The Problem: We want the fastest graph processing!
- High-performance graph processing is very interesting for data science
- High-performance computing is increasingly GPU/accelerator based
- Mapping irregular (graph) algorithms to GPU is hard
- Performance of irregular algorithms is data-dependent

Thesi Goals
- Quantify performance impact of data dependence
- Model how performance relates to structural properties of the input graph
- Predict best parallelisation strategy for a given graph and algorithm
- Create an automated pipeline to repeat this work for new algorithms and parallelisation strategies

Structural Variation
We have graphs from social networks, road networks, biology. They are different in structure and properties.

Performance Variation
The performance of different parallelisation strategies varies by an order of magnitude or more across graphs.

Dynamic Algorithms
For dynamic algorithms, where the relevant data changes over time, such as BFS, this effect is even stronger.

Variation Within a Single Run
For dynamic computations like BFS, we even see these performance differences between implementation across different steps computed on the same graph.

Thesis Results

BFS Prediction Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Optimal</th>
<th>1–2x</th>
<th>>5x</th>
<th>Average</th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted</td>
<td>56%</td>
<td>41%</td>
<td>1%</td>
<td>1.40x</td>
<td>236x</td>
</tr>
<tr>
<td>Oracle</td>
<td>23%</td>
<td>55%</td>
<td>2%</td>
<td>1.65x</td>
<td>9x</td>
</tr>
<tr>
<td>Edge list</td>
<td>10%</td>
<td>61%</td>
<td>7%</td>
<td>2.22x</td>
<td>38x</td>
</tr>
<tr>
<td>Vertex Pull</td>
<td>0%</td>
<td>15%</td>
<td>27%</td>
<td>38.62x</td>
<td>2,671x</td>
</tr>
<tr>
<td>Vertex Push</td>
<td>9%</td>
<td>15%</td>
<td>53%</td>
<td>39.66x</td>
<td>1,048x</td>
</tr>
<tr>
<td>Push Warp</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>18.69x</td>
<td>97x</td>
</tr>
</tbody>
</table>

Results across all KONECT graphs.

Prediction Feasibility
For simple algorithms we can use this model as an oracle to select the best performing implementation for a specific graph. For algorithms whose behaviour changes at runtime, like BFS, we can do better. We can keep multiple representations in memory and switch between implementations at runtime for a classic time-space trade-off.

In Summary
We show that using models trained on previously observed graph processing results lets us predict the best performing implementation of an algorithm for a given input graph.

We provide a framework for training such models and are investigating how much data is required to train an accurate and portable model for graph algorithms.

References

