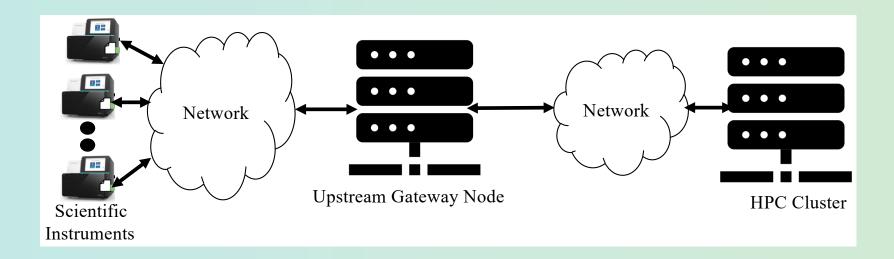
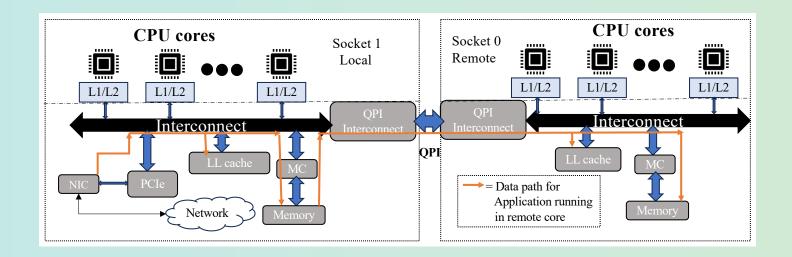


Throughput Optimization With a NUMA-aware Runtime System for Efficient Scientific Data Streaming

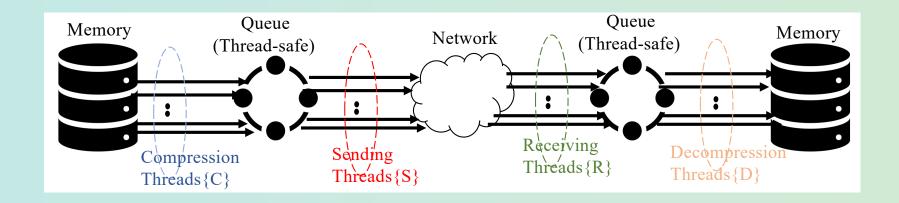

Hasibul Jamil, Joaquin Chung, Tekin Bicer, Tevfik Kosar, Rajkumar Kettimuthu

Addressing High-Speed Data Streaming in Scientific Research

- Rapid Data Generation Rates
- Infrastructure Bottlenecks
- Need for Upgraded Upstream Processing:


- Gateway Node Functions
- Optimized System Architecture
- Scalability for Future Demands

NUMA Considerations and Performance Management


- NUMA Architecture Basics
- Memory Access in NUMA
- NIC Operation and NUMA

The Role and Objectives of the Runtime System

- Optimized Packet Processing
- Reducing Cross-Socket Traffic

Overview of the Runtime System Framework

- Runtime Configuration Generator
- Distributed Framework

Dataset and Compression-Decompression Algorithms

Dataset Characteristics:

 Utilized a synthesized 16 GB dataset reflective of real tomographic data, processed in 11.0592 MB chunks.

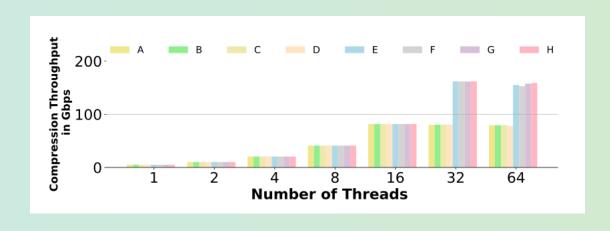
Compression-Decompression Algorithms:

LZ4 algorithm selected for its speed and favorable compression ratio, achieving an average 2:1 compression.

Compression Behavior and Performance with NUMA

Goal: Maximize Resource Utilization and Minimize Network I/O

•Use available CPU cores for efficient data compression, effectively doubling the data transfer speed.


Strategy: Employ Data Compression to Enhance Throughput

•Implement LZ4 compression algorithm for real-time data compression with a 2:1 compression ratio.

Observation: Compression Throughput and CPU Core Count

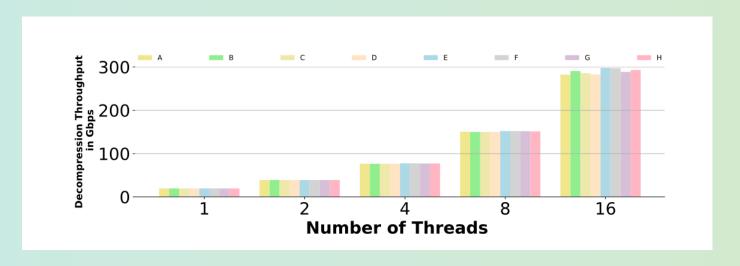
•Increased thread count improves compression speed up to the number of available CPU cores; beyond that, performance plateaus due to context switching.

Configuration	Memory	Execution
	Domain	Domain
A	0	0
В	0	1
С	1	0
D	1	1
Е	0	0 & 1
F	1	0 & 1
G	0	OS
Н	1	OS

Decompression Behavior and Performance with NUMA

Goal: Analyze Decompression Speed Influencers

• Determine the impact of the number of decompression threads and their NUMA domain alignment on performance.

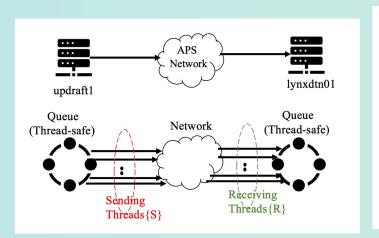

Strategy: Optimize Thread Distribution Across NUMA Domains

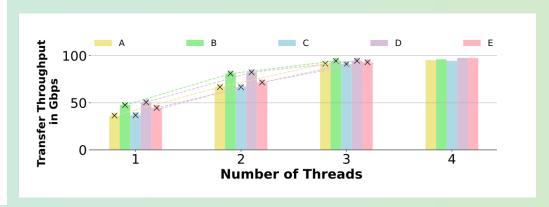
 Decompression speed improves with additional threads, with best performance when evenly spread across NUMA domains.

Observation: Decompression Throughput Unaffected by NUMA Domain

•Decompression performance remains consistent regardless of the NUMA domain of data storage or execution.

Configuration	Memory	Execution
	Domain	Domain
A	0	0
В	0	1
С	1	0
D	1	1
Е	0	0 & 1
F	1	0 & 1
G	0	OS
Н	1	OS

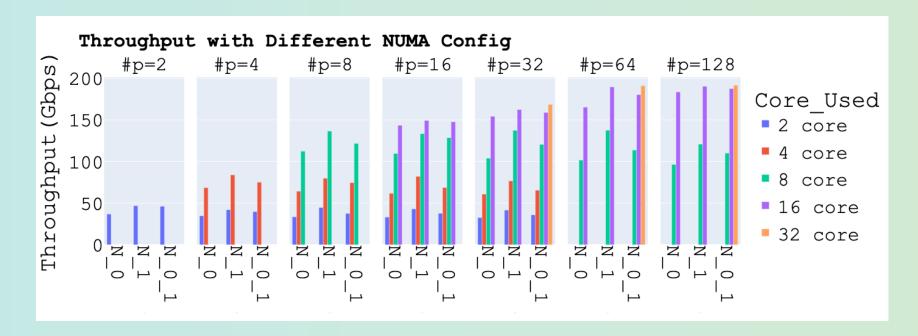




Sending and Receiving Threads Performance with NUMA

- Goal: Understand Thread Influence on Network Throughput
 - Examine the effect of the number and location of sending and receiving threads on network throughput.
- Strategy: Symmetrical Thread Arrangement Across NUMA Domains
 - Deploy an equal number of sending and receiving threads, creating a balanced TCP streaming environment.
- Observation: Receiving Thread Location Impacts Throughput
 - Placing receiving threads in the same NUMA domain as the NIC significantly boosts throughput, especially for smaller thread counts.

Configuration	Sender	Receiver
	Socket	Socket
A	0	0
В	0	1
С	1	0
D	1	1
Е	OS	OS

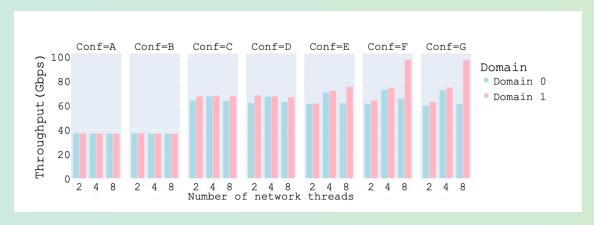


Network Performance and NUMA

Goal of the Experiment: Investigate network transfer throughput and core affinity on data streaming between facilities with high-bandwidth connections.

Strategic Use of NUMA: Utilize NUMA-aware strategies to improve throughput by assigning tasks to cores that have local memory access to the NIC.

Observations from the Experiment:

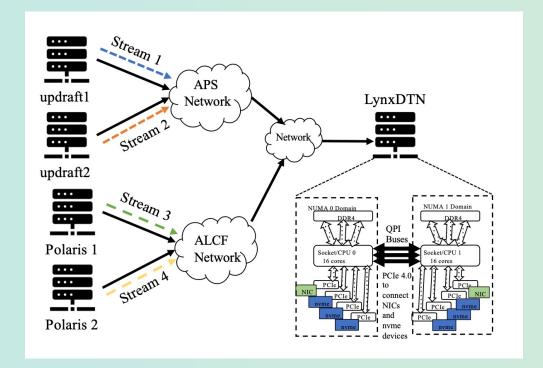


Single Stream Evaluation in Runtime System

- Goal: Assess Runtime System Efficiency with a Single Data Stream
 - Evaluate system performance across various configurations for compression, decompression, and transmission-reception threads.
- Strategy: Diverse Thread Configuration Experiments
 - Use two interconnected machines capable of 100 Gbps transfers to test different combinations of thread counts and execution domains.

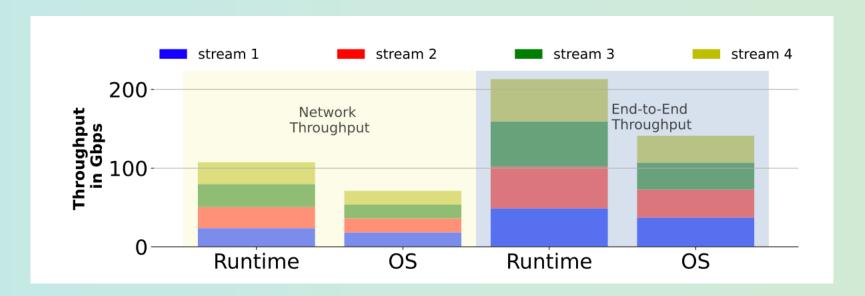
	#of	#of
Configuration	compression	decompression
	Threads	Threads
A	8	4
В	8	8
С	16	8
D	16	16
E	32	4
F	32	8
G	32	16

- Observation: Bottlenecks and Throughput Efficiency
 - Throughput varies with the number of compression threads; end-to-end performance peaks with receiver threads in NUMA domain 1, achieving 97 Gbps in optimal settings.



Multi Stream Evaluation in Runtime System

- Goal: Compare Runtime System and OS-Determined Thread Placement
 - Test the runtime system's effectiveness against an OS-controlled thread execution location strategy.
- Strategy: Multi-Source Data Stream Generation and Reception
 - Generate four concurrent data streams across machines with varying architectures, assessing combined and individual network and end-to-end throughput.



Multi Stream Evaluation in Runtime System

- Observation: Runtime System Superiority in Throughput
 - The runtime system, leveraging detailed architectural knowledge, significantly outperforms the OS's autonomous thread placement, achieving 105.41 Gbps network and 212.95 Gbps end-to-end performance.

Conclusion - Optimizing Data Streaming with NUMA-Aware Runtime System

- Comprehensive System Evaluation
- NUMA Optimization Proven Effective
- Multi-Stream Performance Superiority
- Single Stream Insights
- Empirical Evidence of Efficiency
- Future-Proofing Data Transmission

Future directions

Towards Dynamic Pinning:

 Current system utilizes static CPU pinning which, while effective, does not adapt to fluctuating workloads in multi-user environments.

The project's GitHub repository: https://github.com/H-jamil/ha4hpdt.git.

Questions:

mdhasibu@buffalo.edu

Acknowledgments: DE-AC02-06CH11357

Extra

