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Traditionally, deep learning practitioners would bring data into a central repository for model training and
inference. Recent developments in distributed learning, such as federated learning and deep learning as a
service (DLaaS), do not require centralized data and instead push computing to where the distributed datasets
reside. These decentralized training schemes, however, introduce additional security and privacy challenges.
This survey first structures the field of distributed learning into two main paradigms and then provides an
overview of the recently published protective measures for each. This work highlights both secure training
methods as well as private inference measures. Our analyses show that recent publications, while being
highly dependent on the problem definition, report progress in terms of security, privacy, and efficiency.
Nevertheless, we also identify several current issues within the private and secure distributed deep learning
(PSDDL) field that require more research. We discuss these issues and provide a general overview of how
they might be resolved.
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1 Introduction

The ubiquitous popularity of Deep Learning (DL) in diverse applications in different domains,
and the fact that these methods generally benefit from large amounts of data as training input, has
led to an increased need to access big data reservoirs. This need continues beyond the availability
of central databases, as the quantity of data necessary to train deep models in certain use cases
can be higher than many centralized datasets alone can provide. Moreover, the age of big data
leads to data generation being a normal function of entities in different scales, from individuals to
large organizations. Creating extensive centralized databases can be costly, problematic in terms
of privacy, or simply infeasible due to processing and communication restrictions. This has led
to an interest in Distributed Deep Learning (DDL), where multiple parties cooperate to utilize
distributed data for a combined DL effort.

Distributed learning covers a wide set of paradigms, such as Machine Learning as a Service

(MLaaS), which makes models available for inference on new distributed samples, and federated

learning (FL), which allows for the collaborative training of a single neural network on distributed
local datasets. In distributed deep learning, the problem of decentralized data access is resolved
by moving computing to where the data resides. However, additional problems arise in the DDL
context. One of the most prominent challenges is retaining the privacy and security of data and
models in distributed settings. With the cooperation of multiple different parties, there are often
incentives to keep local data and/or models private, be it for legal regulations such as GDPR [44], an
unwillingness to share to keep a competitive advantage towards other parties, or ethical concerns.
This has amplified interest in the application of privacy- and security-preserving mechanisms
during model development, testing, implementation, and inference.

We define the privacy-preserving paradigm of distributed deep learning in two different
contexts: Privacy and Security. Security is defined as the safeguarding of data and models.
Achieving secure DDL means a malicious party having access to the DDL process would not
be able to gain unauthorized access to training data, model parameters, communications, and
so on. Privacy, however, is defined as stopping the models, either partially trained local models
or fully trained centralized ones, from leaking information about the training data and the
model itself. In this article, we refer to security as the classification of the methods that protect
against unauthorized access to data, mainly through cryptographic means. Common types of
cryptographic methods are Secure Multiparty Computation (MPC), which provides secure
messaging protocols between different parties, and Homomorphic Encryption (HE), a type
of encryption that allows accurate calculations to be performed on encrypted data. The privacy
front in this work aims for methods that provide formal guarantees of privacy with quantifi-
able privacy levels and therefore focuses on methods that provide Differential Privacy (DP)

guarantees.
Secure and private methods of DDL have been well-researched. Several surveys have previously

attempted to structure and summarize studies performed in this research area [41, 129, 150, 157].
Most of these reviews only focus on one class of protective measures, such as differential privacy
[5] or multiparty computation [157], or on a subset of the available types of distributed learning,
such as MLaaS [129] or Federated Learning [41, 150]. In this work, we aim to provide a larger and
more comprehensive overview of the field of private and secure distributed deep learning

(PSDDL), covering both the security and privacy aspects of these methods. In this way, this
survey serves as a starting point for comparisons between the different privacy and security
methods and evaluations of applicable protective measures in different use cases. Depending on
the use case requirements, including the distribution of data and models, the level of security
of privacy required, and the possibility of a central server, the requirements of the security- and
privacy-preserving methods change. Therefore, this survey aims to provide a high-level overview
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of the field of private and secure distributed deep learning and to discuss the possibilities of
privacy and security mechanisms per type of distributed deep learning workflow.

The structure of the article is thus as follows: Section 2 shows our survey protocol, where we de-
fine the scope of the survey. In Section 3, we describe our taxonomy along which we organized the
selected papers. We divided the type of distribution workflow into two main categories. Sections
4 and 5 discuss the papers applicable to the two main DDL categories, respectively, collaborative

learning (CBL) and distributed learning. Both the categories will focus on centralized workflows,
but the discussion (Section 6) will also touch upon decentralized frameworks.

2 Survey Protocol

2.1 Scope of Survey

The scope of this survey is private and secure distributed deep learning. We explain the choice of
this scope by explaining its following parts: Private and Secure, Distributed, and Deep Learning.

Private and Secure: In this survey, we make a distinction between security and privacy of dis-
tributed DL models. The security aspect of these methods is concerned with stopping adversarial
behavior, both by members of the distributed pipeline as well as outside entities, from having unau-
thorized access to the training or model data and being able to potentially tamper with them. For
privacy, we look at how to reduce and/or mitigate the risk of information leakage on the infer-
ence surface of the model and protect it against adversarial attacks. Privacy is mainly achieved by
differential privacy methods, while cryptographic methods are the main mechanisms for security.
While their methods and definitions are different, their goals are complementary, and both need
to be considered for properly safe architecture.

Distributed: We aim for this survey to serve as a starting point for recommendations of security
and privacy depending on the use case requirements, including the distribution of data and models,
the level of security of privacy required, and the possibility of a central server, the requirements of
the security- and privacy-preserving methods change. Therefore, it is essential to discuss different
types of data distribution. Our comprehensive view explains the strengths and vulnerabilities of
different types of distributed learning and how different protective measures help to reach the
necessary privacy and security depending on the use case.

Deep Learning: We chose to limit the survey to Deep Learning instead of all Machine Learn-

ing (ML). DL offers state-of-the-art performance for most tasks, especially on tasks with high-
volume data, which is often the subject of distributed learning. Moreover, the security and privacy
challenges can be different from other ML models, as the complexity of the models increases the
chances of private information being extracted from DL models. For brevity and clarity, we there-
fore only focus on DL.

The combination of these three aspects of this survey offers us the opportunity to provide a high-
level and more comprehensive overview of the field of privacy and secure distributed deep learning
by being able to compare not only within one sub-specialty, but among different types of security
and privacy and distributed learning methodologies. To underline this, we compare the scope of
our survey to other recent surveys in Table 1. We highlight that we did not find any surveys that
focus on both collaborative learning and federated learning, as well as other distributed learning
methods, such as split learning [134]. However, these methods are often used for similar purposes
and therefore warrant comparison for a full overview of the field of PSDDL. Information on our
selection criteria, including our search query, can be found in Appendix A.1.

3 PSDDL Taxonomy

To effectively compare the selected papers, in this work, we present a taxonomy based on the use
case of the methods described in the papers. There are different configurations of Distributed Deep
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Table 1. Comparison of Surveys within the Field of PSDDL

Reference ML or DL Collaborative Learning Federated Learning Other DDL methods Attacks

Cryptographic methods Differential Privacy Cryptographic methods Differential Privacy
[129] DL � � �
[157] DL �
[150] ML � �
[41] DL � � �
Our DL � � � � �

Learning in which security and privacy preserving mechanisms can be applied, which leads us to
base our taxonomy on the workflow of secure and private DDL. As such, this article can serve as
a guideline, showing which types of preservation mechanisms can be applied in different domains
and for different use cases, depending on the intended DDL architecture.

3.1 The Distributed Deep Learning Framework

While many different types of DDL workflows have been developed, the principal areas of research
in this context can be classified into two main categories: Collaborative Learning and Federated

Learning.
Collaborative Learning (CBL) In this setup, the central server trains one central model, while

the data is distributed over different clients. The local data and its derivatives are securely com-
municated to the server. A distinction here can be made between collaborative learning, where
the distributed data is used for model training, and Secure Inference (SI), where inference by a
previously trained model is performed on a local sample. The latter usually is the basis of Deep

Learning as a Service (DLaaS).
Distributed Learning Here, clients do not share their data but cooperatively train a model by

sharing their private models’ details, such as gradients and weights. The most common architec-
ture is federated learning (FL). In FL’s basic form, clients train a local copy of the central model
on their private datasets and share raw model parameters or their derivatives with an orchestrator.
The orchestrator uses an aggregation mechanism to combine the received parameters and com-
municates that back to the participants. This process is iterated until convergence. We will also
discuss other distributed learning methods, such as split learning [134] and ensemble methods. It
is important to mention we use a slightly narrower definition of distributed learning to refer to
methods that involve model sharing.

These categories are illustrated in Figure 1, with FL as an example of distributed learning. Within
each main category, there are different points in the architecture where privacy or security mech-
anisms can be applied. Section 4 will discuss the developed methods for CBL, and Section 5 will
cover DDL. Some workflows cannot be classified into these two categories, most notably decen-
tralized distributed learning. We choose not to include these in the body of our survey, as the
protective measures on these types of workflows are still in the emerging stage. In Section 6, we
will highlight how they compare to the protective measures in our two main categories.

Data Partitioning in Distributed Learning There are different ways a dataset can be divided over
different clients. The most commonly occurring distribution is horizontal partitioning, where every
client has a partial dataset that contains a partition of the samples. In vertical partitioning, they
contain a part of the features. Most research focuses on horizontally partitioned data. Therefore,
we will specifically mention when a framework offers privacy protection for vertically partitioned
distributed learning.

3.2 Privacy Vulnerabilities of Deep Learning Models against Privacy Attacks

Distributed and federated learning aim to decentralize model training, mitigating risks associated
with centralized data storage. Both paradigms leverage multiple devices or servers holding local
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Fig. 1. Two major architectures for distributed learning. In FL, participants are actively involved in training

the model, while in collaborative learning, participants contribute by sharing their data or results for DL

training and inference on their data in a private and secure manner by an orchestrator

data samples, thereby enhancing privacy by minimizing raw data sharing. Distributed learning
performs parallel computations on data distributed across various locations. Federated learning,
a specialized form of distributed learning, employs orchestrators to facilitate training while data
resides on user devices. Despite these decentralized approaches, both distributed and federated
learning remain susceptible to privacy vulnerabilities during training and inference [87].

While essential for model convergence, the exchange of model updates in distributed and fed-
erated learning creates privacy vulnerabilities. Analyzing update patterns over multiple iterations
can reveal sensitive information about local datasets [45]. Even during inference, model responses
can leak information, potentially allowing adversaries to reconstruct a surrogate model and infer
characteristics of the training data [114].

3.2.1 Privacy Attacks for Exploiting Machine Learning Models. Privacy attacks against DDL are
methods by which malicious entities attempt to exploit vulnerabilities in these systems to gain
unauthorized access to sensitive data. Privacy attacks generally exploit the data processing ca-
pabilities of distributed ML models and architectures to infer protected or sensitive information.
These attacks can occur at various stages of a DDL model’s lifecycle, including during collabora-
tive training, inference, or data transmission phases. Below, we outline some general mechanisms
often employed in privacy attacks on ML systems [80]. Based on their goals and their exploitation
method, these adversarial attacks are categorized as Membership Inference, Reconstruction, Inver-

sion, and Property Inference attacks.
Membership Inference Attacks. Membership inference attacks [63] are sophisticated privacy

breaches aimed at deducing the presence or absence of specific data instances in the training set
of an ML model. These attacks exploit differential behaviors exhibited by the model processing in-
put data that it has encountered during training versus unseen data. The core hypothesis driving
these attacks is that ML models tend to predict with higher confidence and lower entropy when
presented with familiar data. Attackers leverage this by analyzing the confidence levels, decision
boundaries, and output probabilities of the model for various inputs and can infer with some prob-
ability if a given data point was part of the training dataset. This type of attack poses significant
risks, particularly in scenarios where the inclusion of an individual’s data in a model’s training set
could reveal sensitive personal information.,

Reconstruction Attacks. Reconstruction attacks [95] focus on the capability to approximate or
fully reconstruct the input data used to train a machine-learning model based solely on observing
the model’s outputs. These attacks meticulously probe the ML model with a series of strategically
crafted inputs and analyze the corresponding outputs to deduce the characteristics or even exact
entries of the training data. Attackers may employ techniques such as gradient-based optimization
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to modify their input iteratively, moving closer to the original training data with each step by
minimizing the difference between their input’s predicted outputs and the outputs observed when
the actual training data is used. This attack vector is particularly alarming for models trained
on confidential or proprietary data, as it can lead to significant privacy breaches or intellectual
property theft.

Inversion Attacks. Inversion attacks [60] are a nuanced subset of reconstruction attacks where
the objective is to invert the model’s predictive function to reveal details about the training data
or reconstruct the input leading to specific outputs. These attacks utilize the predictable nature of
the model and the information encoded within its parameters to reverse-engineer the inputs. By
understanding how model outputs change in response to variations in input and by exploiting the
model’s gradients, attackers can craft inputs that, when processed by the model, reveal substantial
information about the data on which the model was trained. The challenge and effectiveness of
inversion attacks depend significantly on the model’s complexity and the amount of information
implicitly stored in its parameters.

Property Inference Attacks. Property inference attacks [161] are designed to uncover global sta-
tistical properties of the dataset upon which a machine-learning model was trained, rather than
focusing on individual data entries. These attacks exploit the model’s learned characteristics to
infer broader patterns, trends, or biases in the training data. For instance, an attacker might ana-
lyze the model’s outputs across a range of inputs to determine if the training data over-represents
a particular demographic or if certain predictive features are correlated with sensitive attributes.
Property inference attacks typically involve complex statistical methods and hypothesis testing
against the model’s predictions to derive insights that might reveal sensitive or discriminatory
practices in data handling and model training.

3.3 Protective Mechanisms against Adversarial Attacks

In this work, we make a distinction between security mechanisms and privacy-preserving methods.
Within these two categories, many different methods are applied by the reviewed papers. To make
this work approachable to a larger audience, we will give a short overview and explanation of these
mechanisms in this section. Readers interested in detailed explanations and formal definitions of
these methods are encouraged to consult the appendices.

3.3.1 Security Mechanisms. The type of security mechanisms reviewed in this work is based on
the type of encryption protocols. In PPDDL, two main types of advanced cryptography are used:
Secure Multiparty Computation (SMPC) and Homomorphic Encryption (HE). Secure Mul-
tiparty Computation (SPMC) Multiple parties collaborate to perform a calculation while keeping
their input in the calculation secret. We make a distinction between multiparty computation

(MPC), with three or more clients, and two-party computation (2PC), with two clients. While
various protocols have been developed to achieve SPMC, the most common method used is garbled

circuits—which is based on oblivious transfer—for 2PC and secret sharing for MPC. These methods
are further explained and discussed in the Appendix. Homomorphic encryption allows for calcu-
lations to be performed on encrypted data. When the results of these calculations are decrypted,
it is as if the calculations were performed on the unencrypted data. In full homomorphic en-
cryption (FHE), all types of calculations are possible. Using HE introduces noise, and FHE is only
possible by often re-encrypting the data to limit the noise. Doing these calculations can become
very computationally expensive. There are several ways this cost can be reduced. One possibility is
to limit the type of allowed computations, such as with additional homomorphic encryption

(AHE), which only allows for addition-based computations. Another possibility is to retain the
option for all calculations but maintain a limited depth of the circuit, as with Leveled FHE. While
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LFHE allows for both multiplication and addition (essentially the basis of all calculations) there is
a limited depth, which might not allow for complicated functions such as the activation function
in a neural network. It is important to note that HE offers honest-but-curious privacy protection.

3.3.2 Security Levels. When promoting the privacy preservation of a protocol or workflow, the
level of adversary it has been proven to withstand needs to be addressed. This includes both their
access level and their behavior. These classifications, security levels, determine in what type of
security attacks a network would remain secure. The two main classifications that are covered are
semi-honest or honest-but-curious (HBC) and Malicious Adversary (MA). In both situations,
adversaries are trying to collect secure information. In the HBC scenario, the adversaries will try
to get as much information as possible but will not break the rules of the protocol. In the MA sce-
nario, the adversary will also break protocol wherever possible. Another classification of security
levels is the collaboration or collusion of adversaries, as a setting where multiple adversaries are
cooperating to gain private information needs a more secure protocol. In the MA scenario, there is
also robustness and fairness to consider: When a malicious party is discovered, the standard MA
protocol will simply be interrupted. In a robust or fair scenario, either all or no parties receive the
outcome, respectively.

3.3.3 Privacy Mechanisms. We define the privacy of ML models as preventing them from leak-
ing information about their training data and their internal information and state. In a centralized
setting, this only concerns the inference API of the model. In a distributed and/or federated setup,
we also need to consider the privacy of the output of the participants and the orchestrator as well
as the privacy of the final model(s) once their inference API is released. Different techniques have
been proposed to preserve the privacy of randomized mechanisms such as ML models, including
different levels of anonymization. However, it has been shown that these methods are susceptible
to adversarial attacks such as linkage attacks to certain degrees [107].

Differential Privacy (DP) is a standard for preserving the privacy of randomized mechanisms
that provides a rigorous mathematical proof of privacy. In its most extreme case, it provides plau-
sible deniability to any individual member of the training set if our ML model is trained on two
datasets that differ in only that member and the adversary knows all about the difference in the
datasets and can observe the distribution of the output of our model. DP will limit the difference
in the log-likelihood of the same model trained on these two adjacent datasets by a privacy budget
ϵ . There are different definitions for DP, but ϵ-DP, originally introduced by Dwork et al. [39], only
considers the privacy budget. The lower the privacy budget is, the higher the level of privacy of
the model would be. This comes at a cost of performance and potential fairness for the model, and
a tradeoff needs to be considered between the privacy and utility of the model. Differential privacy
is typically achieved by introducing some type of perturbation at training and/or inference time,
usually through adding carefully calibrated noise. The aim of the noise-adding mechanism is to
add enough perturbation to the system so the model learns as little as possible about individual
members of the training set while learning as much as possible about the population. More details
on the definition of DP and its noise-adding mechanisms can be found in the Appendix.

3.3.4 Privacy Levels. In a typical centralized distributed learning scenario such as federated
learning depending on the threat model, different DP levels can be achieved. Generally, we can
add DP on local and global levels. Local DP adds noise-adding mechanisms—and thus ensures DP
guarantees—on participant levels while global DP uses DP mechanisms to ensure privacy on the
parameterset level on the orchestrator. Global DP is desirable when the orchestrator is trusted but
there are no trust assumptions about the participants. Local DP is used when the orchestrator is
not trusted but no expectation of adversarial behavior is included in the threat model. Combining
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Fig. 2. Left: CBL workflow. It shows at which point secure inference, secure training, and private server

training are applied. Right: Distribution of papers among the different types of protective mechanisms for

the different points in the workflow.

local and global DP ensures privacy in a most pessimistic threat model with both the orchestrator
and the participants being expected to behave in an adversarial manner. Although, reiterating
our earlier point, adding additional levels of privacy usually comes at the price of loss of utility—
although this assumption is not unequivocally true, as DP noise-adding mechanisms have been
shown to act as regularization mechanisms that would benefit certain aspects of the model utility;
details of this process are out of the scope of this review.

4 Collaborative Learning

In collaborative learning (CBL), the distributed data of the clients is sent to a central server,
where the data is used for machine learning. Thus, the local clients do not build a local model
themselves. The workflow of CBL is shown in Figure 2 (left). As shown, there are three points
where protective measures can be taken:

(1) during the exchange of the training set data;
(2) during the training of the model on the server;
(3) during the exchange of the sample and subsequent label for inference.

If there is a previously trained model, then the clients often may only look to perform the last
step of the workflow: inference. The trained model is stored in a server and clients have unlabeled
samples that they want to classify. An example would be DLaaS, where the service provider aims
to keep their model private, and the client aims to keep their data private, yet both parties want
the model to perform inference on the data. These situations are referred to as secure inference

(SI), as will be discussed in Section 4.2 In Section 4.3, the papers are included that focus on secure
training, the training phase of CBL. In those situations, next to the security-preserving mechanisms
applied to the exchanging of partial datasets or a single samples for inference, the server might
also apply differential privacy when training the model on the server, which is referred to as step
2 in the workflow. We exclude privacy-preserving methods through differential privacy in this
section. As the parties do not perform their own training or analysis, there is no special setting for
DP. We therefore refer to other surveys on local DP, such as Reference [54] Figure 2 (right) gives
an overview and categorization of the discussed papers in this chapter.

4.1 Secure Inference

This section will discuss the selected frameworks that focus on facilitating secure inference. In
these cases, there is an already trained network that the server provides for inference of the client’s
unseen samples and the data of the client should remain private. The server would also like to
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Table 2. Overview of Secure Inference Methods

Framework Name Encryption
Mechanism

Threat Level Type
of NN

Activation
function

Evaluation
Datasets

Results on MNIST [31] Verif. Novelty

Level Col Accuracy (%) efficiency

[35] CryptoNets FHE
(YASHE)

HBC ND CNN polynomial MNIST 98.95 297.65 s – First paper to use HE for SI

[15] DiNN TFHE HBC ND MLP polynomial MNIST 96 1.7 s – Discretized neural networks

[62] CryptoDL FHE (BGV) HBC ND CNN polynomial MNIST
CIFAR10[74]

99.5 2.1x to [35] – Low degree polynomial
approximations of activation
functions

[81] MiniONN GC SS AHE HBC ND CNN
LSTM

exact MNIST
CIFAR10 a.o.

99 1.3s – Introduces oblivious neural
networks

[113] Chameleon SS GMW
GC

HBC NC MLP
CNN

exact MNIST 99 2.7s – Combined MPC methods for
efficiency, using a trusted third
party

[26] Faster
CryptoNets

FHE
(FV-RNS)

HBC ND CNN polynomial MNIST
CIFAR10

99 46s – Speeds up CryptoNets while
adding DP

[116] DeepSecure GC OT HBC ND CNN
DNN

exact MNIST a.o. 99 438 to [35] – Efficient SI based on GC

[66] Gazelle GC SS LHE
(BFV)

HBC ND CNN exact MNIST
CIFAR10

ND 0.03s – Uses garbled circuits to linearize
inference for LHE

[119] Tapas TFHE HBC ND CNN binary MNIST
diabetes[126]
a.o.

99 147s – Uses TFHE to implement binary
NNs

[11] NGraphHe2 FHE
(CKKS)

HBC ND CNN polynomial MNIST 99 2s – Client-aided activation function
computation

[112] XONN GC OT HBC NC CNN exact MNIST
CIFAR10 a.o.

99 1.28s – Replaces multiplication with
XNOR for low-cost OT

[92] Delphi GC LHE
(BFV)

HBC ND CNN polynomial CIFAR10
CIFAR100[74]

ND ND – Combines GC and LHE with
planner for efficiency

[110] Cheetah LHE (BFV) HBC ND NN
CNN

polynomial ImageNet[30]
MNIST

ND 79x to [66] – Tuning and operator schedule
optimizations for speedup, with
GPUs

[3] HCNN FHE (BFV) HBC ND CNN polynomial MNIST
CIFAR10

99 5.2s – GPU-accelerated FHE

[85] – FHE
(CKKS,
SEAL)

HBC ND DNN
CNN

polynomial ImageNet ND ND – Uses hybrid memory systems to
run large neural networks

[37] PVDLI SS HBC NC CNN polynomial MNIST
CIFAR10

98.1 2.5s Y Verifiability of the inference using
SS

[76] – FHE (RNS
CKSS)

HBC ND CNN polynomial CIFAR10 – – – Polynomial activation functions
for deep models

The papers are sorted by year of publication and by alphabetical order of the author. Collusion: whether participants
can collude with the server. Verification: whether the paper addresses verifiability of the data.
Abbreviations: AHE= additional homomorphic encryption, BFV=Brakerski-Fan-Vercauteren scheme, CKKS= Cheon-Kim-Kim-Song
scheme, CNN= convolutional neural network, DNN= deep neural network FHE= Full Homomorphic Encryption, GC= Garbled Circuits,
GMW= Goldreich-Micali-Wigderson scheme, HBC = honest but curious, LSTM= Long short-term memory, LHE= Linearly
Homomorphic Encryption, MA= malicious adversary, MLP= multi-layer perceptron, NC= No collusion, ND= not determined, OT=
Oblivious transfer, SS= secret sharing.

keep its neural network secure, because of issues such as data leakage, or, in a situation such as
DLaaS where the model in the product they are providing, to keep a competitive advantage. All of
the discussed frameworks that facilitate secure inference used encryption-based security methods,
although a few combined them with differential privacy. The different frameworks used HE, MPC,
or a combination of the two. In the following sections, the papers will be discussed organized by
encryption method. Section 4.1.1 focuses on HE, Section 4.1.2 on MPC, and Section 4.1.3 on hybrid
methods. The SI frameworks are summarized in Table 2.

4.1.1 Secure Inference with Homomorphic Encryption. Several papers had an idea of using en-
crypted data for machine learning purposes [7, 53], but the first to develop a system that allowed for
deep learning inference of homomorphically encrypted data was Reference [35] with CryptoNets.
They applied leveled HE using the YASHE scheme to neural networks. This YASHE scheme has
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since been shown to be vulnerable [4, 71], and later papers will use different schemes. Nevertheless,
they laid the foundation for secure inference.

One of the main issues with inference over homomorphically encrypted data is the activation
function of neural networks. It decides whether a certain neuron should be activated by calcu-
lating the weighted sum of the inputs to the neuron and adding bias to it. The most common
activation functions are ReLU, Sigmoid, and Tanh. The whole purpose of the activation functions
is to introduce non-linearity into the outputs of the neurons, for them to be able to perform more
complex tasks. Therefore, the activation functions are non-linear and complex functions. Unfor-
tunately, those are the types of functions that the commonly applied leveled FHE schemes have
trouble with, as they support addition and multiplication, but only up until a set calculation depth.
The standard activation function would be too “deep” in that regard. As the approximation of the
activation function is a main bottleneck in the implementation of HE-based secure inference, it is
a main topic in the field. One way to circumvent this complexity problem is to provide a different
activation function that is an approximation of the original one, but less complex, or more suit-
able for homomorphic encryption. As this is an approximation, it can lead to a loss of predictive
performance. This is what CryptoNets introduced, and several other papers in this section there-
after aimed to improve. Another option is to use a cryptographic protocol to replace to activation
function, these papers will be discussed in the hybrid section.

With CryptoNets, they approximated the sigmoid activation by replacing the max pooling step
i with a scaled mean-pool square function. While HE-suitable, it resulted in the computing costs
increasing with the number of NN layers and for bigger networks eventually becoming prohibi-
tive. CryptoDL by Reference [62] builds on CryptoNets by adding approximations of several new
activation functions. It implements low-degree polynomial approximations of several activation
functions (i.e., ReLU, Sigmoid, and Tanh). The use of their approximates of activation functions
leads to a closer approximation of a “normal” NN, which is visible in their performance.

Several other papers improved on other aspects of the CryptoNets framework. FasterCryptoNets
[26] aims to provide a speedup in efficiency on CryptoNets. It not only increases efficiency, thus
speeding up the inference, but it also provides an option for differential privacy for a small cost
in predictive performance. Reference [65] focuses on the addition of a batch normalization to the
scheme. Batch normalization is a technique that converts interlayer outputs into a standard format,
which allows the layers to learn independently of the others. The purpose of the paper is to create
a normalization that is reparametrized to support the conditions of the leveled FHE scheme.

References [15, 119] take a different approach to improve the efficiency of the secure inference
framework. As mentioned in Section 3, there are different HE schemes with different properties.
One main difference is the type of data input they can handle. While the previous frameworks used
schemes that supported long values, References [15, 119] used TFHE, a scheme that only allows
for binary operations. This makes the values used in the networks less precise, as they need to be
binarized, but this HE scheme is more efficient than the other schemes. Reference [15] developed
FHE-DiNN, a discretized network whose complexity is strictly linear to the depth of the network.
Reference [119] also implemented TFHE in TAPAS, thereby allowing only binary weights and
activations. The framework is implemented as a Binary Neural Network (BNN), by allowing for
XOR, AND, and XNOR operations through a function called reduce tree. While efficient and secure,
the binary NN does lead to an, albeit small, decrease in predictive performance, compared to other
HE frameworks. More recent papers mainly focus on improving the speedup of the networks to
allow for larger networks to be run as secure inference.

The frameworks in References [35, 62] have shown that the predictive performance of SI
is comparable to unencrypted inference. The following papers show speedup through a com-
piler [11], GPUs [3], and different approximation functions [76]. Reference [11] introduces their
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framework based on their previously developed NGraphHE compiler [12]. They leverage the CKKS
FHE scheme, which offers support for real numbers. They introduce a client-aided model, where
the two parties can cooperatively compute activation functions. Thereby, they implemented the
largest network at the time, pre-trained MobileNetV2, and ran inference on the ImageNet dataset.
This is extended in Reference [85], where hybrid memory is used to implement even larger models,
such as ResNet-50. Reference [3] improves efficiency by presenting the first GPU-accelerated FHE,
creating a speedup of the classification process. This allows for the classification of large batches
of images. Reference [76] proposes a new method of approximation of the activation function. It
replaces the ReLU and max-pooling functions of other activation functions, with a composition of
min-max approximate polynomials of small degrees. The small degrees allow for more efficiency
while it allows for common and well-developed deep learning models, as shown for ResNet and VG-
GNet, to be implemented without further modification and reusing of the pre-trained parameters.

4.1.2 Secure Inference with MPC. While the first frameworks of secure deep learning inference
were developed with HE, several papers focused on implementing a system with MPC methods.
MPC approaches are generally faster, but they do usually rely on all parties being involved in the
whole computation. This can be problematic, but not necessarily in a two-party inference setup, as
is common in secure inference. Often a combination of different MPCs was used for different steps
in the neural network, for the different protocols have different characteristics suitable for differ-
ent types of calculations. DeepSecure, by Reference [116], chose to diverge from homomorphic
encryption by using Garbled Circuits (GC) to create a provably secure inference framework. It
achieves this by transforming the input data into a “lower-dimensional subspace ensemble.” More-
over, it converts and approximates the neural network into XOR, AND, XNOR gates that allow for
the garbled circuit protocol. It is provably secure and offers a speedup compared to CryptoNets.

Reference [113] uses a hybrid system of MPC to create a more efficient system for secure infer-
ence. It combines both 2PC and MPC techniques. In particular, it performs linear operations using
additively secret shared values and nonlinear operations using Garbled Circuits or the Goldreich-
Micali-Wigderson protocol [52]. Moreover, Chameleon’s framework moves away from the com-
mon assumption of secret sharing models that three or more parties need to communicate in the
online phase, and it reduces communication overhead by precomputing heavy cryptographic op-
erations in the offline phase before the parties communicate. It thereby provides a speedup of 4.5×
compared to DeepSecure.

The XONN framework [112] creates secure inference through a novel protocol for conditional
addition based on Oblivious Transfer (OT). For OT, XNOR operations are of low computational
cost [108]. Therefore, to create a more efficient setup, XONN replaces costly multiplication steps in
the neural network with XNOR operations. Next to this, it also implements a trimming technique
for neurons that contribute little to the inference. This adds up to an increase in efficiency com-
pared to previously developed secure inference methods, (2.7× speedup on Cifar-10 over Gazelle
[66], mentioned in Section 4.3). XONN is particularly efficient for larger CNNs, compared to pre-
vious studies.

Another advantage of using MPC methods, compared to homomorphic encryption, is that they
can more easily also incorporate data verifiability, instead of only data confidentiality. An example
of this is PVDLI by Reference [37], which applies secret sharing. Verifiability of the inference result
of the cloud was previously the focus of Reference [50]. They did not use SPMC methods but
instead made the server provide a simple short mathematical proof of the correctness of inference
tasks using a sum-check protocol.

Reference [37] takes a different approach: They inject labeled verifiable data into the model
input, which offers verification of the correctness of the inference results with a high probability.
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Moreover, the secret sharing allows the injected verification data to be indistinguishable from the
normal ones, so the malicious party cannot determine which are the verification data.

4.1.3 Secure Inference with Hybrid Methods. Several papers aimed to combine the best features
of both SPMC and HE. As previously mentioned, one way to achieve this is to implement a HE
method but replace the activation function with an MPC protocol instead of a mathematical ap-
proximation. This way, the most costly calculation of HE can be replaced with a more efficient and
possibly more accurate protocol. Reference [81] was the first to attempt a hybrid setup by introduc-
ing oblivious neural networks (ONNs) with the MiniONN framework. ONNs are a combination
of leveled FHE (using the now-outdated YASHE framework) and oblivious transfer (OT). It uses
the oblivious transfer to replace the non-linear functions (such as ReLu) with oblivious transfer
protocols. It makes the basis of the non-linear functions into dot triplet products (see Appendix
A.5). These are similar to the multiplication triplets in oblivious transfer, and therefore OT can be
applied. This manages to highly outperform CryptoNets in terms of efficiency, especially for small
numbers of requests that require quick responses.

Gazelle [66] continues the evolvement of facilitating secure inference using leveled FHE encryp-
tion, but, different from miniONN, it handles the non-linear functions through the application of
GC. The goal of the paper is to use techniques that involve division-free arithmetic, as when they
are converted to homomorphic operations, they are significantly slower compared to the opera-
tions on plaintext. Moreover, it uses the BFV scheme, instead of the YASHE in MiniONN. This
method was further optimized by Cheetah [110], which focused exclusively on optimizing the
process as proposed by Gazelle. It did not necessarily achieve speedup through a different crypto-
graphic protocol but instead focused on speedup by optimizing the server side of secure inference
through tuning and scheduling. This leads to a speedup of up to 79× compared to Gazelle.

Delphi [92] uses a (lightweight) cryptographic protocol, in combination with a planner, to speed
up the architecture as developed by Gazelle. It uses a truncation trick to avoid overflow when
multiplying secret-shared fixed-point numbers. Truncation limits the number of digits behind the
decimal point. However, ABY3, discussed in Section 4.3, demonstrated that this trick can introduce
large errors with non-negligible probability. This could result in erroneous classifications, so to
verify that DELPHI avoids such errors, it was compared to miniONN, with a 99.2% overlap in
prediction outcome, showing largely avoidance of these errors.

4.2 Secure Training

The previous section focused on secure inference, a common goal for distributed networks. How-
ever, there is also interest in training the network over distributed data, instead of using an already
trained model. This is referred to as secure training (ST). Usually, due to the nature of neural net-
works, if training is possible, then so is inference. Training implies forward and backward Many
methods are adapted from the secure inference, and therefore also use HE, SMPC, or a combina-
tion of both. We will discuss these papers along the same axis, dividing between homomorphic
methods and secure multiparty computation methods. The papers discussed are summarized in
Table 3.

SecureML [94] provides the very first method that focuses on training as well as inference. They
use the ABY framework [29]. SecureML proposes a new approximate fixed point multiplication
protocol that avoids binary circuits and truncates decimal numbers and uses this to train neural
network models. This technique is limited to two parties. SecureML provides both options for MPC
and HE using, respectively, OT and LHE. However, the accuracy with LHE is very low, as higher
degree polynomials could not be used, as they introduced too much overhead. For the OT solution,
even by focusing on simple MLPs, the training time was in the thousands of seconds per iteration,
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Table 3. Summary of Secure Training Papers

Ref. Framework Enc.
Mecha-
nism

Threat
Level

No.
servers

Collusion Type of
NN

Evaluation
Datasets

Acc. on
MNIST(%)

Efficiency Fairness Novelty

[94] SecureML LHE or
OT

HBC 2 1 server +
subset of
clients

MLP MNIST 93.1 High – introduces secure training
with high computational
cost

[93] ABY3 OT GC
aSS

MA 3 1 server +
subset of
clients

MLP MNIST 94% 55,000× to
[94]

– adaptation of ABY to
three-server setup

[61] CryptoDL2 LHE HBC 1 – MLP CNN MNIST a.o. 95 improves
[94]

– LHE for secure training,
without re-encryption due
to high cost

[156] GeluNet AHE
(Paillier)

HBC 2 ND MLP CNN MNIST a.o. 96.9 0.281 s – AHE with the Paillier,
leaving local calculations
unencrypted

[136] SecureNN OT GC
aSS

HBC
MA

3 1 server +
subset of
clients

CNN DNN MNIST 99 upto 93×
to[94]

– 3-party setup for secure
training, which can also
protect against a malicious
adversary

[2] Quotient OT HBC 2 ND MLP CNN MNIST and
others

99.4 50× [94] – ST with ternarized neural
networks

[75] MSCryptoNet Multi-
scheme
FHE

HBC 1 – CNN MNIST
Diabetes a.o.

99.6 * – Enables training phase
using a multi-scheme FHE
setup

[96] – FHE
(HElib)

HBC 1 – CNN MNIST 96 40 min per
batch

– Homomorphic encryption
for training

[28] Fan4 SS MA 4 Honest
Majority

CNN
(ResNet
a.o.)

MNIST
ImageNet

98.6 20× to
[72]

Y Introduces robustness
while retaining privacy.

[102] Blaze GC SS MA 3 1 server +
subset of
clients

DNN Parkinson[118] – 278× to
[93]

Y Introduce a new
secret-sharing semantics
for 3PC tolerating up to
one malicious corruption

[137] FALCON SS MA 3 Honest
Majority

MLP CNN MNIST
CIFAR10
T-ImageNet

98.6 6× to
[136]

– Batch normalization in a
3PC MA setting

[109] Trident GC SS
ABY

MA 4 ND MLP CNN MNIST a.o. 98.3 187× to
ABY3

Y Fairness for 4PC MA
scenario

[72] SWIFT ABY MA 4 Honest
Majority

MLP CNN MNIST
CIFAR10

* * Y Robustness, guaranteed
output delivery, for HBC

[117] ARIANN FSS HBC 2 1 server +
subset of
clients

MLP CNN MNIST
CIFAR10
T-ImageNet

99.2 42 h – Offers ST suitable for GPU

[73] Tetrad ABY MA 4 Honest
Majority

MLP CNN MNIST
CIFAR10

ND 4× to
[109]

Y Robust ST for MA scenario

The papers are sorted by year of publication and by alphabetical order of the author. Efficiency: Speedup compared to
benchmark, complexity, or seconds, in most ideal scenario. Collusion and Drop Out: max. number of participants.
Fairness: whether the framework offers at least fairness.
Abbreviations: FSS = Function secret sharing GMW= Goldreich-Micali-Wigderson, LHE = Linear Homomorphic Encryption, LSTM=
Long short-term memory, MA= malicious adversary, ND= not determined.

and therefore too long and not practical. The works in the following sections try to improve on
this work, either through the use of homomorphic encryption or secure multiparty computation.

4.2.1 Secure Training with Homomorphic Encryption. Following SecureML, CryptoDL2 [61] was
the first to focus on homomorphic encryption for training and inference. It implements FHE using
the HElib library, and approximations of activation functions were based on Chebyshev polynomi-
als [147]. In comparison to secureML, it offers both a significant speedup and an increase in predic-
tive performance. However, the approximated polynomial activation functions caused training to
be unstable. To manage the computational complexity and noise, by avoiding the costly bootstrap-
ping of homomorphic encryption, their approach allowed some communications between client
and server when the noise reaches a threshold. While this increases communication overhead, it
is still lower compared to SPMC protocols, where several communications are necessary for each
operation.
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Nandakumar et al. [96] focus on training a network with FHE fully in the fixed-point domain
and achieve convergence and reasonable accuracy. They argue that for other papers that only
employ floating point operations for some intermediate computations and truncate them, errors
can quickly accumulate and prevent convergence, especially in a non-interactive protocol such as
FHE. Reference [96] achieves FHE in the fixed-point domain with bootstrapping by pre-computing
in a table and performing homomorphic table lookup. This optimization leads to a 50× speedup
compared to their naive setup, with 96% accuracy.

GELUnet [156] solves the issue of high computational complexity in approximations of activa-
tion functions differently. They use partial homomorphic encryption with the Paillier system but
leave the local calculations unencrypted. In this setup, the input for the activation (for example, the
encrypted intermediate weighted sum) is sent back to the client. The client has the key and thus
decrypts the input executes the activation, re-encrypts the result, and sends it to the server for the
next layer. While this limits computational cost, it leads to higher communication and higher ne-
cessity of compute power of the client side. As a main reason for ST can be to avoid this, Reference
[156] might not be suitable in many situations.

MScryptonet [75] aims to provide an architecture for the secure training of the model through
the application of a multi-key fully homomorphic encryption architecture. Previous frameworks,
such as CryptoDL2 [61], raise the option of HE model training, but with the encryption of only
one key, thereby safely allowing only one client at a time. Thereby encryption is outsourced, but
not necessarily collaborative among multiple parties. Multikey FHE can be a solution to these is-
sues. A multi-key fully homomorphic encryption (MK-FHE) scheme allows a server to eval-
uate circuits over ciphertexts encrypted under different keys (see Appendix A.4.4). To achieve ST,
MScryptonet uses approximations of activation functions with low-degree polynomials. Although
training time was not reported, there was a 2.5× speedup compared to CryptoNets for inference.
While multikey encryption solves the problem of collaboration among clients, another approach
is applying SPMC, as discussed in the next section.

4.2.2 Secure Training with Secure Multiparty Computation (SPMC). Most methods for se-
cure training use MPC techniques. A first example of this is ABY3 [93]. Their approach is based
on the previously developed ABY framework [29] similar to secureML, but extended it for three
parties with support security against malicious adversaries. In this mixed method framework, they
introduce new approximate fixed-point multiplication protocols for shared decimal numbers. This
provides a more workable framework: Next to better security, they report a speedup of 55,000× in
the most extreme scenario compared to SecureML.

Concurrently, Wagh et al. [135] provides a secure training setup for CNNs. It provides three-
and four-party secure computation protocols, with various neural network building blocks such as
matrix multiplication, convolutions, ReLu, Maxpool, and normalization. Its predictive performance
is good, providing a 99% accuracy with a speedup towards both secure inference and ST setups.
The protocol is established in such a way that it also protects against attacks from a malicious
adversary, where no single party learns any information about the data. By creating more efficient
communication, and eliminating oblivious transfer protocols, it creates up to a 407× increase over
SecureML.

Another approach is taken by Agrawal et al. [2], which focuses on neural networks with ternar-
ized network weights, similar to FHE-DiNN [15] and TAPAS [119]. Therefore, ternary matrix-
vector multiplication is a crucial primitive for training. They implemented a protocol for ternary
matrix-vector multiplication, which is based on Correlated Oblivious Transfer [6] that combines
Boolean-sharing and additive-sharing for efficiency. Compared to secureML, they obtain an im-
provement of 50× in WAN time and 6% in absolute accuracy while working in the honest but
curious setting.
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Falcon [137] provides a 3PC setup that gains efficiency by a factor of 2 by rebuilding a derivative
of ReLu. Moreover, to create a better accuracy, they also enable batch normalization. It offers MA
security: Falcon provides for secure training in an honest-majority adversarial setting. It is 4.4×
faster than ABY3 and 6× faster than SecureNN.

Blaze [102] takes an approach with three servers, tolerating up to one malicious corruption,
using new secret-sharing semantics. They also introduce a dot product protocol, where communi-
cation is independent of vector size, and a less expensive truncation method than ABY3, leading
to an increase of up to 278× for neural networks. Swift [72] extends Blaze to offer maliciously se-
cure, three-party computation (3PC). It is robust in the honest-majority setting and also offers
maliciously security for 4PC. Moreover, it is as fast as Blaze.

Trident [109] and Tetrad [73] build on the methods from Blaze [102] and SWIFT [72]. Trident

[109] uses 4PC and has an additional honest party in the protocol. This leads to a speedup of up to
45× compared to ABY3 for CNNs. While Trident offers fairness, Tetrad’s [73] protocol also comes
with robustness. They provide this robust option by figuring out the trusted party in the protocol
and delegating the calculation to them. While this is secure in a cryptographic sense, it is not the
privacy-preserving solution that would be preferable in distributed learning.

Fan4 [28] focuses on providing a robust 4-party system. They mention that previous frameworks
provide their robustness by delegating the calculation to a trusted party. While this is secure in a
formal sense, in a real-world scenario, most participants will not accept this as a suitable solution.
Fan4 [28] introduces robustness, as well as private robustness, where the protocol can continue
privately. They achieve this in an actively secure 3PC protocol for one corruption. AriaNN [117]
uses their previously developed method of function secret sharing [16]. This is different from
classic secret sharing, where a shared input is applied to a public function. Function secret sharing
applies a public input on a private shared function. While offering a relatively minor speedup to
previous methods, their framework is implantable on a GPU.

4.3 Summary of Collaborative Learning

We can see both for secure training and secure inference, the increase in accuracy, efficiency,
and security as methods have improved over time. Importantly, we also start to see protocols,
especially for ST, that also take into account malicious adversaries. The two situations, SI and, ST,
are highly related to each other, however, the ideal setup can differ between the two purposes.

For secure inference, the largest group of papers consists of FHE-based security. Those methods
assume Honest-but-Curious clients and servers, though some, such as XONN [112], do remark on
the possibility of adapting the framework to withstand a malicious adversary. For secure inference,
a key question to raise is the extent to which a higher level of protection would be necessary. It
is important to remember that most of the private training setups can also be used for private
inference, so more secure and robust frameworks are available for secure inference.

With regards to secure training, implementing a situation protected against malicious adver-
saries seems more important, with a preference for MPC methods for private training. However,
few papers have included differential privacy in their methods. Most papers only look at the safe-
keeping of the data and do not seek to combine this with verifiability. Especially secure training
could be sensitive to a poisoning attack, which involves the manipulation of training data to inject
false information into the model, which can hinder the training process. Incorporating mechanisms
for verification and accountability would be a critical step toward enhancing the security of CBL
systems. Moreover, it is worth noting that there are still issues regarding excessive computational
times. While this is an active problem and efficiency is continuously improving, an alternative
approach may involve distributed learning, as this can delegate computation to the participants,
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thereby potentially reducing computational time. This topic will be expanded on and discussed in
the next section.

5 Distributed Learning

One of the most prominent methods within distributed learning is Federated Learning (FL) [91].
FL is a specialized form of distributed learning that enables multiple participants, each with their
local data, to collaboratively train a shared model while keeping the data localized. Most of this
chapter will focus on FL, which we will describe in the next section. However, It is important
to note that several configurations of distributed learning do not follow this architecture, most
notably Split Learning [134], where one model is split up among different parties. We will describe
these methods in Section 5.4.

5.1 Description of a Federated Learning Workflow

5.1.1 FL Overview. FL involves iterative model training across decentralized clients (for
thorough discussion, see Reference [69]). Clients train local models on their private datasets,
transmitting updated parameters to a central server. The server aggregates these updates (e.g.,
via federated averaging) to produce a global model, subsequently redistributed to clients for
further training. This process continues until convergence or a predefined performance criterion
is met. This approach enables robust deep learning while preserving data privacy and mitigating
centralization risks.

FL, while promoting distributed training without direct data sharing, does not inherently
guarantee privacy. This misunderstanding stems from conflating data isolation with data privacy.
Although raw data remains local, shared model updates (gradients, weights) implicitly reveal
information about the training data vulnerable to inference attacks. Sophisticated adversaries can
exploit these shared updates to infer properties about the original data, potentially leading to
privacy breaches. The central aggregation process lacks intrinsic privacy mechanisms, creating
further vulnerabilities to malicious actors or data interception. Repeated communication rounds
exacerbate this risk.

It is crucial for our main discussion to distinguish between cross-silo and cross-device FL, as
these variations impact the scale and nature of participation in the distributed learning process. In
cross-silo FL, the setup typically involves fewer clients; however, these clients are usually entities
that possess substantial datasets and computational resources. This contrasts sharply with cross-
device FL, where a larger number of less reliable clients participate, but each typically has access
to smaller datasets and has less computational powers. Cross-device FL scenarios often require
tailored privacy-preserving algorithms to address the unique challenges presented by the scale
and reliability of the devices involved, and the risk of data exposure or loss may be heightened due
to the increased number of less secure endpoints.

5.1.2 Federated Learning Security and Privacy Workflow. Similar to the previous chapter, our fo-
cus remains on FL algorithms that are specifically designed for privacy preservation. We visualize
the security and privacy mechanisms in the FL workflow in Figure 3. To address the inherent pri-
vacy vulnerabilities in FL, the integration of differential privacy (DP) provides a robust solution.
The DP noise-adding mechanisms can be employed in different parts of the workflow. This will
have implications for the performance of the pipeline, the privacy level, and the privacy surface
of the model. To better understand this surface, we divide the differentially private federated deep
learning methods into two broad domains: local DP and global DP.

Global differentially private federated learning In a Global Differential Privacy (GDP) scheme,
a global, trusted curator receives non-perturbed parameters from involved parties in response
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Fig. 3. An FL workflow demonstrating where privacy-preserving measures protect model inference and se-

cure communication safeguards the training process (left). The distribution of research papers investigating

these protective mechanisms is shown on the right.

to a query and applies random noise to the output of any queries being performed against the
system. The randomized mechanism M is (ϵ,δ )-differentially private in the global domain if it
satisfies Equation (1). Local differentially private federated learning In Local Differential Privacy

(LDP), each node applies its own set of noise to the network parameters, and what the curator
receives is the perturbed data [14]. This ensures that if the orchestrator behavior is adversarial,
then the amount of information leakage will be bounded by the DP guarantees of the system.
The randomized mechanism M is (ϵ,δ )-differentially private in both local and global domains if it
satisfies Equation (1).

Local and global privacy are added at different points in the FL workflow, as can be seen in
Figure 3, but they are both based on similar noise-adding techniques. These techniques and their
main challenges, such as the utility/privacy tradeoff, in FL are discussed in Section 5.2.

Beyond privacy, FL requires robust security measures. Cryptographic methods are employed
to secure communication between the orchestrator and participants, protecting the integrity
and confidentiality of both model updates and the aggregated model. Section 5.3 explores these
security challenges, including scalability and verifiability. Section 5.2.3 covers approaches that
combine noise-addition and cryptography to simultaneously address both privacy and security
concerns.

5.2 Differential Privacy in Federated Learning

Noise-adding is the main method to achieve differential privacy in FL. The noise is usually added
during the training to the internal state of the model, e.g., the model gradients. Considering the
general workflow of FL with participants as the data holders and top and mid-level actors serving
as orchestrators, the noise-adding mechanism can be employed in different parts of the workflow.
The process of adding noise is carefully calibrated to ensure that while the individual data points
are obscured the overall utility of the model is not significantly compromised. This balance is criti-
cal in maintaining both the performance of the model and the trust of the participants. A consider-
able number of proposed methods in the area of DPFL are application-oriented, as they trade the
regular optimization method of their model with a DP version, usually DP-SGD, for local DP—e.g.,
References [9, 142, 151, 158]—or global DP—e.g., References [58, 106, 124]. The methods we cover
in more detail in this section provide additional privacy and/or performance-related novelties. We
summarize the selected differentially private FL workflow papers in Table 4.
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Table 4. Overview of Private Distributed Learning Methods

Name Privacy
Level

PP Regime PP Mechanism Distributed
Architec-
ture

Type of NN Evaluation Datasets Highest
Privacy
Level

[124] Global (ϵ, δ )-DP Laplace, Sparse
Vector Technique

FL MLP, CNN MNIST, SVHN ϵ = 1 per
parameter

[49] Global (ϵ, δ )-DP +
MA

Gaussian FL N/D MNIST ϵ = 8

[127] Global,
Local

(ϵ, δ )-DP LDP [38] FL CNN, VGG MNIST,
FMNIST,CIFAR-10

ϵ = 5

[159] Global f -DP Gaussian Private
client
models,
shared
noisy
global
model

CNN MNIST, CIFAR-10 N/D

[59] Global (ϵ, δ )-DP +
noisy
gradients

Gaussian FL N/D N/D N/D

[122] Local (ϵ, δ )-DP Gaussian FL over
wireless

N/D N/D N/D

[9] Local (ϵ, δ )-DP Gaussian FL cyclic CNN eICU, TCGA ϵ = 3.84
[58] Local (ϵ, δ )-DP Laplace FL N/D MNIST ϵ = 1
[132] Local (ϵ, δ )-DP Gaussian FL SVM, DT, CNN MNIST, UCI Nursery ϵ = 0.5
[154] Local (ϵ )-DP Laplace FL 3-tier CNN MNIST N/D
[64] Local (ϵ, δ )-DP +

MA
Gaussian with
adaptive variance

FL +
ADMM

Logistic
Regression

Adult ϵ = 1.01

[82] Local (ϵ )-DP Laplace,
Randomized
response

FL N/D MNIST ϵ = 8

[139] Local (ϵ, δ )-DP Randomized
response prior

FL LDA Amazon reviews,
spam emails,
sentiment

ϵ = 7.5

[51] Local Renyi-DP +
MA

Dirichlet Ensemble Teacher-student
reinforcement
learning

AirRaid-ram-v0
simulation from
OpenAI Gym

ϵ = 4.46

[68] Local (ϵ, δ )-DP Gaussian FL CNN, LSTM MNIST, EMNIST,
CIFAR-19,
Stackoverflow

ϵ = 19

[70] Local (ϵ, δ )-DP +
proposed
accountant

Gaussian FL N/D N/D N/D

[89] Local (ϵ, δ )-DP +
MA

Gaussian FL SqueezeNet Diabetic retinopathy ϵ = 11

The papers are sorted by year of publication and by alphabetical order of the author. Privacy level: Reviewed
works rarely share the same settings for different variables in these types of methods, e.g., model architecture,
number of clients, rounds of training, and so on. The reported values here are the most significant and/or
relevant results from the most common dataset used, usually MNIST if available. The privacy levels should not
be a basis of comparison between methods and each method should be evaluated individually.
Abbreviations: CNN= Convolutional neural network, MA= Moments accountant, FL= Federated learning.

5.2.1 Private Training and Inference in Federated Learning. Geyer et al. [49] propose a global-
DP-based FL mechanism based on adding noise to the communicated gradients of each client by
the orchestrator. They use a random subsampling mechanism to pick K out of N participants for
the parameter aggregation phase. Then, the updated model parameters are only sent back to this
subset of participants.

Beaulieu-Jones et al. [9] use a cyclic approach, where each Learning Party will train their model
until they spend their privacy budget, then pass on the computed differentially private set of gra-
dients to the next Learning Party.

Zhao et al. [158] communicate the network weights from Learning Parties to the parameter
server and average them to obtain and send back the optimum global model parameters for the
next training iteration. They use a publicly available dataset to validate the performance of each
learning party’s local model and only choose the best-performing ones to average over to mitigate
the problem of unreliable partners with noisy and low-quality datasets. To make sure the learning
parties cannot infer which are dropped and which are selected, the parameter server uses the
Exponential Mechanism to protect the selection mechanism. The total privacy budget will be the
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largest of the two privacy budget values—on the learning party to perturb the objective function
and on the Parameter Server to obfuscate the selection process.

Hartmann and West [59] follow the local DP FL scheme by adding uniform noise to the local
gradients before submitting them to the parameters server. However, on the orchestrator level, the
collective anonymized noise values will be subtracted from the cumulative gradients at each step
to achieve higher utility.

Wang et al. [139] propose a federated DP Latent Dirichlet Analysis (LDA) mechanism for
privacy-preserving distributed text mining. The orchestrator is assumed to be untrustworthy. They
propose a modified version of Warner’s randomized response method called random response
with priori (RRP) to make their federated LDA mechanism DP on local nodes. The orchestrator
will attempt to infer the topic-word distribution from DP local updates received from each par-
ticipant. The RRP method non-uniformly samples the noisy terms a priori drawn from the local
model.

Seif et al. [122] consider an FL system connected over a wireless channel and propose leveraging
the superposition characteristics of a wireless channel to preserve the privacy of the communicated
gradients. They make use of one flat-fading Gaussian Multiple Access Channel (MAC) bound by
Local DP constraints. The channel coefficient and additive Gaussian noise determine the amount
of perturbation applied to the gradient sets. They provide tighter privacy bounds dependent on
the number of clients on the wireless channel through their proposed transmission scheme.

Huang et al. [64] use the Alternating Direction Method of Multipliers (ADMM) to perform
their distributed learning task and augment it with differential privacy. The ADMM method opti-
mizes a Lagrangian function associated with the global loss function by alternately minimizing it
with regard to local models and the global models. Based on the intuition that it is not necessary
to solve the local optimization problems to a very high precision to guarantee global convergence,
the Lagrangian function is replaced by a first-order approximation of itself. The authors use the
Gaussian noise-adding mechanism to achieve DP and vary the variance of the noise with time,
decreasing its magnitude as the number of iterations increases.

Kairouz et al. [68] address the fact that most DP-SGD-based methods rely on privacy amplifi-
cation through subsampling by carefully choosing mini-batches, which can be challenging in a
distributed setting. They propose the follow-the-regularized-leader (FTRL), a DP-distributed
training algorithm that does not rely on subsampling. FTRL adds correlated noise to the gradients,
as opposed to the DP-SGD algorithm, in which independent noise is added to the gradient vector.

Although most differentially private distributed deep learning methods are in the context of
generative and discriminative models, other types of deep learning methods can also benefit from
this paradigm. An example is the work by Gohari et al. [51] on differentially private reinforcement
learning. This work considers a deep reinforcement learning setting in which agents would ask
for a demonstration from other agents to improve their performance following a teacher-student
scheme. In the case where the private dataset of the agent contains sensitive information, the
demonstration opens up the teacher to privacy attacks such as membership inference. They limit
the context of demonstration to the teacher’s policy and use the Dirichlet mechanism to privatize
the discrete-space policy of the teacher.

5.2.2 Reducing the Impact of Privacy/Utility Tradeoff. The balance between privacy protection
and data utility is a fundamental challenge in the design of differential privacy mechanisms. While
stringent privacy guarantees often necessitate the introduction of noise or other obfuscating al-
terations to the data, these modifications can detrimentally affect the utility or accuracy of the
resulting models. In distributed learning systems, this tradeoff becomes even more critical, as the
system must maintain high data utility to ensure effective learning and decision-making while also
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upholding rigorous privacy standards. Addressing this challenge requires innovative approaches
that optimize noise addition and data processing techniques, thereby minimizing the loss of util-
ity without compromising the privacy of individuals. This section explores various strategies and
methodologies developed to improve this delicate balance, aiming to achieve optimal outcomes in
both privacy preservation and the practical usefulness of data.

Shokri and Shmatikov [124] in their seminal paper use the Laplacian mechanism of differential
privacy to protect the communicated gradients. But, first, they select only a subset of the most
prominent gradient values for communication and the Laplacian noise (generated according to a
fixed budget) will only be added to this subset of gradients before communicating them to the
parameter server.

Liu et al. [83] propose a DP FL scheme with a dynamic noise-adding mechanism for improved
utility. They employ an extended version of the layer-wise relevance propagation algorithm and
add noise calibrated to the calculated relevance of each attribute class. Furthermore, they propose
a randomized privacy adjustment mechanism in which a threshold for the efficacy of each feature
is defined by the user. The threshold is then used in a method similar to Warner’s randomized
response to decide whether and with what probability to add noise to a feature or just pass the
data unperturbed.

Liu et al. [82] adapt the amount of noise they add to the data by using a modified relevance
propagation algorithm to measure the contribution of each neuron of the input layer and scale
the noise based on its impact on the model output. They further threshold the contribution of
each feature with a parameter f . Features with contributions above the threshold will have noise
injected into them, while for the nodes with contributions lower than the threshold, a randomized
response mechanism is used to decide whether noise is added to the data or the original data passes
through. Noise sampled from a Laplace distribution is added to the loss function.

Zhang et al. [154] design a three-tier FL mechanism to perform deep learning on resource-
constrained edge devices. They pre-train the model on public data and then partition the model
on the last layer among edge nodes to reduce their computational overhead. They apply local DP
to the model on the client side.

Kim et al. [70] use an enhanced privacy budget accountant in a federated DP-SGD scheme and
provide a variable sensitivity parameter—as opposed to a fixed bound on gradients—leading to
tighter privacy bounds. Furthermore, they provide an analysis of the communication rate, privacy
level, and model utility, which leads to a new way to calculate the DP noise variance, resulting in
a lower transmission rate and higher utility while maintaining the same level of privacy.

5.2.3 Reinforcing Privacy while Maintaining Security. We earlier discussed the privacy and se-
curity risks differ by nature and require different treatments. DP by nature can protect the training
and inference surfaces of a distributed learning system against specific privacy attacks. However,
to mitigate security risks, existing research often combines private and secure training and in-
ference methods. This could potentially complicate the dynamics of both the training phase and
inference phase with regards to compute/time costs and the tradeoff between utility and secu-
rity/privacy and needs careful consideration and development. One example is the work by Hao
et al. [58], which combines local DP with homomorphic encryption to prevent malicious parties
from modifying the communicated gradient values. They encrypt the DP gradients with PPDM ad-
ditive homomorphic encryption method [160] to provide a more lightweight option. This allows
for an encrypted addition of the model updates at the server level. They propose a scheme that
is robust against participants dropping out and that preserves privacy against malicious Learning
Parties. Phuong et al. [106] also use homomorphic encryption in addition to DP for private, secure
training of a deep model.
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Hartmann and West [59] imagine a situation where the parameter server is malicious and could
collude with several Learning Parties. To mitigate privacy concerns, they add uniform noise to the
local gradients and send them to the parameter server. Simultaneously, they send the actual noise
vector through an anonymizing service like Tor so the server cannot recover the exact gradient
values of any single Learning Party but would be able to subtract the sum of noise values from the
sum of gradient values and compute the gradient values for the next step of the training process
with high utility. Truex et al. [132] combine local DP with secure multiparty computation between
participants to provide security during training. Using an adjustable security parameter, they are
able to reduce the amount of calibrated noise added to the local model parameters during the
training phase.

Hao et al. [58] apply both DP and homomorphic encryption to the FL protocol by using ad-
ditional HE to provide a more lightweight option. It does this by applying ϵ-DP by the Laplace
mechanism to the model updates and thereafter encrypting them in an AHE-applicable manner.
This allows for an encrypted addition of the model updates at the server level. They propose a
scheme that is robust against participants dropping out. This is expanded and improved on by
Reference [128], which proposes a multi-key HE scheme; this method is secure when the server
colludes with one of the participants.

Sun et al. [127] augment the local DP FL pipeline by masking the identity of each participant
from the orchestrator through the utilization of techniques such as IP masking or secure multi-
party computation. The weights of local models are split and shuffled before being received by
the orchestrator. Each client samples a random time for sending its parameters to the server. Each
set of weights is split and then the weights of different local sets are shuffled before being sent to
the orchestrator. On the local level, the authors add noise to the gradients of the deep net using a
randomized noise-adding mechanism to make sure the overall noise has a zero mean.

Zheng et al. [159] introduce a DP FL mechanism utilizing the notion of Gaussian f -DP [34]. They
address two threat models, one assuming one malicious learning party and the other assuming
several malicious parties, and introduce weak and strong federated f-differential privacy schemes
to deal with these threat models, respectively. The general framework involves training customized
models on each client—as opposed to federated averaging in which, at each round, clients adopt
the global model—with the help of a noisy global helper model. At each round of training, the
selected participants pull the helper model and utilize it to increase the efficiency of their private
local model. The local DP model is then synchronized to the server to update the helper model.

Malekzadeh et al. [89] propose Dopamine, a federated differentially private deep learning mech-
anism for medical data processing. They employ DP-SGD for local training. To provide hospital-
level privacy guarantees, they use a secure aggregation method based on homomorphic encryption
that is performed on collected local noisy DP models.

The work of Hao et al. [58] is expanded and improved on by Reference [128], which proposes a
multi-key HE scheme in a similar way. This way, the method is secure when the server colludes
with one of the participants.

Ma et al. [88] also use multikey HE, specifically a multi-key protocol based on CKKS. There,
the model updates are encrypted via an aggregated public key before sharing with a server for
aggregation. Collaboration between all participating devices is required for decryption. It is secure
for collusion until n-1 participants.

5.3 Security Methods for FL

Not only differential privacy mechanisms are important for safe distributed learning, but security
measures can also be incorporated to improve data and model privacy. The papers discussed in
this section are summarized in Table 5.
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Table 5. Encryption-based Protective Measures for FL, Sorted by Year and Author

Ref. Framework
Name

Encryption
method

Threat
level

Collusion Type of
NN

Evaluation
Datasets

Acc. on
MNIST

Efficiency Drop Out DP Novelty

[13] SecAgg SS HBC n/3-1
participants

– – – O(N 2) n/3-1 Gaussian Introduces secure
aggregation of models in
FL

[105] PPDL AHE (LWE,
Paillier)

HBC No collusion MLP CNN MNIST
SVHN
[97] a.o.

99 2.40× loss to
PT

None Laplace AHE-based scheme for
cross-silo FL

[58] – AHE
(PPDM)

HBC Multiple
participants

CNN MNIST 98.1 100× to
[105]

Arbitrary
subset

Laplace Combines AHE and DP for
efficient FL

[128] – AHE Re-
encryption

HBC Any participant ASGD NN MNIST 97 2.64× loss to
[105]

None – Multikey setup using
re-encryption and ASGD

[146] Hybrid-
Alpha

FE HBC Maj. honest CNN MNIST – 68% to [132] Dep. on
collusion

Gaussian Functional encryption
scheme resistant to
dropout and addition of
participants

[10] – SS HBC
SMA∗

5% – – – – 5% Shuffle
[8]

Allows for secure
aggregation with DP
shuffling

[36] SSDDL SS HBC Some
participants

CNN MLP MNIST
SVHN

99 O(nN ) ND – Effective secret sharing
that can handle collusion

[67] FastSecAgg SS:
FastShare

HBC 10% CNN – – – 10% – Secret sharing scheme
based on Fast Fourier
Transform

[125] TurboAgg aSS HBC Maj. honest CNN CIFAR10 – O(N loдN ) 50% – Multi-group circular
strategy for efficient
model aggregation

[145] PPFDL GC Paillier HBC No collusion CNN MNIST 95∗∗ Improves
[13]

Arbitrary
subset

– Solution to reduce the
negative impact of
irregular users on
accuracy

[143] VerifyNet SS HE hash HBC (t - 1)
participants∗∗∗

CNN MNIST 99 High
overhead

30%
tested

– Double-masking protocol
to encrypt users’ local
gradients and provide
verification

[153] BatchCrypt AHE
(Paillier)

HBC No collusion MLP CNN
LTSM

FMNIST
SSP [130]
CIFAR10

– 93× to FATE
[84]

None – Uses batch-encrypting for
more efficient cross-silo FL

[120] Poseidon FHE (CKKS) HBC (n - 1)
participants

MLP CNN MNIST
CIFAR100
o.a.

89.9 5,283.1 s None – Multiparty HE for
unlimited amount of
participants

[162] DAEQ-FL ElGamal SS HBC Maj.honest CNN
LSTM

MNIST
CIFAR10
SSP

99
∗∗∗∗

t∗∗∗ – FL with no trusted third
party and non-i.i.d. data

[57] – SS HBC (t - 1)
participants

– – – – ND – Extension of [143] for
non–fully trusted centers

[88] xMK-CKKS MK-CKKS
AHE
(Paillier)

HBC (n - 1)
participants

CNN UP-FALL
[90]

–
∗∗∗∗

ND – Multi-key setup efficient,
requiring all parties for
decryption

Efficiency in speedup compared to benchmark, complexity, or seconds. Collusion and Drop Out quantified in max.
number of participants. Abbreviations: DM = double masking, ND= not determined, SSP = Shakespeare, PT= plaintext

∗ SMA = semi malicious ∗∗ with irregular users ∗∗∗ in (t -1), t refers to t -out-of-n SS ∗∗∗∗ papers show improvement compared to a similar
Paillier-based protocol but do not compare to a benchmark.

5.3.1 Security of the Updates. Phong et al. [105] showed that in the DP setup of Reference [124],
the shared gradients would still cause severe information leakage of the local data. To prevent this,
they proposed AHE with the Paillier system and learning with errors (LWE) [79] to encrypt the
shared gradients. They specifically consider the concept of a dishonest server. It leads to higher
security, but it does not consider the dropout of participants.

HybridAlpha [146] takes a different approach by using functional encryption as a security mea-
sure. For functional encryption systems, the decryption key does not allow the user to learn the
encrypted data, but instead only a function of the encrypted data (see Appendix A.5.4). HybridAl-

pha uses this to provide security with a dishonest client and an HBC server. Moreover, HybridAl-

pha combines this with ϵ-DP, added by the participating parties. BatchCrypt [153] proposes an
AHE scheme for encoding of batch gradients, as batched training might lead to better predictive
performance. It does not increase the communication costs but does lead to an increased compu-
tational cost for the clients. SSDDL [36] uses secret sharing, but instead of sharing gradients, the
clients split their local gradients into shares and distribute them to each other. When they receive
the shares, the participant calculates aggregation results and uploads that to the server, which
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updates the global network parameters. It is secure for an HBC server colluding with HBC partici-
pants. DAEQ-FL [162] uses Paillie with efficient threshold encryption. This leads to good predictive
performance and lower computation and communication costs. Moreover, it works with no trusted
third party and can handle non i.i.d. data.

5.3.2 Security of the Aggregated Results. While most papers focus on the clients’ gradients,
some also argue for the security of the final model weights. PPFDL [145] created a protocol based
on the Paillier Scheme and Garbled Circuits. They incorporate a method to reduce the impact of
irregular clients on the accuracy. While increasing the server’s computational cost, the clients’ com-
putational and communication costs are significantly lower than Reference [13]. The scheme also
protects the aggregated result. Poseidon [120] uses multiparty homomorphic encryption (CKKS
scheme) with distributed bootstrapping. It focuses on protecting both the model updates as well
as the final model weights. It functions under an HBC model with n-1 parties colluding. Moreover,
it argues to be the first framework that allows for quantum-resistant distributed learning.

5.3.3 Security of Cross-device FL. Most of the papers in this chapter focus on cross-silo FL,
where a few clients with larger amounts of data participate in FL. The alternative is cross-device
FL: many clients with smaller amounts of data, for example, mobile devices. For cross-device FL,
it is essential to handle large groups of participants and be robust to clients dropping out. Secure
Aggregation [13] proposed the first approach to FL that is both privacy-preserving and robust to
users dropping out. It privately shares the gradients between the clients and the server using addi-
tive secret sharing: Each client double masks the gradient and uploads that to the server. Sharmir’s
t-out-of-n secret sharing scheme is adopted to handle the dropout of participants. When receiv-
ing enough masked gradients, the server aggregates them and the pairwise masks cancel out. They
prove that even when the server and t-1 clients are colluding, no client information is leaked. How-
ever, while the pairwise structure is secure and robust to dropout, the overhead grows quadratically
with the number of clients, which limits its application to large-scale scenarios. Several frameworks
have aimed to improve the overhead and speed up aggregation.

Bell et al. [10] continue on secure aggregation by proposing a protocol that allows for
(poly)logarithmic overhead. They argue that every client double masking with all the other clients
is not necessary, and they propose a more efficient communication graph. Their HBC secure ag-
gregation claims to handle a billion clients, and their more secure semi-malicious setup can handle
thousands of clients. Their scheme can handle up to 5% of corrupt clients and 5% of dropouts and
allows for differential privacy through secure shuffling [8]. FastSecAgg [67] focuses on speedup
of the aggregation by developing a novel multi-secret sharing scheme, FastShare, which is based
on the Fast Fourier Transform (FFT). It leads to computational speedup with similar communi-
cation and protects against adaptive adversaries. FastSecAgg does struggle with handling dropout
of clients (10%). TurboAgg [125] limits the overhead to O(NloдN ) from O(N 2) and is robust to a
50% dropout. It limits overhead by performing the SS in groups. The users are divided into several
groups, and at each aggregation stage, the users in one group pass the aggregated models of all
the users in the previous groups and the current group to users in the next group. The running
time is almost linear with the number of clients.

5.3.4 Verifiability. VerifyNet [144] broadens the scope of privacy protection by focusing on
verifiability next to confidentiality. This is achieved by exploiting a homomorphic hash function
into the underlying structure of VerifyNet with a double-masking protocol to guarantee the con-
fidentiality of users’ local gradients during the FL. It does not only consider the confidentiality of
the model updates to the server, but also the integrity of the returned average. As such, it offers
protection against a malicious server. However, the double-masking protocol is computationally
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expensive, and a trusted third party is still needed to establish keys. Reference [57] is an extension
of VerifyNet: They also use a double-masking protocol but propose a secure scheme where the key
generation center is HBC.

5.4 Other Distributed Learning Architectures

5.4.1 Split Learning. Split learning (SL) [134] is another method that falls under distributed
learning. With SL, a deep neural network is split into multiple sections of several layers, each of
which is trained by different parties. Generally, this process works by transferring the weights
of the last layer of each part to the next in forward propagation, without sharing any raw data—
only the weights of the last layer (the cut layer) are sent to the next client. Afterwards in the
backpropagation, the gradients will be sent back: from the first layer of the second party to the
last layer of the first party. SL allows for different configurations, including vertical SL, where the
first layers are vertically split for vertically partitioned data, or the last layers are trained by the
party with the labels. It also allows for a combined federated and split network, where the earlier
layers are trained in a federated manner [131].

While SL offers promising new methods of handling distributed data and models, it comes with
several security and privacy issues, due to the sharing of the cut layer during forward and back-
ward propagation. The different possibilities in distribution can also lead to different privacy issues.
Reference [101] highlights the necessity for extra security or privacy on SL by showing its suscep-
tibility to inference attacks both from malicious servers and malicious clients. They also showed
that previously proposed distance correlations [133], which showed more privacy to reverse en-
gineering attacks than DP-SGD, are not secure. Moreover, Reference [42] highlights how even an
HBC server can infer the data from participants, especially if the NN does not have many layers in
depth. Recently, there have been several studies that offer potential solutions to these insecurities
in SL. Reference [78] highlights another issue: label leakage. In a setup of one party having the
features and the other party the data, the second party can recover the labels during the train-
ing process. This paper protects the confidentiality of the label by adding noise perturbation that
is optimized to prevent label leakage. Reference [104] offers a solution based on HE with a CKKS
scheme for a single client and server scenario. It encrypts the client’s cut layer gradients that serve
as input for the server layers.

5.4.2 Ensemble Methods. Ensemble methods are a fundamental technique in machine learning
that involves combining the predictions from multiple models to improve the robustness, accuracy,
and generalizability of predictions compared to any single model alone. These methods are based
on the principle that a group of “weak learners” can come together to form a “strong learner.” En-
semble methods and FL both involve training multiple models on distributed datasets, but they
serve different primary purposes. FL focuses on training models collaboratively across multiple
decentralized devices or servers (clients) holding local data without sharing that data centrally,
thereby preserving privacy and reducing data centralization. This framework can naturally incor-
porate ensemble methods by using the local models trained on each client as members of an ensem-
ble, where their predictions can be aggregated to improve overall model accuracy, robustness, and
generalization. In the context of distributed differentially private deep learning, ensemble methods
can be particularly beneficial, as they can enhance model performance without compromising the
stringent privacy requirements. For example, each client can add noise to their local model’s out-
puts (or during the training process) to meet differential privacy criteria, and the central server can
then aggregate these differentially private models, potentially using techniques such as weighted
voting or averaging. This aggregation can help in mitigating the noise added for privacy, leading
to both a robust ensemble and adherence to privacy guarantees, effectively balancing utility and
privacy in distributed environments.
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In the context of DP ensemble methods, one of the most prominent examples is the Private

Aggregate of Ensemble Teachers (PATE) framework. Papernot et al. [99] proposed this frame-
work as a DP learning method where multiple teacher models, each trained on disjoint subsets of
sensitive data, contribute to the training of a student model without directly exposing the sensitive
data. The PATE approach aggregates the outputs of the teacher models such that the privacy of
the underlying data is preserved, typically using mechanisms like noisy voting. Several variants
enhance the robustness and privacy guarantees of the PATE framework. For instance, Papernot
et al. [100] introduce a scalable version of PATE with granular control over the noise added to
the teacher’s outputs. The aggregation of teacher responses is followed by the addition of noise
calibrated to the sensitivity of the counting queries, which are indicative of the number of teachers
agreeing on a particular label. This noise addition is governed by the Gaussian or Laplacian mech-
anisms, aligning with DP standards. It also addresses the challenge of scaling PATE to a larger
number of teacher models and a broader set of data classes. Structuring the teacher ensemble
into several smaller groups and performing noisy aggregation within each group before a final
aggregation step reduces the overall noise required for a desired privacy guarantee, which could
improve the utility of the student model. PATE framework has been since adopted for many dif-
ferent use cases, e.g., G-PATE by Long et al. [86], which adapts the core principles of PATE for
generative adversarial networks (GANs), enabling the training of DP data generators that can
produce high-quality synthetic data while preserving the privacy of original dataset with private
aggregation happening among different discriminators.

5.5 Summary of Secure and Private Federated Learning

Due to vulnerabilities of federated and other distributed learning methods to information and
model leaks, privacy-preserving methods to mitigate these problems are being increasingly de-
veloped and advanced. The majority of methods for privacy preservation in distributed learning
in literature are differentially private methods. Following the proposal of the DP-SGD method
[1], many deep learning methods have adopted this DP optimization method to perform FL in a
privacy-preserving manner. The selection of the DP regime is usually problem-dependent and im-
pacts both the utility of the model and the “measured” privacy budget spent. The threat model also
has an important role in major decisions like whether to implement global or local DP. However,
these choices in the majority of the existing works in literature do not impact the privacy method
itself—DP-SGD. The methods we focused on in this section push the private training and inference
of distributed DL model further. The main motivation for the reviewed DP methods can be cate-
gorized into improving the privacy/utility tradeoff and improving the security as well as the privacy

aspects. Since adding privacy to DDL models generally comes at the cost of utility, the methods
focused on this aspect try to improve the utility of the model while maintaining an acceptable
level of privacy. On the hybrid approaches, the researchers recognize that in some use cases the
privacy itself is not enough and based on the assumptions about the actors—or lack thereof—and
the setup of the training and inference pipeline, we need to combine security and privacy methods
such that the method would provide acceptable privacy and security, high utility, and a seamless
combination of these two aspects.

With regard to secure communication in FL, we notice a difference between cross-silo and cross-
device FL. Most DP methods focus on cross-silo FL. HE seems to have the preference in cross-silo
situations, while SPMC and especially secure aggregation based on SS are often applied to cross-
device settings. This might be related to the scalability of the different methods. Different from the
CBL frameworks in Section 4, we see fewer papers that are resistant to a malicious server; only
Reference [10] considers a semi-malicious scenario. In Section 5.2.3, we discuss the methods that
combine security and privacy. It is an essential avenue of research that aims to offer solutions for
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both security and privacy threats. Many of these methods either offer improvement on the privacy
or the security side of the mechanisms. It is important that these papers properly investigate the
issues that come both with differential privacy and cryptographic methods.

We also regarded two other distributed learning methods: split learning (SL) and ensemble
methods. SL offers an interesting new avenue in distributed methodologies. Not only could it off-
load model computation to different parties, but it also shows opportunities for handling verti-
cally distributed data, which is often more complicated and understudied. However, SL still has
significant security and privacy issues that need addressing. Ensemble methods are an interesting
concept that could potentially help reduce the impact of noise-adding for differentially private FL.
Due to the configurations of the framework, it is also scalable and offers opportunities for GANs.
However, an evaluation of robustness in security would be beneficial.

6 Discussion

6.1 Design Tradeoffs for PSDDL

When designing a PSDDL system, several tradeoffs can be made, as illustrated throughout this
article. There is not a single best solution that addresses the privacy and security needs for each
possible type of distributed workflow. Sections 4.4 and 5.4 provide a summary of how workflow
impacts the protective mechanism choice. In this section, we highlight several design choices that
need to be considered when deciding on PSDDL methods. We highlight tradeoffs of security and
privacy methods and differences between DDL and CBL. Other factors that play a role are how
the DP is accounted, and the threat level and model.

6.1.1 Security/Privacy and Accuracy/Efficiency Tradeoffs. Several papers report an inverse re-
lationship between enhanced privacy measures and operational efficiency (or accuracy) of the
system. This inverse relationship necessitates a detailed articulation of system requirements, pri-
oritizing either privacy or efficiency based on the specific needs of the application. The implemen-
tation of DP methods further demonstrates the tradeoff between privacy and accuracy. DP is a
technique designed to ensure that the output of a database query is minimally affected by any sin-
gle individual’s data, thereby offering strong privacy guarantees. However, as privacy constraints
are tightened (by reducing the probability of an individual’s data influencing the output), the ac-
curacy of the data output can diminish. This reduction in accuracy occurs because more noise is
introduced to mask individual contributions, which can obscure meaningful insights.

Moreover, the deployment of advanced security methods often results in decreased system ef-
ficiency. Even with modern advancements in cryptographic techniques and secure computation
protocols described in Section 4 and Section 5, we still see a significant computational overhead
introduced by these security measures compared to unencrypted computations. While the direc-
tion of research should, and will, focus on more efficient protocols, it is important to highlight this
payoff. Deciding on the level of security requires a careful look at what the application needs and
what risks it faces. For example, while the strong security frameworks from secure training can be
useful in secure inference, the high computational cost is an important consideration. Evaluating
the necessity of advanced security measures can help find a balance between maintaining security
and ensuring the system works efficiently. Similarly, using both DP and ENC can greatly improve
accuracy and security. However, it is important to think about whether such high levels of security
are always necessary. For example, if the task involves only inference and not training, then sim-
pler security measures might be sufficient. Decisions on using these advanced technologies should
consider their impact on computational resources and whether they are essential for the specific
application.
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These points of payoff between security and privacy versus accuracy and efficiency lead us to
an important issue in the field of PSDDL. Currently, there is a notable absence of a comprehensive
framework to quantify the tradeoffs between privacy, accuracy, and efficiency. Such a framework
would facilitate the evaluation of different security and privacy methods under varying operational
constraints, workflows, and preferences.

6.1.2 Collaborative Learning vs. Federated Learning. One major challenge with CBL is speed.
Although research efforts are continuously making these methods faster, the high computational
demands can still be a significant issue. An alternative approach in that situation may better be
found in an FL setup, as this can delegate computation to the participants, thereby potentially re-
ducing computational time, especially if scaled in a cross-device scenario. Therefore, where com-
putational power is available should be taken into account, combined with the loss in efficiency
for all setups. Another issue that can affect the choice between CBL and FL is the choice of data
and model ownership. In a collaborative situation, while secure, the data is still sent to the central
server. Thus, the parties are not fully in control of what happens with their data. Similarly, in a
situation where the central party wants to have control over or ownership of the model, it might
not want to share it with FL clients. Whether due to risk minimization, business incentives, legal
or ethical constraints, this should be considered in the multifaceted decision of selecting a PSDDL
setup for a particular use case.

6.1.3 Differential Privacy Accounting. Privacy costs of noise-adding are incurred by the itera-
tive running of the DL algorithm on the training dataset. Calculating the privacy loss of the DP
algorithm during the training phase, however, is not a trivial task. Different “accounting” methods
exist for the composition of DP guarantees of DP mechanisms. Usually, the accounting mechanism
works under a specific DP regime, e.g., f -DP, and supports the application of certain DP mecha-
nisms, e.g., adding calibrated noise from certain distributions. These accounting methods range
from the application of composition theorems and advanced composition theorems of DP [39] to
widely adopted moments accountant [1] to more recent methods such as Edgeworth Accountant
[138]. The problem definition limits the choice of the regime, mechanism, and accounting method.
Nevertheless, care needs to be applied in the selection of each aspect of the privacy-preserving
mechanism to increase the chance of success in training a model with high levels of privacy.

6.1.4 Threat Models and Security LevelS. As discussed in Section 6.1.3, the problem definition
limits the range of available choices while designing a DP algorithm. One of the problem aspects
that can inform the problem definition is the security and threat parameters. Putting aside the
black-box access level of the external party, assumptions about the participant and orchestrator—
e.g., trusted, honest but curious-could impact the choice of privacy preservation mechanism and
also the performance and privacy level of the outcome of the training as well as the training process
itself. One of the main points to mention here is the issue with homomorphic encryption. Methods
with HE, especially secure inference by HE, do not often contain proper security analyses. HE can
be considered Honest-but-Curious by itself, but in real-life scenarios, the security requirement
is often stricter. Moreover, there are also still the issues with regards to GDPR, as there is still
discussion about whether protection by HE would be GDPR-compliant [121].

Finally, as pointed out in Reference [28], there can be a difference between a formal definition
of privacy and how this would be regarded in practice. Privacy as defined by stopping information
leakage by models can happen during two stages: training and inference. For inference privacy,
since usually a central model trained in a distributed manner on several disparate datasets will be
exposed to real-world use cases, taking measures such as making the model differentially private
should protect the model. However, during the training phase, the malicious actors could be either
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the participants themselves or the orchestrator. Considering the flow of information in a typical
distributed ML setup, i.e., partial updates shared by participants with the orchestrator and central
updates shared by the orchestrator with the participants, to ensure privacy in a no-trust setup, we
need to make the output of both the orchestrator and the participants private. In DP, this will be
done through global and local DP methods, respectively.

6.2 Current Research Gaps of PSDDL

While the field of PSDDL has grown substantially in the past few years, there are still some issues
that remain understudied. We have highlighted some of the current issues in PSDDL that are
important for the safe, accurate, and fair application of PSDDL in practical scenarios. We will
highlight the issues that we believe deserve more detailed studying,

6.2.1 Data Distribution and the Problem of Non-i.i.d Data. Since the focus of this article is on
DDL methods, it would be beneficial to look at the assumptions the reviewed methods make about
data distribution. Most assume independent and identically distributed data among different nodes.
Furthermore, these methods usually assume i.i.d classes for classification tasks. While this would
help in developing research, real-world use cases often do not benefit from such an advantage.
On one hand, in many cases there exists some form of skewness and class imbalance in the data.
It can be easily observed in the standard vision datasets such as CIFAR and MNIST, which are
used by almost all of the reviewed methods and do not have any imbalance in their classes—digits
0–9 for MNIST, object classes for CIFAR. The situation gets more complicated with tabular data,
where the dataset could easily have multiple categorical or mixed features. Even considering a
“class” feature for the dataset, it still could be the case that there are under-represented classes in
other categorical features, and while the method would potentially show high utility overall for
predicting the “class,” it would perform poorly for some of the under-represented classes.

The distributed nature of the methods we have reviewed adds another complication, which is
the distribution of the data among participants. Regardless of the distribution of the data among
classes in the original dataset, many real-world factors such as geographical location and temporal
aspects of data gathering could impact the distribution of the data among nodes and lead to datasets
of participants having distributions differing from the original distribution of the whole dataset.
It is important to note that with collaborative learning, due to the setup of the server building a
singular model, the effect would be less severe than with distributed learning methods such as FL.

6.2.2 Measuring and Validating Privacy Level. In this survey, we have reviewed a wide variety of
protective mechanisms for distributed deep learning. Most of these methods employ DP and cryp-
tographic methods, either separately or in combination. Each method provides its own guarantee
of privacy, but measuring and validating the actual privacy level of a machine learning pipeline or
a trained machine learning model is not a trivial task. DP, for example, provides privacy guaran-
tees in terms of ϵ and δ in the case of ϵ,δ )-DP and similar parameters for other DP regimes. While
DP parameters give us the theoretical bounds of the DP of the final model, giving the end-users a
more tangible indication of “how much” their data and/or model is private if they spent a certain
amount of privacy budget is still a challenge. One can showcase the privacy level of DP and non-DP
mechanisms by showing their resilience to different types of adversarial attacks, but finding the
suitable forms of attack given the problem at hand, implementing and performing them against
trained models, and keeping our evaluation up-to-date has its own set of challenges.

6.2.3 Combining Privacy and Security in Collaborative Learning. Privacy and security take a dif-
ferent approach to protecting information. We see that both have their uses, and while we see pa-
pers combining both in distributed learning, we unfortunately see few papers in CBL that combine
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cryptographic methods with privacy. Combining both security and privacy can be seen as creating
a “double line of defense” that provided protection against overlapping but different threats. The
two types of protection would be able to complement and strengthen each other. While we see
a few papers that combine security and privacy for CBL [26], the majority do not. This is quite
different from FL, where a majority of papers consider DP. It is important to consider that, due to
the nature of CBL sharing data, vulnerabilities can be different. However, it is still vulnerable to
attacks based on model outputs, such as reconstruction attacks, that DP offers effective protection
against. Naturally, there is a payoff in accuracy and efficiency that needs to be considered, but the
exact payoff in CBL should be more extensively studied.

6.2.4 Integrity of Data. While most research regarding protective measures of DDL has focused
on providing data (and model) confidentiality, other issues distributed learning can bring forth
should not be ignored, an important one being the integrity of data that the cooperating parties
provide. We have covered several papers that combine confidentiality with integrity through veri-
fiability [37, 92, 144], but we believe that it is essential when untrusted parties create a distributed
model to have a form of verification of their data. Especially methods that include training could
be sensitive to a poisoning attack, which involves the manipulation of training data to inject false
information into the model, which can hinder the training process. Incorporating mechanisms for
verification and accountability would be a critical step toward enhancing the security of collabora-
tive learning systems. If we cannot guarantee the reliability of the data, then we can also not guar-
antee the reliability of the outcomes of the model. While we see some methods in CBL to include
integrity, we believe this should be more widespread among all distributed learning methodologies.

6.2.5 Vertically Partitioned Data. We have encountered only a few papers in this survey
that are able to perform distributed learning with vertically partitioned data. While vertically
partitioned data is not as common of a data distribution as horizontally partitioned data, it
can be common within in fields of medicine and finance. As these situations often deal with
highly sensitive and possibly easily identifiable data, there must be proper security and privacy
mechanisms in place. Most notably, within split learning, there has been some research into
vertical split learning [20]. Unfortunately, many of these methods are shown to be vulnerable
to attacks. More research into these vertically distributed data frameworks—also outside of split
learning, as well as their protective measures—is recommended.

6.3 Emerging Areas of PSDDL

This section of the discussion focuses on privacy and security methods and frameworks, which
were outside of the scope of Sections 4 and 5 of this survey, but we believe deserve attention,
and they involve distributed frameworks, new security methods, and other aspects of distributed
learning that will promote new areas of research in PSDDL.

6.3.1 Divergent Distributed Frameworks. Although DDL and CBL have been the dominant par-
adigm in distributed machine learning and despite the fact that they contain a wide variety of
methods, there exist other distributed privacy-preserving deep learning methods in the literature
that can not be classified under these umbrella terms. In this section, we review the prominent
methods in this area. Cheng et al. [23] propose a decentralized deep network training scheme by
proposing a differentially private iteration of the Leader-Follower Elastic Averaging Stochas-

tic Gradient Descent (LEASGD) algorithm [22]. They apply calibrated Gaussian noise to the
update rule of LEASGD, making each step of the algorithm (ϵ,δ )-differentially private. Yan et al.
[148] designed a top-down hierarchical approach for deep learning on edge devices. The model is
trained in a differentially private fashion using a Gaussian mechanism. Then, to tailor the trained
model for usage on resource-constrained edge devices, the authors weight-prune the network and
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retrain it, again with DP using a Gaussian mechanism with a separate privacy budget, and publish
the compressive models to the edge devices. In this setting, the data is centralized, but we have a
distributed setting in which using DP helps preserve the privacy of the data on Learning Parties.
Yuan et al. [152] propose a distributed learning method, combining local DP and SMC to train a
discriminative model. They adopt the definition of label DP, i.e., only label information is consid-
ered sensitive. They propose two mechanisms, one based on the randomized response and one
adapting the standard DP-SGD algorithm for label-DP.

6.3.2 Emerging Security Methods. While we mainly focused on the cryptographic methods of
HE and SMC, more methods can achieve security. Two prominent examples of new methods are
game theory [33] and blockchain [103]. Domingo-Ferrer et al. [33] set up a reputation management
system with parties participating in FL with co-utility. This gives the parties an incentive to stick
with the protocol. In Reference [103] they implement a verifiable and auditable FL framework
based on the blockchain system. While not necessarily a new method, one of the main topics
is quantum security. With the rise of quantum computers, many “standard” forms of encryption
could be broken. While there has been a rise in research of quantum secure encryption, as of yet
there has been little applied to distributed deep learning. Zuo et al. [163] focus on adapting secure
aggregation to withstand quantum attacks.

6.3.3 Model Interpretations of DDL. Next to model training and inference, there are other
aspects of deep learning that could be applied in a distributed manner, such as feature selection,
explainability, and interpretability. Examples of these techniques in a distributed framework can
be found in References [77, 111]. These methods would aid to create a more complete distributed
learning setup. However, if these methods were utilized in DDL, then there could be more risk of
data and model leakage. Therefore, it would be essential to adapt them to be private and secure.

7 Conclusion

In this work, we provided a high-level overview of secure and private distributed deep learning.
We categorized different methods in this research area based on their distribution methodologies,
namely, collaborative learning and distributed learning, provided a comparative summary of the
different workflows, and highlighted promising methods and current research gaps. We provided
background knowledge in privacy and security for this work to be self-contained while aiming
toward a more general audience.

A Appendix

A.1 Protocol of Literature Evaluation

Our main sources of literature are peer-reviewed publications, including conference and journal
papers that fall into our selection criteria. There exists research on preprint services such as arXiv,1

which, although inside the scope of this survey, have not been through the peer review process.
We have decided to mostly exclude these works unless warranted by substantial attention and
number of citations.The initial queries for the selection process are: ((“differential privacy” or
“differentially private” or “privacy preserving”) AND (“deep learning” OR “deep networks”)
and (“federated” OR “distributed” OR “decentralized”)) OR ((“secure” or “security” or “ho-
momorphic encryption” or “multiparty computation”) AND (“deep learning” OR “neural
networks”) and (“federated” OR “distributed”)).

Due to the usually sophisticated nature of the deep learning methods and the additional compli-
cations arising from the addition of privacy-preserving measures to them, there are many details

1https://arxiv.org
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to be considered for a fair and thorough comparison. We found the best approach would be to
pay attention to both high-level as well as specific low-level details of the reviewed literature. Our
initial set of review and comparison aspects include the prerequisite conditions for each method
to work successfully, the distributed deep learning mechanism, the privacy and security mecha-
nisms, and their use cases. Moreover, we only considered papers that had a relevant contribution
to the privacy or security measures. We also aimed to only include papers that implemented and
evaluated their setup experimentally, unless their importance to the field warranted otherwise. In
our initial set of papers, we paid close attention to the aforementioned aspects of the collected
literature and excluded the papers outside the scope of this research.

A.2 Basics of Differential Privacy

Differential Privacy to provide measures of privacy for algorithms by adding random per-
turbations to the data used and produced by the algorithms in different stages. It stops the
adversarial party from inferring with a high level of confidence information about the training
data.

A.2.1 Definition of Differential Privacy. Consider datasets S and S ′. We define the distance of
S and S ′, d(S, S ′), as the minimum number of changes required for S to become S ′. If d(S, S ′) = 1,
then we call S) and S ′ adjacent or neighbor datasets. The random mechanism M : D → R with
domain D and range R, which takes dataset s as an input and returns the random variable M(S)
will be (ϵ,δ )-differentially private for all neighbor pairs of S, S ′ ∈ D with d(S, S ′) = 1 if for any
subset of outputs O ⊆ R there holds

P[M(S) ∈ O] ≤ eϵP[M(S ′) ∈ O] + δ , (1)

in which ϵ is the privacy budget and δ is the probability of failure and controls the possibility of a
ϵ-differentially private mechanism being broken with the probability of δ . Setting δ to zero would
turn M into a strict ϵ-differentially private mechanism. The privacy budget ϵ controls the tradeoff
between accuracy and privacy. Increasing ϵ will lead to weaker privacy and more leakage. A small
ϵ will lead to better privacy but less accuracy of the mechanism M .

A.2.2 Sensitivity Function. Function q(S) is defined as a query function that takes dataset S as
an input and returns real values as an answer to the formulated query. The function q can return
a number, a vector, or a categorical value.

Given query function q with non-categorical answers, q(S) ∈ Rn , the sensitivity of q over adja-
cent datasets S and S ′ is defined as

s(qS,S ′, ‖.‖) =max ‖q(S) − q(S ′‖ , (2)

in which ‖.‖ is a norm function over q.

A.2.3 Composition and Domain of Differential Privacy Mechanisms. When designing differen-
tially private machine learning models and algorithms, there are many cases in which we need to
combine several differential privacy methods in our training process. One example would be deep
neural networks, in which our aim is to apply the differential privacy mechanism M in different
layers and thus, a sequential combination scheme is desired.

There are two theorems dealing with combination of differential privacy mechanism: sequential
and parallel.

Parallel Theorem. If n random differential privacy mechanisms Mi (1 ≤ i ≤ n) are applied to
datasets S1, S2, . . . , Sn in a randomized parallel fashion, then the combination of mechanisms will
be (max(ϵi , ϵ2, ...ϵn),max(δi ,δ2, ...δn))-differentially private.
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Sequential Theorem. If n random (ϵ,δ )-differentially private mechanisms Mi (1 ≤ i ≤ n) are
applied to datasets S1, S2, . . . , Sn in a sequential fashion, then the combination of mechanisms will
be E,Δ-differentially private on the entire dataset, where E =

∑n
i=1 ϵi and Δ =

∑n
i=1 δi .

The Differential Privacy Domains. Randomized algorithms can achieve differential privacy in
two domains: Global domain and Local domain. In Global Differential Privacy (GDP) scheme
a global trusted curator receives non-perturbed data from involved parties in response to a query
and applies random noise to the output of any queries being performed against the system. The
randomized mechanism M is (ϵ,δ )-differentially private in global domain if it satisfies Equation (1).
In Local Differential Privacy (LDP), each node applies its own set of noise to the data and what
the curator receives is the perturbed data [14].

A.3 Introduction—Differentially Private Deep Neural Networks (Non-distributed)

A.3.1 Differential Privacy Mechanisms.

Laplacian Differential Privacy. Laplacian differential privacy uses Laplacian perturbation to add
noise to the data. The random function q̃ is defined as q̃(S) = q(S) + η over query function q and
is ϵ-differentially private. The random variable η in Laplacian differential privacy is defined with
probability density function p(η) ∝ e ‖η ‖/s(q, ‖ . ‖).

Gaussian Differential Privacy. Gaussian differential privacy has a similar mechanism to Lapla-
cian differential privacy, replacing Laplacian perturbation with Gaussian perturbation. In Gaussian
differential privacy η is defined as a random variable from distribution N (0, 2

ϵ 2 (s(q, ‖.‖))
2loд 2

δ
)

Randomized Response-based Differential Privacy. Randomized Response, [141] is a method de-
signed to fix the problem of evasive answer bias of binary surveys. This method makes use of
two coins, returning “true” or “false.” The coins are biased with the probability p of returning
“true.” If the first coin toss returns “true,” then the answer is relayed unchanged; if, however, it
returns “false,” then “yes” is returned when the second coin toss yields “true” and “no” when it
returns “false.”

To achieve ϵ-differential privacy the probability p of the biased coin is defined as

p =
eϵ

1 + eϵ
(3)

.[140]

Functional Mechanism for Differentially Private Regression. Functional Mechanism (FM) [155]
is a framework for differentially private regression. Based on Laplacian differential privacy (see
Section A.3.1), it aims at perturbing the optimization goal of the regression operation instead of
perturbing the results of the regression analysis.

Considering function q(w) over dataset D, input parameterw is considered to be a vector of the

length d . Let ϕ(w) = wc1
1 .w

c2
2 ...w

cd

d
where c1, c2, . . . , cd ∈ N and Φj =

{
wc1

1 .w
c2
2 ...w

cd
n |

∑d
l=1 cl = j

}

where j ∈ N . Based on the Stone-Weierstrass theorem [27], continuous and differentiable form
of qD (w) can be written in polynomial form

∑J
j=0

∑
ϕ ∈Φj

∑
xi ∈D λΦxi

Φ(w) in which J ∈ [0,∞] and

values λΦxi
Φ(w) ∈ R are the coefficients of the polynomial form of ϕ(w).

FM derives the ϵ-differentially private form of qD (w) by perturbing polynomial coefficients λ(ϕ)
using Laplacian noise Lap(Δ/ϵ) where Δ = 2maxx

∑J
j=0

∑
ϕ ∈Φj

��λΦx

�� 1.
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A.4 Homomorphic Encryption

Homomorphic encryption (HE) is a type of encryption protocol that allows for computation
on the ciphertext without the necessity of decryption of the ciphertext to perform the calcula-
tion. The possible calculations that can be performed on the ciphertexts depend on the scheme.
Fully homomorphic encryption (FHE) schemes allow for the homomorphic evaluation of all
arbitrary functions. To achieve this, it is sufficient to allow only addition and multiplication opera-
tions, as they make up all possible finite calculations and an unlimited number of operations. Not
all HE schemes allow for these calculations in unlimited numbers. When performing the calcula-
tions, noise is added to the encryption, until a point where the noise. Only with the development
of bootstrapping, a technique to limit noise by re-encrypting the message by Gentry [46], FHE
became possible, while still very computationally costly.

Before the development of bootstrapping, the schemes allowed either one type of operation or
a limited number of operations on the encrypted data. The different schemes can therefore be
categorized as follows: Partially Homomorphic Encryption (PHE), which allows for one type
of operation (addition or multiplication), but an unlimited number of times; Somewhat Homo-

morphic Encryption (SWHE) allows both types of operations, but only a limited number of
times; Fully Homomorphic Encryption (FHE) allows both operations for an unlimited number
of times. There are also subtypes of FHE, such as leveled FHE, where the depth of the operations
is bound (for efficiency’s sake) and multikey FHE, which allows for the different inputs to be en-
crypted with different keys.

An HE scheme generally consists of four operations: KeyGen, Enc, Dec, and Eval. KeyGen gen-
erates the key in case of symmetric encryption or the key pair in case of asymmetric encryption.
KeyGen, Enc(ryption) and Dec(ryption) are comparable to their counterparts in non-homomorphic
encryption schemes. Eval is the operation that is HE-specific. Eval performs a function over the ci-
phertexts without seeing the unencrypted messages. Eval has ciphertexts as input and outputs. The
most essential point in this evaluation is that the format of the ciphertexts needs to be preserved
to be decrypted correctly. Moreover, the size of the ciphertext should be constant to support FHE
and thus an unlimited number of operations, as else it would require more resources, which would
limit the number of operations. HE schemes can be designed for symmetric encryption, where the
same keys are used for encryption and decryption, as well as asymmetric, where different keys
are used.

A.4.1 Partially Homomorphic Encryption. A cryptosystem is considered partially homomor-
phic if it supports either evaluation of the ciphertexts by adding or multiplying of but not both
operations at the same time. These schemes can be additive Homomorphic Encryption (AHE),
supporting addition, or multiplicative Homomorphic Encryption (MHE), supporting multi-
plication. Some of the PHE cryptosystems:

— Paillier Scheme (AHE) [98]: an asymmetric algorithm for public key cryptography. It allows
for additional HE and is based on the problem of computing nth residue classes, which is
believed to be computationally difficult.

— RSA Scheme (MHE) [115] is the asymmetric cryptosystem widely used for communication.
In the RSA system, the public key is created using two large two large prime numbers, with
the prime numbers kept secret. Anyone can use this key to encrypt, but the messages can
only be decrypted by someone who knows the prime numbers. RSA was shown to be AHE
by Reference [98].

— ElGamal cryptosystem (MHE) [40] is also asymmetric key encryption algorithm for pub-
lic key cryptography but is multiplicative HE. ElGamal is based on the DiffieHellman key
exchange [32]
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A.4.2 Somewhat Homomorphic Encryption. SWHE supports both multiplication and addition,
but only a limited number of times. Before the development of bootstrapping by Gentry[46], an
important step towards an FHE scheme was introduced by Boneh-Goh-Nissim (BGN) [14]. BGN
supports an arbitrary number of additions and one multiplication by keeping the ciphertext size
constant. After Gentry’s bootstrapping allowed for FHE, most SWHE schemes can be considered
the part of the FHE schemes rather than a separate scheme. As such, a leveled FHE could be con-
sidered the same as an SWHE. Therefore, we currently do not distinguish between SWHE and
(L)FHE schemes.

A.4.3 Fully Homomorphic Encryption. Fully homomorphic encryption first became possible
after the development of Gentry’s bootstrapping [46]. The idea behind bootstrapping is to
use a homomorphic decryption circuit to decrypt the ciphertext, perform an operation on the
plaintext, and then re-encrypt the result. This way, the new ciphertext encrypts the result of
the computation without leaking information about the plaintext. Without bootstrapping, the
noise in the ciphertexts produced by FHE operations would accumulate over time, eventually
rendering the encrypted data useless. So, in their essence, FHE schemes are SWHE schemes,
where a squashing method to reduce the circuit depth of the decryption algorithm is introduced,
and bootstrapping is applied to obtain fresh ciphertext to avoid getting too much noise.

While FHE protocols have been developed, they are computationally expensive, especially as
the complexity of the computation function increases. This has led to the development of leveled

FHE (LFHE), where the complexity of the computations are bounded by depth. For example, a
polynomial would be not possible. Most FHE systems used in current secure distributed learning
frameworks are actually leveled FHE. Most of these methods are based on learning with errors
problem. A short overview of these methods is as follows:

— Brakerski-Gentry-Vaikuntanathan (BGV) [18] is one of the first practical FHE schemes,
introduced in 2011, and is designed for computations on integers.

— Yet Another Somewhat Homomorphic Encryption (YASHE) [55] scheme was a fully
homomorphic encryption scheme that is based on the learning with errors (LWE) problem.
It has been shown to have vulnerabilities [4, 71]

— Brakerski-Fan-Vercauteren (BFV) scheme [17] is a relatively efficient FHE scheme. It sup-
ports both integer and polynomial plaintexts.

— Cheon-Kim-Kim-Song (CKKS) scheme [24] was designed for FHE over real or complex
numbers and is considered to have high computational efficiency. It is based on the ring-LWE
problem.

— Fan-Vercauteren (FV) scheme[43] is another RLWE-based FHE scheme but is known for
its simplicity and its ability to support both integer and binary plaintexts.

— Gentry-Sahai-Waters (GSW) scheme [48] is a scheme that focuses on improving bootstrap-
ping speed instead of limiting noise in operations. It only supports binary plaintexts, which
can limit its usefulness in certain applications. FHE over the Torus (TFHE) [25] is based
on this scheme.

While many different FHE schemes have been developed, many have not been publicly available
for implementation. Two of the often used publicly available implementations are HElib [56] and
SEAL [121] Helib runs on BGV, and SEAL used to run on YASHE but now implements FV.

A.4.4 Multikey FHE. Multikey FHE is designed to provide evaluation on ciphertexts that are
encrypted with different keys; this means that each participant can encrypt data with their own
public key and a homomorphic evaluation can be performed on these ciphertexts. The only inter-
action required between participants is to create a “joint secret key,” which is obtained by using
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all involved secret keys. This joint secret key is then used to decrypt the homomorphically evalu-
ated ciphertext is decrypted by using. Several FHE schemes have been adapted for multikey-FHE,
inlcuding CKKS [21], GSW[47], among others.

A.5 Secure Multiparty Encryption

Secure multiparty computation (SPMC) methods make a distinction between multiparty

computation (MPC) and two party computation (2PC). While other protocols have been de-
veloped, the most common methods are Garbled circuits, based on oblivious transfer, for 2PC and
secret sharing for MPC.

A.5.1 Oblivious Transfer. A main building block for various types of encryption is Oblivious
Transfer, first developed by Rabin in 1981 [108]. The goal of the OT encryption protocol is secure
sending of information between a sender (S) and a receiver (R). The standard OT protocol is the
1-out-of-n oblivious transfer (OT), where (R) gets one element out of n but without (S) knowing
which element. The oblivious transfer protocol is usually executed through an assymetric cryp-
tosystem like the RSA system [115]. This can be extended to a (k-out-of-n protocol), where the
receiver obtains a set of k messages from the message set n, where 1 � k � n.

Dot product triplets, also known as inner product triplets, are a way of securely computing
the dot product of two vectors without revealing the vectors themselves. Given two vectors x and
y, a dot product triplet consists of three values: (a, b, c), where a and b are random vectors with the
same length as x and y, and c is the dot product of a and b. The triplet is constructed in such a way
that each party holds a share of a, b, and c, and they can collaboratively compute the dot product of
x and y without revealing x or y to each other. The computation involves each party multiplying
their share of a and b and then summing the resulting values, which gives them a share of the dot
product of x and y. Dot triplet products are similar to the multiplication products of OT, providing
an opportunity for the use of OT in secure DDL.

A.5.2 Garbled Circuits. Based on OT, Yao’s garbled circuits (GC) was the first technique that
enables secure two-party computation [149]. A garbled circuit is a circuit (a collection of logical
gates that compute a function), where the inputs and outputs of the circuit are encrypted. The
inputs are encrypted in such a way that each party can evaluate the circuit on their inputs while not
learning anything about the other parties’ inputs or the any intermediate values. Garbled circuits
are designed so the parties only learn the final output of the circuit. Garbled circuits work by taking
a computation and expressing it as a set of logic gates and securely executing the operations (AND,
OR, NOT) in the circuit. In distributed deep learning, Yao’s GC protocol, where the two parties can
jointly calculate the outcome of a function, is usually implemented. GC works with two mistrusting
parties is secure against a semi-honest adversary.

A protocol between Alice and Bob about function f(x,yi without revealing their respective inputs
x and y is formalized as follows:

(1) Both parties agree on a way to express f as a Boolean circuit. Alice garbles the circuit f to f̂.
She sends the GC f̂ to Bob as well as her own “garbled input” x̂.

(2) Alice at this point knows how to encode any input for f into a “garbled” input, while only
Bob knows his private input y. So, using oblivious transfer, Bob is able to obtain a garbled
version ŷ without Alice learning what y was.

(3) Bob has now the garbled circuit f̂, both garbled input x̂,ŷ for that circuit. He runs the evalu-
ation and learns f (x ,y) and reveals this to Alice.

A.5.3 Secret Sharing. To perform secure computation in a situation with more than two partic-
ipants, secret sharing (SS) is often implemented. Here, one party has a secret that it distributes
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among a number of parties so none of the parties alone can recover the secret. This way, there is
a need for cooperation between parties to discover the secret. Secret sharing is often the basis of
secure multiparty computation (MPC) and can be homomorphic as well.

Additive secret sharing Here, one party has a secret that it distributes among a number of
parties so none of the parties alone can recover the secret. This way, there is a need for cooperation
between parties to discover the secret. Secret sharing works as follows considering anA(t ,n) secret
sharing scheme: S would be a sharing function that takes the secret s as input and creates n secret
shares: S(s) = (s1, ..., sn). A minimum of the n parties are needed for the protocol. It is required
that S cannot be recovered from a set of s − 1 secret shares.

Shamir’s secret sharing (SSS) relies on the idea of using a polynomial to convey the secret,
first introduced by Shamir [123]. In this scheme, any t out of n shares may be used to recover the
secret. The idea is that if you have a set of t points, then you can fit a unique polynomial of degree
(t-1) that these points will lie in. As such, two points can define a straight line, three points can
define a quadratic function, four points a cubic curve, and so on. With SSS, a function would be
made where the secret is the first coefficient of the polynomial, with the remaining coefficients
picked at random. Then, n points are given to each of the participants. When at least t participants
share their points, the function, and thereby the secret, can be recovered. In some cases, FTT [19]
is used as the method to find this polynomial.

A.5.4 Functional Encryption. Functional encryption is a relatively new area of encryption that
goes against the current idea of standard encryption. For functional encryption systems, the de-
cryption key does not allow the user to learn the encrypted data, but instead a function of the
encrypted data. Functional encryption allows authorized users to derive specific decryption keys
that only reveal a specific function of the encrypted data, instead of revealing the entire decrypted
data. As such, it allows different users to have access to different functions of the same encrypted
data according to their specific access privileges. This method can allow for more fine-grained
access control and privacy-preserving data sharing
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