

AI-EDGE: NG NETWORKS MEET DISTRIBUTED INTELLIGENCE

EWD Co-Director, NSF AI Institute for Future Edge Networks and Distributed Intelligence

Professor of ECE

The Ohio State University

Outline

Institute Vision

- Organization/Key Personnel
- Overview and Rationale
- Research Plan
- Overview of Thrusts
 - Example Research
 Challenges
- Synergies with Industry/DoD

Institute Vision

Foundational theory for AI/ML for wireless networks

To create a research, education, knowledge transfer, and workforce development environment that will help develop research leadership in future generation edge networks (6G and beyond) and distributed AI for many decades to come

Organization and Key Personnel: Academia

Shroff Expertise: Net. Theory, Bandits, RL, Optimization, Algorithms, MDP, Games

PI: Ness

Bertino

Expertise: Information Security, Database, Privacy and Trust

Co-PI: Gauri Joshi

Expertise: Distributed Learning. Bandits. Bayesian Optimization

Co-PI: Jim Kurose

> Expertise: Computer Network Arch. & Protocols. Network Measurements

EDGE Institute

Expertise: Machine Learning. Stat. Signal Processing, Statistics

SP: Anish Arora

Expertise: Network **S**vstems Scalability & Dependability

SP: Kaushik Chowdhury Expertise: Network

Systems, 5G, Protocols. Experiments At-Scale

Liu Expertise: Net. Resource Allocation. Sequential Decision Theory

SP: Mingyan

SP: Saniav Shakkottai

Expertise: Net. Optimization, Stat. Learning and Wireless Communication

SP: Ameet Talwalkar

Expertise: Stat. Learning, Democratize Machine Learning,

Fed. Learning

SP: Stratis

Ioannidis

SP: Raef Bassilv

Caramanis Expertise: **Decision Making** in Complex Systems, High Dim. Statistics, Optimization

SP: Constantine

SP: Eylem Ekici

Expertise: Cognitive Radio, Vehicular Communication. Net. Resource Management

SP: Atilla Eryilmaz **Expertise:** Stochastic Network Optimization, Bandits, Control

Expertise: Distributed Systems, Networking, Optimization, ML, Privacy

Organization and Key Personnel: Academia

SP: Nan Jiang

Expertise: Reinforcement Learning, Online Learning

SP: Yingbin Liang

Expertise: Theoretical ML, Robust Statistics, Social Comp.. **Diff.** Privacy

Parthasarathy Expertise: Data Analytics, Graph Analytics, ML, Database Systems

SP: Zhigiang **Expertise:** Security, Trusted Computing. Program Analysis,

SP: Jia (Kevin) Liu

Expertise: ML, Distri. Optimization, Stochastic Network Optimization, SP: Tommaso Melodia

Expertise: Wireless

Networks, **Cognitive Radio** Experiments at Scale

Expertise: Convex and Non-convex Optimization, Large-scale ML & Data Science

SP: Srini

Lin

Network Science

Peng

SP: Chunyi

Expertise: Mobile Networking Systems, Security, 5G, 6G Systems

SP: Hulva Seferoglu

Expertise: Coded Comp., IoT, Anomaly Detection in Video Streaming

SP: Kannan Srinivasan

Expertise: WirelessSys, Protocols, Measurements. Communication Security

Learning

SP: Aylin Yener Expertise: Info. Theory, Cybersecurity, Wireless Comm.. Optimization,

SP: Lei Yina

Expertise: Complex Stochastic Systems, Big Data, Graph Data Mining

Organization and Key Personnel: Industry/DoD

Victor Bahl Expertise: Edge Comp., 5G, Mobile Computing,

Microsoft:

Wireless Sys., Cloud Comp.

IBM: Lior

NRL: Sastrv Kompella

> Expertise: Network Optimization. Scheduling, Cognitive Radio, ML, Aol

Qualcomm: Junyi Li

Expertise: Wireless Communication. Mobile Broadband. OFDMA

Expertise: ML, Distr. Optimization. Stat. Signal Processina. Networking

AT&T: Milap Majmundar

Expertise: Mobile Netw., Radio Access Network, Spectrum Strategy

AFRL: Chris Myers

Expertise: Computational Cognitive Models for Complex Tasks

AFRL: Lee Seversky Control Systems

Expertise: Autonomy, Command &

IBM: Mark Squillante

> Expertise: Mathematical Foundation of Complex Sys. Modeling and Analysis

Expertise: Network Science. Signal Processing, Wireless Communications

Mitre: Venki Ramaswamy

Expertise: Cellular Nets, 5G Mobile, Blockchains, AI/ML

Organization and Key Personnel

AI-EDGE goes Global

AI-EDGE Institute International Collaborations

Overview of key international collaborative scientific activities and use cases with the AI-EDGE Institute

AI-EDGE's Current Research Thrusts

New Proposed Tasks through International Collaboration

Scope

Research Plan

Research Plan (2)

- Research tasks will explore three important wireless edge network use cases in depth
 - Ubiquitous sensing/networking
 - Machines + humans + mobility
 - Programmable/Virtualized 6G+ networks
- Key issues
 - How to connect the key research thrusts to specific experimental platforms
 - How to translate them so they are adopted by our industry and DoD partners.

Eylem Ekici (OSU)

Key Differentiators of the Institute

- New foundational AI: Astonishing success of AI provides a unique opportunity to design distributed intelligent (efficient, self-healing, secure, adaptive) next generation edge networks (AI for Networks)
 - Simply applying known AI techniques is not good enough
 - Requires foundational AI advances that take into account network constraints, dynamics, and domain knowledge
- AI-Aware Networks and Network Aware AI: Intelligent and adaptive network edge will unleash power of collaboration to solve large-scale distributed AI problems – which is where most of the AI growth will take place (Networks for AI)
 - An intelligent and adaptive network is needed to coordinate the AI running on vehicles and edge devices
 - Distributed AI algorithms need to be aware of network constraints on determining how to share information
- Virtuous cycle from theory to implementation to tech transfer:
 - Shortening the time-scales of interaction between use case and foundational research across multiple disciplines and Industry/DoD → cascading impact dramatically accelerating the time from research to tech transfer.

Use-inspired Testbeds Foundational

Brief Introduction to the Research Thrusts

T1: Reengineering the Physics/Constraints

Re-engineer the physical fabric for NG (6G+) wireless communications through AI, thus treating the fabric itself as a controllable entity.

- Leverage Physical Knowledge
- Engineering the Physical Environment
- Deep-learning Facilitated Communication Algorithms

T1: Example Research Challenges (1)

• Leveraging Physical Knowledge:

- Physics based models have been used to solve complex problems (e.g., by leveraging meaningful physical models into a NN to speed up prediction).
- Can such models be used to design ML tools to better estimate parameters (multi-path components, mobility, ...), make initial guesses, provide boundary conditions, etc?
- Can physics based models be integrated with ML tools to help make better control decisions (e.g., beam-searching, beamforming, etc.), and substantially accelerate performance (convergence time, etc.).
 - Promising preliminary results [Srinivasan & Parthasarathy] on PHY guided ML to reduce beam-searching time by order of magnitude

T1: Example Research Challenges (2)

- Discovering Efficient Codes in Communication Systems via ML
 - Developing efficient codes is based on human ingenuity with sporadic breakthroughs on linear codes
 - Can ML be used to expedite discovery and DNN be used to expand the search space to nonlinear codes? Several key challenges:
 - Number of codewords is extremely large;
 - Training at one signal-to-noise ratio (SNR) and a small block length does not easily generalize to other SNRs and larger block lengths
 - To overcome these challenges, domain knowledge from communication, coding, and information theories is critical.
 - Promising preliminary results [Oh et. al] in designing low latency nonlinear codes (important under extreme mobility)

T2: AI-Based Network Resource Allocation

Bandit Algorithm, Beam Configurations

Develop new AI techniques for the design and control of next-gen networks taking into account practical resource constraints.

- Low-complexity and Sampleefficient Al-network Algorithms
- Algorithms with Mis-specified Models
- Learning from Historical Data and Incomplete Network State

EDGE

T2: Example Research Challenges (1)

- Low-complexity and Sample-efficient AI/ML Algorithms
 - Need new techniques to rapidly learn and adapt to time-varying network conditions
 - To provide efficient and timely operation of critical network services
 - Identify errors and faults in an automated manner
 - Automated parameter tuning at scale (e.g., for cellular network configs) ...
 - How to design ML tools for network control that have low sample, compute, and communication complexity, are safe, and can account for network environment/objectives
 - (i) non-stationary dynamics (ii) hard, soft, and safety constraints of network operation as well as user requirements; (iii) distributed/heterogeneous nature of large networked systems; (iv) multiple objectives...

T2: Example Research Challenges (2)

• Incomplete Information:

- Practical challenge for network control is insufficient data at runtime
- Many network control functions cannot wait for all data to arrive (fast decisions need to be made)
- Need to develop multi-scale ML tools
 - Ex. One could use local data for real-time control, but use historical global data to determine policy.
 - Can such techniques provide near-optimal performance guarantees?
 - Can they be made scalable?

T3: Multi-Agent Network Control

Network as a Multi-Agent System

- Fair Network Operations Among (Non-Cooperating) Users
- Data Sharing and Augmented Learning for Distributed Network Operation and Resource Utilization
- Overcoming curse of dimensionality

Develop multi-agent AI techniques for distributed intelligence and control across possibly non-cooperative, network entities.

T4: AI-Powered Network Security

Develop new AI tools and techniques to guarantee the network is secure, intrusion free, and highly robust.

Creating Automated Tools to Ensure Security

- Systematic Analysis of Network Protocol Specification
- Systematic Analysis of Network Protocol Implementation
- Network Anomaly Detection
- Overcoming Data Poisoning Attacks
- Data and Reasoning-driven Forensics
- Understanding Security/Performance Tradeoffs

Inference time

Model evasion (aka adversarial examples) Functional extraction Model inversion

T5: AI-Aware Network Operations

Develop distributed AI tools that will seamlessly adapt their operation by taking into account computation, communication and data constraints.

Time T2: Disrupted direct links to Edge cloud

- Communication-Efficient and Network-Aware Distributed Optimization
- Scalable, Network-Aware Distributed Inference
- Meta-Learning, Hyperparameter Optimization, and Active Learning

T5: Example Research Challenges (1)

- Network-Aware Distributed Optimization/ML
 - Traditional distributed ML assumes reliable communication between a central aggregating server and worker nodes
 - In edge networks, workers are communication-constrained devices, such as mobile phones, IoT sensors, cameras, etc., with heterogeneous computing speeds and unreliable connectivity.
 - What are the fundamental tradeoffs between communication efficiency and ML convergence?
 - Preliminary works [Joshi et. al] for SGD show that communication gains can be substantial by transmitting infrequently when algorithms are far from convergence
 - Can we design appropriate ML tools explicitly taking network constraints (BW, delay) into account?
 - Can we further improve performance by overlapping communication, local computation, and compression/coding?

T5: Example Research Challenges (2)

- Scalable, Network-Aware Distributed Inference
 - Large scale ML problems can be distributed over many servers
 - Stragglers (slowest tasks due to low delay links, overloaded servers, etc.) substantially impact performance
 - Practical solutions (e.g., monitoring progress and replicating slower tasks) have significant limitations
 - Coded computation is promising and allows the final results to be recovered from a subset of completed tasks
 - Problem: Resolve straggler problem but may increase time because each parallel job now becomes more complex
 - Can coded computation take into account the structure of the ML problem (e.g., sparsity) and be adaptive to the heterogeneous edge?
 - Preliminary works on exploiting sparsity for code design [Shroff et. al]

T6: Network Operations for Distributed Al

Re-engineer networks by adaptively allocating communication, computing, and storage resources for serving the needs of distributed AI applications.

- Network Operation for Managing Al-Side Uncertainty and Dynamics
- Network Operation for Managing Network-Side Uncertainty and Dynamics
- Unified, Distributed Network Operation for AI Applications

T7: Human, AI, & Network Research Interface

Human-Network Operations Interface

EDGE

T8: Security and Privacy for Network Users

Design and control the networks such that they are privacy-aware and can be optimized to facilitate protection from information leakage and attacks.

Data/network/time-dependent privacy constraints

e.g., Local/centralized/shuffling-based differential privacy

- Handling Heterogeneous and Dynamic Privacy Constraints and the Absence of Trusted Curators
- Protecting Data-in-Computing via Trusted Execution Environments (TEEs)

Foundational AI-Advances

- Various foundational AI advances are being made by the AI-EDGE Institute
 - Reinforcement learning & bandits (constrained, online, offline, adversarial, deep...)
 - Federated learning
 - Meta learning
 - Transfer Learning
 - Continual Learning
 - Representation learning
 - Adversarial ML learning
 - Deep Neural Networks and Neural Tangent Kernels
 - Explainable AI...
- → Allows for Synergies with various industry/DoD

28

Platforms Accessed by AI-EDGE Researchers

POWDER Salt Lake City, UT Bertino, Purdue, 5G security

Chowdhury, NEU, radar sensing

ARENA (indoor, SDR)

NSF PAWR Platforms

COSMOS West Harlem, NY Chowdhury, NEU, over-theair ML models

ARANET Ames,IA

Arora, OSU, creating rural broadband links

Compute@IBM

Cognitive Computing Cluster (CCC): 547 nodes with x86 processors and NVIDIA V100 GPUs AiMOS: 268 nodes x86 processors and 1576 NVIDIA V100 GPUs

Several AI-EDGE team members have access

https://www.rfdatafactory.com

NSF Dataset and API repository

Melodia, NEU, O-RAN test and measurement

[ii] 18 [ii] 19 [iii] 20 [iii] 21 [iii] 22 [iii] 23 [iii] 24

O-JRC: mmWave MIMO

Ekici, OSU, *mmWave* beamforming

O-JRC: An Open-Source Software Framework for mmWave MIMO Development and Experimentation

- Key Properties
 - Layered and Modular Architecture (Isolated Layer Communication, Flexible Module Replacement)
 - Agile Development and Validation (Intelligence, Agility, and Programmability)
- Capabilities
 - Configurable System Structures (Modulation Schemes, MIMO Setup, Beamforming Types)
 - Online/Offline Model Training and Real-Time Control
 - Beam Training and Beam Tracking
 (3 Control Algorithms verified for Single User)
 - In Development: Multi-User Detection, Blockage Prediction, RL-Driven Resource Allocation...
- Testing Scenarios for Algorithm Validation
 - Static Scenarios: Standard, Multipath, Obstruction
 - Mobile Scenarios: End User Mobility (indoors, up to 1 m/s), Multipath, Obstruction

O-JRC: An Open-Source Software Framework for mmWave MIMO Development and Experimentation

Datasets Generated by AI-Edge Faculty

Example Synergies with Industry/DoD (1)

- Various foundational AI advances are being made by the AI-EDGE Institute
 - Reinforcement learning and bandits (constrained, online, offline, adversarial...)
 - Federated learning
 - Meta learning
 - Transfer Learning
 - Representation learning
 - Adversarial ML learning
 - Deep Neural Networks and Neural Tangent Kernels
 - Explainable AI...

→ Allows for Synergies with various industry/DoD

Example Synergies with Industry/DoD (2)

- AI-Based Resource Allocation and Control of MANETs
 - Congestion Control; Scheduling; Interference Management; Energy Management...
- Al-Assisted Awareness
 - Single-platform "sensor" fusion
 - Federated learning perception from multiple sources
 - Fusion of dissimilar data sources (comm, on-board sensors, offline models)

• Al-Driven Decision Making

- Coordinated vehicle routing (city-wide route optimization)
- Fleet behavior
- Multi-vehicle coordination for safety
- Single platform collision avoidance

• Al-Driven Safety Management

- Reinforcement learning (RL) with safety constraints, such as instantaneous safety requirements
- Deep-learning based detection and collision avoidance
- Imitation learning and reward-free RL for autonomous driving

Example Synergies with Industry/DoD (3)

• Smart Manufacturing:

- Interconnected Robots
- Automating manufacturing processes
- AI based security/privacy
 - Security detection; robustness to attacks; fast recovery
 - Differential privacy guarantees; prevention of information leakage, etc

Learning based optimization

- Faster/scalable chip designs
- Energy efficient processors and IoT devices
- More efficient data centers, networks, ...

• Human-Machine-Al Research

- Human-Al interface; Al-Human interface; Machine-Al operations interface
- Improve performance over what humans and AI can deliver...

Data Intensive Sciences and AI-EDGE

- Large data volumes have historically been concentrated at the network core
- Million-Dollar Question: What happens when source and consumption shift to the EDGE?
 - Does it make sense to shift data to the core first?
 - Are challenges really still at the core?
 - Can we really plan ahead What are the real-time dynamic requirements?
 - What is the role of ML/AI in moving and processing data?
- How can AI-EDGE be of service?

Data Intensive Sciences and AI-EDGE

- AI-EDGE can provide
 - Access to a wealth of testbeds, emulation platforms, development platforms
 - Customized joint Network/AI solutions specific to DIS
 - Collaborative innovation for JIT data processing
 - Capabilities to close the loop for real-time applications

We look forward to collaborating with the DIS community