2018 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS)

Tracking network flows with P4

1°* Joseph Hill
System and Network Engineering group (SNE)
University of Amsterdam
Amsterdam, The Netherlands
j-hill@uva.nl

Abstract—Tracking flows within a single device, as well as
tracking the full path a flow takes in a network are core
components in securing networks. Malicious traffic can be easily
identified and its source blocked. Traditional methods have per-
formance and precision shortcomings, while new programmable
devices open up new possibilities. In this paper we present
methods based on the P4 programming language that allow to
track flows in a device, as well methods toward full path tracking.
A core component of this work are Bloom filters, which we
have implemented fully in P4. To validate our approach and
implementation we have carried a study in a specific use case,
namely the detection of SYN attacks.

Index Terms—Programmable networks, P4, Bloom filters, SYN
attacks.

I. INTRODUCTION

Tracking network flows allows network administrators to
maintain a good overview of their network operations and
health. Tracking network flows also has clear advantages
from a security perspective; knowing the path that a flow
takes allows to identify the source of the malicious traffic;
recognising that a specific flow is exhibiting a non-standard
behaviour can thwart emerging DDoS in their initial phases.

Conventional methods of tracking the flow of data through
a network can be resource intensive. This is especially true
when the control plane has to examine each packet. Resource
utilisation can rise to the point that it is detrimental to
the performance of the device. In order to keep resource
consumption at acceptable levels some implementations will
resort to the sampling of data [1]. This combined with a device
centric approach, where each device has to do all the work of
logging traffic, can lead to incomplete information. While in
hardware implementations of traffic logging exist, these can be
inflexible with a limited number of ways of identifying and
correlating traffic. Hardware implementations may also have
fixed amounts of memory allocated to traffic logging that are
not sufficient in the network environment.

The interesting question we can ask ourselves is if pro-
grammable devices can offer a solution to this problem. We
believe this is the case, and the work we present here looked
at how P4 can be used to help secure networks by ultimately
enabling the tracking of the complete path of data through the
network.

P4 [2] is a language designed to program the data plane of
packet forwarding devices such as switches and routers. P4
is protocol independent meaning that it has no predetermined

978-1-7281-0194-1/18/$31.00 ©2018 IEEE
DOI 10.1109/INDIS.2018.00006

2" Mitchel Aloserij
Informatica Bachelor
University of Amsterdam
Amsterdam, The Netherlands
mitchelalosery @quicknet.nl

23

3 Paola Grosso
System and Network Engineering group (SNE)
University of Amsterdam
Amsterdam, The Netherlands
p-grosso@uva.nl

notion of the format of a packet. This allows for the definition
of new protocols as necessary and eliminates constrains on
how individual packets can be correlated. P4 also allows for
the flexible allocation of device memory. For instance a P4
programmer can decide to allocate memory not needed for
routing tables to flow tracking instead. While P4 still requires a
control plane to handle most state changes, it has the potential
to allow for the efficient tracking of network traffic with a
solution tailored for the environment.

In the following we will provide background on the P4
programming language, as well as on Bloom filters, which are
an essential element in our approach (see Sec.Il and Sec.III).
Sec.IV provides details on our P4 implementation of the bloom
filter in P4; while Sec.VI describes counting Bloom filters and
their P4 implementation.

Sec.V shows the accuracy that we can achieve in identifying
flows as we vary the parameters of Bloom filters. We chose to
apply our implementation on a specific usecase: namely SYN
attacks, Sec.VII describes this type of attacks and how we
can detect them; Sec.VIII presents our results. We conclude
this paper with Sec.IX and Sec.X discussing limitations and
possible extensions of our work.

II. P4 LANGUAGE

The P4 forwarding model consists of three parts: parser,
ingress match+action and egress match+action, as shown in
Fig. 1.

-

]
i
{ Parse
i
i | Graph
‘\
v v
-
) |
H
1
| P ¢ [0}
A U
N R Queues T
P S and/or P
L] £ Buffers u 4
T R | Ingress Match+Action Egress Match+Action | T
Packet Modifications + Packet Modifications
Egress Selection |

Fig. 1. The P4 forwarding model

A P4 program starts by parsing a packet based on user
defined headers. The protocol independent nature of P4 means

that these headers can be from a well-know protocol such as
TCP/IP or something completely new. P4 does not specifically
support the parsing of trailers. In some cases it is possible
to workaround this by treating the trailer as the last element
in a sequence of headers. However, this may not work in
implementation that limit the maximum total size of headers
parsed. P4 programs will typically need to rely on some
external mechanism to handle trailer processing [3, pages 12-
17].

Once the headers are parsed, actions are taken based on the
results of table lookups. P4 allows matches to be performed
based on fields from the packet headers or on other meta-data
such as ingress port. There are a variety of match options
including exact, longest prefix, and ternary. Each entry in a
table specifies an action to be carried out upon match. In the
event of a table miss a default action may be performed. User
defined actions are based on a limited set of action primitives
defined in the P4 specification. These primitive actions allow
for the modifying of fields, adding or removing headers, and
the cloning of packets. P4 is very limited in the state it can
keep from packet to packet. What stateful memories it has are
limited to counters, meters and registers [4, page 26]. When
a more significant state change is required data must be sent
to the control plane.

While P4 allows for parsing, table lookups, and actions to
all be done in the data plane, modifications to the tables must
be done by the control plane. The P4 specification does not
define the interface between the data plane and control plane.
How the two communicate is device specific. There are many
other aspects that are device dependent as well such as egress
port selection, packet replication and queuing [4, pages 61-62].

There are two version of the P4 language specification.
This research focuses on P4q,4; this is the older version of
the language but it is also currently better supported. P44¢
is the latest version of the language, which makes significant
changes and is not backwards compatible with P4;4. Many
features have been removed from the core language, such
as stateful memories, and are intended to be implemented in
external libraries [3, page 9]. Until a specification of a standard
library for P44 is defined it is difficult to determine how the
capabilities of P45 will compare to P444.

This research was conducted using the P4 software switch
Behavioral Model (BMv2) and the P4 compiler provided by
the P4 Language consortium [5].

III. TRACKING FLOWS

The goal of flow tracking is to gather enough information
to be able to determine the entire path a flow took through a
network. If multiple paths were taken by what would otherwise
be considered the same flow, this should be identifiable from
the collected data. It is also important to minimize resource
usage while doing this. While NetFlow limits what fields
can be used to define a flow, P4 can use any field that can
be parsed from packet headers or available via meta-data.
The ability to track flows can also be performed at multiple
layers. For instance a flow could be tracked in a LAN using a

24

combination of source and destination MAC addresses along
with the higher layer protocol fields. With NetFlow each
device operates independently, logging the flow defining fields
along with what limited information it knows about the path
(i.e. ingress port). This means that some state is kept in each
device along the path along with the flow data having to be
stored in each node transversed. In order to determine the
path of a flow each device needs to be queried to determined
if it has an entry for the flow. There are a number of P4-
based solutions we have devised and that we will describe
shortly in our Discussion (see Sec. IX). They all could provide
a more cooperative mean of traffic logging with the goal of
performing accurate tracking while minimizing the impact on
system resources.

In all of these methods the actual logging of the flow is done
only at the last node in the path. This requires each node to
be able to determine when it is forwarding data out of the
tracking domain, but this eliminates the need to replicate the
same flow data over every device in the path, saving memory.

A. Bloom filters

Bloom filters can be used in this last node to track flows. A
Bloom filter implemented in the data plane allows additional
state to be tracked without involving the control plane. It can
be used by a node to determine if a flow has been seen
previously and therefore should not be sent to the central
collection point. This would reduce the amount of memory
required on each node to hold logging data.

A Bloom filters is a way to represent a set. They allow items
to be added to the set and they can be queried to see if an item
is a member of the set. Items can not be retrieved or deleted
from the set. Once an item has been added to a Bloom filter, a
membership query will always return true. However, there is a
chance that a membership query for an item that has not been
added to a set will also return true. In other words a Bloom
filter has no false negatives by may have false positives. This
possibility of a false positives is a trade off for the memory
efficiency of a Bloom filter [6].

A Bloom filter is implemented with an array of bits and a
predetermined number of hash functions [7]. When an item is
added to the set it is hashed by each function. Based on the
output of each hash function a bit is set to one in the array.
When checking to see if an item is a member of the set, the
same process is followed except instead of setting the bits they
are checked to see if they are already set. If all the bits are
set then the item is considered to be in the set. As more items
are added to the set, there is an increasing chance that an item
that is not actually a member of the set will coincidently have
the same bits set, causing a false positive.

Figure 2 shows the insertion process of 2 objects into a
Bloom filter; this figure also illustrates the problem indexes
from hash functions colliding with indexes from other ob-
jects.Such false positives occur when every bit that corre-
sponds to a specific object has already been set to 1, while that
object has never been inserted into the bloom filter.This can
happen as the size of the Bloom filter is finite and when the

filter gets saturated with objects, the hashed indexes of these
objects start to collide up to a point where all the indexes of
a new object have already been marked by previous objects.
This problem can not be solved; thus Bloom filters should
only be used in implementations where false positives are not
fatal, can be prevented or can be handled in any other way.

— N
o[1JofoJtofaTo[i o010

Fig. 2. A basic Bloom filter of size 12 where two tags (x; and xg) are being
inserted into the bloom filter using 3 different salts [8]

IV. P4 BLOOM FILTERS

To implement the network flow detection with bloom filters
on a P4 enabled device, the implementation has to be split
into 6 different sections and these are: 'packet header parsing’,
’creating the bloom filter’, "hashing the packet’, ’storing the
values’, ’obtain the flow amount’ and ’creating the response’.

1) Packet header parsing: The first step is to define the
possible packet headers that an incoming packet can have. To
do this, there need to be a header structure inside the program
that describes how a packet header is organized and how big
every entry in the packet header is. In case of IPv4 the packet
header contains 12 different values with a total size of 160 bits
and a variable options sections which can have a maximum
length of 60 bits. After every packet header that is allowed
to pass through the device is defined, the next step becomes
the creation of the packet header parsers. A packet header
parsers parses the raw data that a forwarding device obtains
upon receiving the packet into one or more of the pre-defined
packet headers. A developer can now program the parser to
always attempt to parse a packet using a certain packet header
or the developer can also make this dynamic by letting the
packet header depend on the packet parameters it has already
parsed.

header_type ipv4_hdr_t {
fields {

version
ihl
tos
total_len
id
flags
offset
ttl
proto
checksum
src
dst
options

00 00 M= W) = = 00 N
SN v NV e e

L =
[\S e

32;

*

)

}

length
max_length

4
60;

ihl;

25

header ipv4_hdr_t ipv4_hdr;

Listing 1. The header definition for an IPv4 packet

In the implementation of this project the following headers
are defined: ethernet, IPv4, IPv6, TCP, UDP, flow_metadata
and bf_metadata. An example of a chosen header structure are
the headers TCP and UDP. The header that is chosen is based
upon the protocol which is defined in IPv4 or IPv6 header.
The flow_metadata header is a header that will contain the
port of a specific packet. The reason we created this header
is that the port number can either be defined into the TCP
header or in the UDP header; by creating a new header and
copying the port number into it, the corresponding value will
be at one centralized place. The bf_metadata header is a header
that will be used internally to temporarily store values that are
computed by the implementation.

2) Creating the bloom filter: The next step is to create
a bloom filter. The implementation of the bloom filter is
quite easy because it is in fact just an array of a fixed
size. The register object can be used to create objects inside
the forwarding device where the program can read from or
write towards. To define a register the user needs to define
the size of an entry and the amount of entries inside the
register. This register can then, after is has been defined,
be manipulated using the register_read() and register_write()
actions. Furthermore registers can also be manipulated from
the control plane which makes them even more useful because
an user can obtain and manipulate the network flow statistics
and eventually also the DDoS detection statistics from the
control plane.
register default_bf {

width 16;

instance_count 1000;

}

Listing 2. An register with a size of 1000 entries where each entry has the
size of an integer (16 bits)

3) Hashing the packet: In order to transform the array of
integers which was previously created into a counting bloom
filter, the program must use a hashing algorithm to compute
an index of bloom filter. In P4 this can be done by using
the field_list and field_list_calculation objects. The field_list
object is an object that defines a list of values that can be
found in the parsed packet headers. The field_list_calculation
object is an object that takes an input and performs a certain
operation on the content of the field list. In the case of this
project the field_list_calculation object will take a field_list
that contain all the values that define a network flow and
perform a hashing operation on these values in order to obtain
an index. This index can then be used to access a specific entry
in the previously created bloom filter. To improve the accuracy
of bloom filters developers often create multiple hashes with
different salts of the same field_list. This will result into
different index values where the values of each entry can then
be compared to each other to obtain a more accurate result.
In the implementation of this project the salt has been added
to the bf_metadata and also to the field_list and this will add
it to the list of values that will be hashed upon.

field_list bf_flow_fields {
ipv4_hdr. src;
ipv4_hdr.dst;
flow_metadata.src_port;
flow_metadata.dst_port;
bf_metadata. salt;

}
field_list_calculation bf_hash_func {
input {
bf_flow_fields;
}
algorithm xxh64 ;
output_width 64;
}

Listing 3. The field_list and field_list_calculation

4) storing the values: The next step after defining the
hashing methods is to actually hash the packets and increment
certain values in the bloom filters. In order to perform the
hash functions the implementation has to call the action *mod-
ify_field_with_hash_based_offset’. This action will generate
an index value based upon a specific field_list_calculation. The
resulting index will then be stored in the bf_metadata which
is then used to increment an entry in bloom filter with that
specific index. A downside of the P4 programming language
is that this programming language only allows actions to be
called within actions or when a table+action match has been
found. But in this implementation this action needs to be called
upon every packet and the way this problem is solved in this
project is to create a table which tries to match on an arbitrary
value, which every packet has, and the default match will result
into the desired hash action.

5) obtain the flow amount: After the packet has been
processed and the right values in the bloom filter have been
incremented, it is time to obtain the flow values from the
bloom filter. The purpose of obtaining these values is in this
stage of the implementation just for testing purposes but in
a later stage these values will be used to decide if a packet
is malicious or not. In order to obtain the amount of packets
that have traveled through this flow the same function as to
increment the values in the bloom filter is executed to obtain
the right indexes for the bloom filter. The major difference is
that the program now reads the values and stores all the values
into the bf_metadata object. The implementation will then
search for the smallest entry between all the results and saves
that value. Also here the implementation is faced with the
problem that actions can only be called using a match+action
table or within other actions. Furthermore this implementation
faces another down side of the P4 programming language
and that is that control objects are the only objects that can
perform variable comparison. So the implementation first has
to perform a match+action from the control object to obtain
the flow values from the data structure which will then be
stored in the bf _metadata header. It then needs to return to
the control object to compare the flow values and pick the
smallest one, which will then used in another match+action
table to trigger the action that will save the lowest value.

26

The following figure IV-5 will show several code snippets that
illustrate this program flow for incrementing one entry in the
bloom filter.

// The ingress control object, this will start
the processing of the packets
control ingress {
apply (detect_flow);
}
// The match+action table that will match
every packet with the def_bf_insert action
table detect_flow {
reads { ether_hdr.ethertype exact; }
actions {
def_bf_insert;
¥
}
/! This action will increment a value in the
bloom filter bf using a specific salt.
action def_bf_insert() {
// Set values in the bloom filter using

different salts
bf_set_bit(bf, BF_SALTI);
bf_set_bit(bf, BF_SALT2);
bf_set_bit(bf, BF_SALT3);
bf_set_bit(bf, BF_SALT4);

}

// This action will use the salt and the

field_list to generate an index and then
increment the value inside the bloom
filter at that specific index

action bf_set_bit(bf, salt) {
modify_field (bf_metadata.salt, salt);
modify_field_with_hash_based_offset(
bf_metadata.index, O,
bf_hash_func , BF_WIDTH) ;
register_read (bf_metadata.tmp_val,
bf_metadata.index);
add_to_field (bf_metadata.tmp_val, 1);
register_write (bf, bf_metadata.index,
bf_metadata.tmp_val);

bf,

}

Listing 4. A simplified program flow for incrementing entries in the bloom
filter based upon a specific packet

6) Creating the response: The final step is to create a
response based on the amount of packets a certain flow has
seen. In this stage of the implementation the result simply gets
added to an unused field of the packet and then returned but in
later stages the implementation can make decisions based upon
this value to, for example, mark this packet as malicious or to
just drop this packet. In the case of this implementation the
result simply gets written to the ’tos’ field of the IPv4 packet
header. The reason for this field is that this field is not required
for the communication to succeed and thus can be used to store
data while experimenting with the implementation.

V. ACCURACY

The performance of a Bloom filter can be thought of
in terms of its accuracy in identify new flows. Specifically
accuracy will be measured as the possibility that a new flow
will be correctly identified as not a member of a set after a
given number of unique flows have been added. As more items
are added to the Bloom filter the false positive rate increases,
decreasing its accuracy. By adjusting the number of bits in the
array and the number of hash functions used, the performance
can be tuned. Note that the size of the items being added to
the set have no effect on the accuracy of a Bloom filter.

To calculate the accuracy of a specific Bloom filter the
following process is followed. A statistics array is created with
elements indexed from zero to the maximum number of flows
to be sent. Each element is initialized to zero. For each round
the Bloom filter is initialized by setting all bits to zero. A
single packet for each of the unique flows is generated in
advance. Each packet is marked by the P4 switch to show
whether or not it is detected as previously seen. Each time the
P4 switch detects it as previously seen, a false positive, the
element in the statistics array for the number of flows seen
at that point is incremented. After a number of rounds has
been run the total number of false positives for each flows
seen amount is divided by the number of rounds run. This
gives the false positive rate for that number of flows seen.
The inverse is taken to determine the accuracy.

To show how the size of the array affects performance figure
3 shows the accuracy of Bloom filters with an array size of
1024 and 2048 bits. As one might expect, the Bloom filter
with twice the number of bits shows a higher accuracy. Figure
4 shows the performance of three different Bloom filters all
with arrays of the same size but using a different number of
hash functions. Here it is not as clear what the best option is.
Initially, the Bloom filter with two hash functions has slightly
worse performance then the other two but has the highest
accuracy when more than 500 flows have been seen. The
optimal array size (m) can be calculated using formula 1 given
a desired false positive rate (p) with n items in the set [8]. The
optimal number of hash functions (k) can be calculated using
formula 2 given the optimal number of bits (m) and the same
n items in the set (n) [9].

Bloom Filter Comparison

m=1024, k=3
m=2048, k=3

Accuracy (%)

Ao
500 1000 1500 2000
Flows Seen

Fig. 3. Bloom filters with different array sizes.

_ nlnp
T T m2)2 M
k="1no @
n

27

Bloom Filter Comparison

m=1024, k=3
m=1024, k=2
- m=1024, k=4

Accuracy (%)

0 500 1000 1500 2000
Flows Seen

Fig. 4. Bloom filters with a varying number of hash functions.

These equations are then used to get the parameters for a
Bloom filter tuned to have an accuracy of 95% after 64,000
flows have been added to the set. This results in a Bloom filter
with an array size of 408,632 bits (=50 KiB) and four hash
functions. Figure 5 shows the performance of this Bloom filter
in red. In blue the cumulative accuracy is also shown, which
is the percentage of flows correctly identified as not in the set
up to that point. While this Bloom filter is tuned to have a
95% chance of correctly identifying the 64001st unique flow,
it is important to note that it has correctly identified 98.84%
of the first 64000 unique flows seen. With sampled NetFlow,
a flow may escape logging by being short lived or keeping its
traffic to a low percentage of the current traffic moving through
the network. With Bloom filters a flow’s chance of not being
logged only increases as more flows have been seen, regardless
of the number of packets in a flow. This property of Bloom
filters makes it more difficult for malicious traffic to remain
undetected by minimizing traffic.

Accuracy of Bloom Filter
8632, k =4

99

98

97

Accuracy (%)

9

95]
10000 20000 30000 20000 50000 50000

Flows Seen

Fig. 5. Bloom filter tuned for performance with cumulative average..

VI. COUNTING BLOOM FILTERS

Apart from detecting flows, it is interesting in some cases
to count how many times packets from a flow have passed
through a device. This require us to use counting Bloom filters.
The counting Bloom filter uses counters instead of bits as
elements of the array. This allows for the value at a certain
index to exceed past one and thus allows the user to not only
check if a certain object has been seen before but also how
often a certain object has been seen before [9]. To do this,
one has to obtain the values from every corresponding entry
in the Bloom filter and return the entry with the lowest value.
The lowest value is the amount of times the object has at least
passed through the bloom filter. The other values have been
influenced by hashes from other objects, and they effectively
combine different counters.

A problem with all types of Bloom filters is that they fill up
over time. We will use a method that will decrease the entries

in the counting bloom filter over time. Our implementation
will keep track of the amount of times an object is inserted
into the Bloom filter; after inserting a certain amount of
entries, every entry in the bloom filter will be decremented
by one except for when an entry is equal to zero because an
entry cannot go below zero and also cannot wrap around to
a maximum value. Note that the amount of times an object
is inserted into the bloom filter’ refers to the amount of
times an object is inserted as a whole and not the individual
insertions performed by the unique hash functions. By doing
this a lot of flows with a small amount of packets will be
removed from the counting Bloom filter; this will improve
the accuracy of the Bloom filter, as collisions are minimized.

A. Counting Bloom filters in P4

1) Counting the objects: The first step is to count the
objects that are inserted into the Bloom filter. This is done by
creating a register object which contains only one entry and
that entry has a size that is at least as large or preferably larger
as the threshold that is going to be used to decide whether
to decrease the entries in the bloom filter. Figure 4.6 shows
the register used in the project. Now when ever an entry gets
inserted into the bloom filter, for example while using the
’def_bf_insert()’ action inside figure 4.5, this register can be
incremented by one and this will allow the implementation to
perform packet counting.

register pkt_counter {
width : 8;
instance_count : 1;

Listing 5. Packet counting register with 1 entry with a size of 8 bits.

2) Applying threshold to the counter: The second step is to
check whether the counter has surpassed a specific threshold.
This validation can be done in the P4 programming language
by using the match+action table which will attempt to match
the value of the register to the value of the threshold; if there
is match we will decrease every entry in the bloom filter as
well as resetting the packet counter.

3) Decreasing the counting bloom filter: The final step is
to actually decrease every entry in the counting bloom filter.
The P4 programming language unfortunately does not support
looping the adjusting of every entry in a register at the same
time. Thus in order to decrease every entry in the bloom filter
the implementation has to decrease every entry in the bloom
filter by one. Figure 4.7 shows a small snippet of this list of
actions.

decr_register (default_bf, 50, 1);
decr_register (default_bf, 51, 1);
decr_register (default_bf, 52, 1);
decr_register (default_bf, 53, 1);
decr_register (default_bf, 54, 1);
decr_register (default_bf, 55, 1);

Listing 6. Decrementing the packet counter registers

28

Lastly after every entry in the bloom filter has been de-
creased, the packet counter also has to be reset back to zero.

B. Accuracy of counting Bloom filters

Like for traditional Bloom filters the accuracy of a counting
Bloom filters will vary depending on a number of parameters,
such as the size of the filters, the number of hashes used and
the number of flows passing through the device. Fig. 6 shows
the accuracy for three counting Bloom filters of different size,
as function of the number of flows. The filters use 4 unique
hashes to insert packets in the filter. Like in the case of regular
Bloom filters accuracy is higher for larger sizes.

« size: 1000
- size: 2500
. size: 5000

100 1

accuracy of packet counting per flow
s

e,y

0 T T T T T T y T T
o 250 500 750 1000 1250 1500 1750 2000

amount of flows

Fig. 6. The accuracy of the counting Bloom filter as a function of the bloom
filter size while varying the amount of flows.

Even more interesting for us is to observe the accuracy as
function of the decrementing rate. Fig. 7 shows the accuracy
of a counting Bloom filters of size 2500 as function of the
number of flows passing through the device. Every curve
represents a different number of entries before the counters
are decremented by one, namely 100, 250 and 500 entries.

100 4

accuracy of packet counting per flow

209 . per 100 packets
per 250 packets
per 500 packets

o] 250 500 750 1000 1250 1500 1750 2000
amount of flows

Fig. 7. The accuracy of the bloom filter as function of the decrementing
speed while varying the flow amount.

Not surprisingly, thanks to the removal of entries from the
bloom filter the accuracy remains very high and it will even
stabilize over time.

VII. SYN ATTACKS DETECTION

To validate the use of P4 Bloom filters we chose a concrete
scenario. Namely, we chose to focus on the SYN flooding
attack, an attack that in the first quarter of 2018 has occurred
the most often [10]. In fact, in 2018 57.8% of the DDoS attacks
were SYN flooding attacks followed by DDoS attacks focusing
on the TCP protocol (14.7%).

A SYN flooding attack is a DDoS attack which abuses the
three-way TCP handshake to rapidly fill up the memory of the
server. This will eventually lead to a situation where the server
cannot handle any new connection and thus starts to block any
new client until some memory has freed up. This will prevent
legitimate users to start a new communication with the server.

Our P4 implementation will try to detect malicious SYN
packets and mark them so that they cannot initiate a handshake
and thus preventing that more memory is being wasted. Our
implementation relies on a counting Bloom for all the packets
of a flow. Our program will compute for every SYN packet
that passes through the program the ratio of regular packets
per SYN packet. This is done by dividing the total amount
of regular packets of that flow by the total amount of SYN
packets. If this ratio crosses a certain threshold, we will mark
the packet as malicious. Figure 8 shows this marking process
in a simplified way.

SYN bloom filter Regular bloom filter

COC el e ol2ls] [Elefelale e o sl
2:13
[

Good

Bad

Fig. 8. A simplified visualization of detection and marking of potential
malicious packets. This illustration visualizes the process of obtaining the
bloom filters values of a packet, then comparing them to each other, checking
this ratio against a threshold and lastly based on that result the packet is
marked or not

Our approach is similar to the one proposed in the paper

written by Changhua Sun, Jindou Fan and Bin Liu [11].
They also suggest to use counting bloom filter: they count
the amount SYN, FIN and RST packets and they then make
the decision if a SYN packet is malicious based on the
rate between SYN and FIN/RST packets. When the traffic is
legitimate, the amount of SYN and FIN/RST packets should
be in balance.
We instead chose to compare SYN packets to all the other
packets; our motivation for this is that an attacker could easily
obfuscate its attack by sending a couple of fake FIN or RST
packets.

29

We developed counting Bloom filters it on a software switch
using the P4 programming language. One of the bloom filters
will count the SYN packets and the other count the other
packets in the flow.

The logic that will decide whether a packet is a SYN packet is
as follows: we first parse the packet header and then check if
the header contains a valid TCP header; we then evaluate the
flags parameter inside the TCP header. If the flags parameter
is equal to 0x2, i.e. the SYN flag, then the packet will be
inserted into the SYN bloom filter otherwise the packet will
be inserted into the regular bloom filter.

After the packet has been added to one of the bloom filters, the
program will then check for the SYN packets if that specific
packet is malicious or not. In order to check the packet, the
program first needs to obtain the ratio of regular packets per
SYN packets of the flow that the packet corresponds to. This
is done by first obtaining the amount of SYN packets that
belongs to that flow. This is done by hashing the current SYN
packet and finding the corresponding entries in bloom filter.
When the entries are available we search for the lowest value
between them and use that value as the total amount of SYN
packets we have seen for that flow. Note that comparing four
variables to each other to find the smallest value is not a trivial
process in the P4 language; P4 is only able to compare values
to each other in control objects and it can only change a value
in the header by performing an action, which can only be
performed after a table match. So to solve this problem, the
program first obtains all the values from the bloom filter and
stores them in the bf metadata header. It then moves back to
the control object where it will compare the values and then
call a specific table+match table which will copy the value
lowest value to another entry in the bf_metadata so it can be
used later in the program. The code in Listing 7 shows how
this process is done using the P4 programming language.

control handle_syn_flow_decision{
apply (obtain_syn_flows);
if (bf_metadata.flwl <= bf_metadata.flw2)
apply (use_syn_flowl);
else
apply (use_syn_flow2);

}

table use_syn_flowl {
reads { ether_hdr.ethertype
actions {
set_syn_flowl;

exact; }

}
action set_syn_flowl (){

modify_field (bf_metadata.syn_flw, bf_metadata.flwl);
}

Listing 7. The P4 code that decides what the actual flow amount is for a
specific flow. The table ’use_syn_flowl’ and action ’set_syn_flowl’ are in
fact duplicated for the second option but have been omitted in this figure for
the sake of simplicity

VIII. RESULTS

A. Variable amount of flows

In our first experiments we checked how the implementation

will behave when the same SYN flood attack is performed
over multiple concurrent flows. We set the duration of the
attackat 60 seconds and the packets will be sent at a rate of
100 packets per second. The parameter that will vary during
this experiment is the amount of flows that will perform this
SYN flooding attack.
While we executed this experiment, it became clear that we
could not perform this experiment for high amount of flows
due to hardware limitations, and we limited our study to a
maximum of 40 flows. The reason was that when we created
even more attacking flows, the sending packet rate would
become so low that too many packets are lost in transit. The
results are shown in Figure 9.

decreasing per 100 packets
decreasing per 250 packets
decreasing per 500 packets

Percentage of false negatives
= = w . w
S G S o -]

v

pesrezt
1 ocevennninnnes X

15 20 30

Amount of syn flooding flows

0 5 10

Fig. 9. The percentage of false negatives when performing SYN flooding as
function of the decrementing speed while varying the amount of flows

Figure 9 shows that when the implementation gets attacked
by up to 40 concurrent flows, we can still detect the attacking
SYN packets with a high precision. We expect that when
we increase the amount of attacking flows even more, the
implementation will start to have some trouble in detecting the
malicious packets. The reason for this is that the increasing
amount of packets will cause the decrease of the bloom filter
values to happen more often. This in turn means that it will
take longer for a flow to grow past the thresholds.

False positive in this scenarios are absent; the number of
attacking flows is still too small in order to have an impact on
the false positive percentages.

As clear from Figure 9 the parameters of our experiment
show that the implementation performs well. We repeated the
experiment with less ideal circumstances: we used a SYN
flooding attack which will attack the server for 20 seconds with
a packet sending rate of 20 packets per second. The results of
this experiment are shown in Figure 10.

Figure 10 shows that indeed when the circumstances of the
SYN flooding attack are less ideal our implementation has
more trouble detecting the attacking flows. The graph also

30

decreasing per 100 packets
decreasing per 250 packets
decreasing per 500 packets

= N
7] S

Percentage of false negatives
-
5

15 20 25 30 35 40
Amount of syn flooding flows

Fig. 10. The percentage of false negatives when performing SYN flooding
as function of the decrementing speed while varying the amount of flows

shows that when the decrementing rate becomes lower the
percentage of false negatives will also decrease.

B. Protecting a network device

In our second experiment we checked how well our imple-
mentation can protect a network device. We assume a server
which can only handle 10.000 half open TCP connections at
the same time. To check how well the implementation can
protect this server, we will be sending the malicious packets
at a rate of 10.000 packets per minute over a duration of 5
minutes. We will also send every minute 10.000 malicious
SYN packets, which are divided over a variable amount of
flows. So we start by using one flow which will send 10.000
packets per minute and in the end we will be using 100 flows,
where each flow will send 100 packets each minute. After we
performed this experiment we obtained the graph shown in
Figure 11. Figure 11 shows that the implementation is very

decreasing per 100 packets
decreasing per 250 packets
decreasing per 500 packets

100

804

60

40

Percentage of false negatives

sanensastitiliiinanannae
40 60
The amount of flows

80

Fig. 11. The percentage of false negatives as function of the decrementing
speed while dividing the packets over a variable amount of flows

good at detection SYN flooding attacks that are performed
by a small amount of flows. When the SYN flooding attack
gets split up over an increasing amount of flows it start to
decrease in its precision. This graph also clearly shows the
difference between different decrementing rates. For example

the implementation that uses a decrementing rate of 100
packets drops dramatically in precision when its attacked by
60 or more different flows. Also for this experiment the false
positive rate was again equal to zero and thus did not show
anything noteworthy.

IX. DISCUSSION

Our implementation shows promising results for detecting
network flows using P4 Bloom filters. As we mentioned before
this is an essential element to track the full path of a flow in
a P4 network.

In all the tracking methods we have envisioned, data is
retained on the last node along the path. Ideally all of this
data is collected at a central point. Bloom filters implemented
in the data plane can be used by a node to determine if a flow
has been seen previously and therefore should not be sent to
the central collection point.

We defined and want to explore three different methods to
accomplish path tracking with P4:

« Hop Recording — recording each hop in the packet.

o Logging Forwarding State — logging what forwarding

rules are in effect.

o Dynamic Path Labeling — dynamically defining a label

for each path used.

In Hop recording the path can be captured in the packet
itself. As a packet moves through the network each node
adds its own node identifier (NID) into the packet. Before
forwarding the packet out of the network or to its final
destination, the last node on the path would capture and strip
the path information from the packet and record it with the
flow fields.

This is easily implemented in P4 using header stacks with
the control plane providing the NID in a register. The width
of the NID field can be optimized based on the number of
devices in the network. How NIDs are determined would need
to be determined by some control plane function, ensuring
that each is unique. When the packet is determine to be
egressing through a port identified as external, the header stack
representing the path and the flow determining fields are sent
to the control plane for logging.

The Logging forwarding state is usable in networks running
link-state protocols. Each node generates a digest of the link-
state database. When the network is converged this digest will
be the same on all nodes. As routers do not typically keep old
versions of the link-state databases, one copy of each stable
link-state database will need to be archived. When a packet
first enters a network, it is tagged with the NID and link-state
database digest of that router. Intermediate routers check the
digest in the packet against their own. If it matches then the
packet is forwarded unmodified. If it does not match then the
tag is changed to a special value meaning that the packet is
not able to be tracked. At the last node, if the digest is still
valid then there was no change in the routing as it transversed
the network and it can be logged.

The P4 program would check for the existence of a tracking
header. If it does not exists it would be created using the NID

31

and digest made available in registers. If it does exist, the value
in the packet is XOR’d with the value of the router’s digest. A
table look up is then performed on the resulting value. A value
of zero would leave the packet unchanged. Anything other than
zero would result in an action being run that replaces the digest
value in the packet with a special value meaning not able to
track. On the last router along the path the NID of where the
packet entered the network, the link-state database digest, and
the flow determining fields are sent to the control plane to be
logged.

Dynamic Path Labeling (DPL) borrows from the concepts
of MPLS (Multiprotocol Label Switching). Instead of using a
label to determine the path, as in MPLS, DPL assigns a label
based on the path already taken. The last node on the path
records the final label, its local label, and the flow determining
fields. This has the effect that at the egress node the single final
label can be used to determine the exact path taken through
the entire network. To reconstruct the path a flow took through
the network, each label is used to lookup the previous label.
These look ups are performed recursively moving backwards
along the path the packet took until arriving at the node the
flow originally entered the network on.

The P4 implementation of DPL would start by checking for
the existence of a DPL header. If it does not exists a value of
null would be used for the incoming label. A table lookup is
done on the combination of ingress port and incoming label
to determine if a matching local label already exists. If a
local label does exist then the DPL header is updated, being
created if necessary. If a matching local label does not exist,
the packet, along with meta-data, is sent to the control plane
to have a label generated. Once the control plane generates
the new local label, the packet, including original meta-data,
is resubmitted to the data plane for processing.

X. CONCLUSIONS

Our research shows that the ability to implement custom
headers and packet processing rules with P4 in a network
could ultimately enhance its security. Our SYN attack use
case provided evidence of this, and our approach forms the
basis for extensions towards flow tracking, as discussed in the
preceding section.

However, there are some factors that currently limit the
usability of P4. Not many devices currently support P4. This
could be because P4 is in active development and vendors are
waiting for the language to stabilize before implementing it.
P4 also leaves a lot of details unspecified. This will hopefully
be addressed by P4, and the specification of a standard
library [3, page 9]. Also, there is a need for a standardized
interface between the data plane and the control plane. As
the programmable data plane becomes more prevalent this
is something that is likely to be developed. While P4 in its
current state may not be ready for production, it is already
clear that there are significant benefits from being able to
program the data plane. Finally, we run our implementation
on we use a software switch, which is a simulation of a
forwarding device. The software switch does not have the same

limitation that a hardware switch would have: in a hardware
switch it might not be possible to have a bloom filter with 2500
entries; or, it might not be possible to execute the large amount
of matching we use in our implementation. Furthermore by
only using the software switch, we were not able to test the
latency of our implementation. It might thus be possible that
our implementation causes too much latency which makes
it not realistic to implement it in the real world. It is thus
interesting for future research to check what the impact is of
our implementation on an actual forwarding device and it there
are ways to optimize the implementation.

Still, we are convinced that supporting a programmable data
plane in hardware will allow network security enhancements
through customization at a level not previously possible.

ACKNOWLEDGMENT

Initial part of this work were funded by the RoN - Research
on Networks- from SURFnet. We are particularly thankful to
Ronald van der Pol and Marijke Kaat.

REFERENCES
[1] NetFlow Performance Analysis, Cisco Sys-
tems, Inc., 2005. [Online]. Available:

https://www.cisco.com/c/dam/en/us/solutions/collateral/service-
provider/secure-infrastructure/net_implementation_white_paper0900aecd80308a66.pdf

[2] P. Bosshart, D. Daly, G. Gibb, N. M. Martin Izzard,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker, “P4: Programming protocol-
independent packet processors,” July 2014. [Online]. Available:
https://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-
0000004.pdf

[3] P416 Language Specification, The P4 Language Consortium, May
2017. [Online]. Available: https://p4lang.github.io/p4-spec/docs/P4-16-
v1.0.0-spec.pdf

[4] The P4 Language Specification, The P4 Language Consortium,
May 2017. [Online]. Available: https://p4lang.github.io/p4-spec/p4-
14/v1.0.4/tex/p4.pdf

[S] P4 Language Consortium. Code. https://p4.org/code/. Online; Accessed
May 2017.

[6] A.Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485-509, 2004.
[Online]. Available: https://doi.org/10.1080/15427951.2004.10129096

[7] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Communications Surveys
& Tutorials, vol. 14, no. 1, pp. 131-155, 2012.

[8] A.Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet mathematics, vol. 1, no. 4, pp. 485-509, 2004.

[9] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in European
Symposium on Algorithms. Springer, 2006, pp. 684-695.

[10] O. K. Alexander Khalimonenko and E. Badovskaya, “Ddos attacks
in ql 2018,” 4 2018. [Online]. Available: https://securelist.com/ddos-
report-in-q1-2018/85373/

[11] C. Sun, J. Fan, and B. Liu, “A robust scheme to detect syn flooding
attacks,” in Communications and Networking in China, 2007. CHINA-
COM’07. Second International Conference on. IEEE, 2007, pp. 397—
401.

32

