.g. in the con-
dition ~win, ~support, ~enjoy, ~lose, first, ~last the
plan match[0] is preferred to plan match[1] and in turn plan
match[1] is preferred tomatch[2].

Considering all existing plans, the initial procedural knowledge
can be prioritized. For the 3 plans there are 6 possible orderings. The
following code provides an example of conditional ordering obtained
via our method, including a boolean simplification step for the pre-
conditions:

+!match : (last | ~enjoy) & ~first
<= !~lose.
<= l!win.
<= l!enijoy.
+!match : (~last | lose) & (last | enjoy) & ~win
<= lenjoy.
<= lwin.
<= !~lose.

In the rewritten script the plans are conditionally ordered in accor-
dance to the explicit verbalized preferences provided by the designer.

3 Conclusion

This paper focuses on role of explicit preferences in reactive BDI
scripts. A language based on CP-nets is used to add verbalized pref-
erences to a BDI agent script and an off-line method is presented to
integrate these preferences into the agent’s procedural knowledge.
The resulting script is explicitly prioritized and at the same time the
reactivity of the agent is also maintained. An important aspect of this
method is that it does not need any modification to the usual delib-
eration cycle of BDI frameworks and the resulting script can be run
with any AgentSpeak(L)-like interpreter.

ACKNOWLEDGEMENTS

This paper results from work done within Data Logistics for Lo-
gistics Data project (DL4LD, www.d141d.net)). The DLALD is
funded by the Dutch Science Foundation in the Commit2Data pro-
gram (grant no: 628.001.001).

REFERENCES

[1] Example translation: https://gitlab.com/mohajeri/as2asp.

[2] Justin Blount, Michael Gelfond, and Marcello Balduccini, ‘A theory of
intentions for intelligent agents’, Lecture Notes in Computer Science,
9345, 134-142, (2015).

[3] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos,
and David Poole, ‘CP-nets: A tool for representing and reasoning with
conditional ceteris paribus preference statements’, Journal of artificial
intelligence research, 21, 135-191, (2004).

[4] Aniruddha Dasgupta and Aditya K. Ghose, ‘Implementing reactive BDI
agents with user-given constraints and objectives’, International Jour-
nal of Agent-Oriented Software Engineering, 4(2), 141, (2010).

[S] Lavindra de Silva, Lin Padgham, and Sebastian Sardina, ‘HTN-like so-
lutions for classical planning problems: An application to BDI agent
systems’, Theoretical Computer Science, 763, 12-37, (2019).

[6] Jiirgen Dix, Ugur Kuter, and Dana Nau, ‘Planning in answer set pro-
gramming using ordered task decomposition’, in Lecture Notes in Ar-
tificial Intelligence (Subseries of Lecture Notes in Computer Science),
volume 2821, pp. 490-504, (2003).

[7]1 By Ronald A Heiner, ‘he Origin of Predictable Behavior Author (s):
Ronald A . Heiner Source : The American Economic Review , Vol . 73 ,
No .4 (Sep ., 1983), pp . 560-595 Published by : American Economic
Association Stable URL : https://www.’, 73(4), 560-595, (1983).

[8] Erik T. Mueller, ‘Event Calculus Reasoning Through Satisfiability’, J.
Log. and Comput., 14(5), 703-730, (October 2004).

[9] Ingrid Nunes and Michael Luck, ‘Softgoal-based plan selection in
model-driven BDI agents’, 13th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2014, 1, 749-756,
(2014).

[10] Gabriella Pigozzi, Alexis Tsoukias, and Paolo Viappiani, ‘Preferences
in artificial intelligence’, Annals of Mathematics and Artificial Intelli-
gence, 77(3-4), 361401, (2016).

[11] Anand S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical com-
putable language’, in Agents Breaking Away, pp. 42-55, (1996).

www.dl4ld.net

[12]

[13]

[14]

Anand S. Rao and Michael P. Georgeff, ‘BDI agents: From theory
to practice.’, in Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS1995), pp. 312-319, (1995).

Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar, ‘Domi-
nance testing via model checking’, in Proceedings of the National Con-
ference on Artificial Intelligence, volume 1, pp. 357-362, (2010).
Simeon Visser, John Thangarajah, James Harland, and Frank Dignum,
‘Preference-based reasoning in BDI agent systems’, Autonomous
Agents and Multi-Agent Systems, 30(2), 291-330, (2016).

	Introduction
	Background

	Method
	Conclusion

