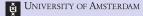

Automated security using SARNET

Ralph Koning

SNE Research Group

Introduction

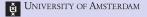


Problem:

- Amount of attacks increase in quantity, size, and complexity.
- Security departments need to deal with these threats.
- Security departments want to deal with important or new threats.

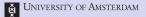
1

Introduction



Problem:

- Amount of attacks increase in quantity, size, and complexity.
- Security departments need to deal with these threats.
- Security departments want to deal with important or new threats.


Research question

How do we create a network capable of automated response to attacks?

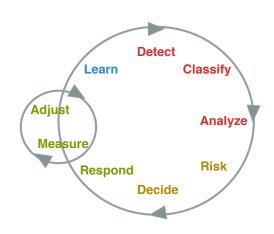
- How do we research such a network without harming others?
- How do we evaluate defenses?
- How do we measure defense performance?
- Can collaboration help in defending distributed attacks?

SARNET control loop

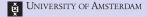
Detection phase:

Detect, Classify, Analyze

Decision phase:


Risk, Decide

Respond phase:


Respond, Measure, Adjust

Learn phase:

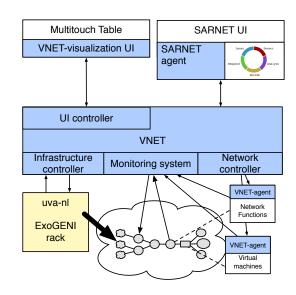
Learn (used as input for decide)

Platform and Technologies

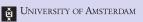
Platform

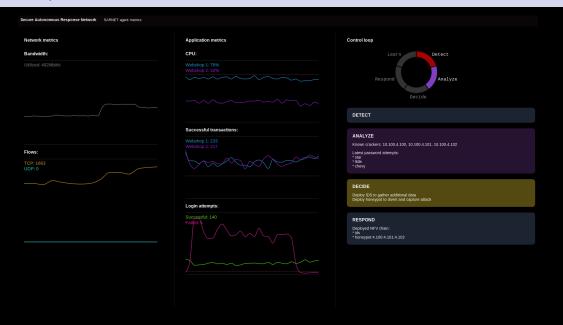
ExoGENI, Openstack

Technologies

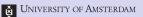

Alpine, mqtt, Quagga(BGP), Docker.

Container types


client, service, honeypot, reflector.


VM types

host, router, switch, nfv/cluster, **do- main**.

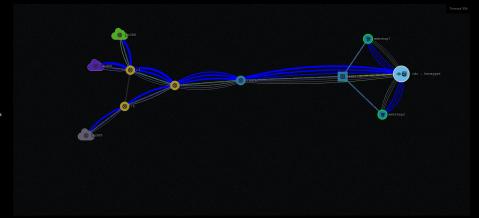


Metrics, Observables

SARNET 2017

SARNET demo

Control loop delay:


From this screen, you can choose your attack and see the defensive response.

Traffic layers

Toggle the visibility of the traffic layers:

Choose your attack

Start a Distributed Denial of Service attack from all upstream ISP networks:

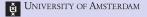
Start a specific attack originating from one of the upstream ISP networks:

Origin: UNSELECTED -- CLICK ON A CLOUD

Object information

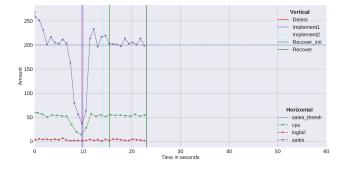
nfv.services.as100

REQUEST#INDOMAIN uvanlymsite.rdf#uvanlymsite/Domain/ym HONEYPOT.PWS [yamaha enter johnson]


COMPUTE#DISXIMAGE 8d8d8a23-c112-421b-baba-49383679dc0b#Img-nfv COMPUTE#SPECIFICCE exogeni#XOLarge EC2#WORKERNODEID uva-nl-w1 REQUEST#HASRESER... request#Active

IDS.CPU

IDS.PW [10.100.4.100 10.100.4.101 10.100.4.102] NFV-CHAIN [ids honeypot:4.100:4.101:4.102]


CPU-PCT 13

Response selection

How do we pick the best response to an attack in the decide phase?

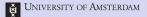
- Risk evaluation
- Response selection

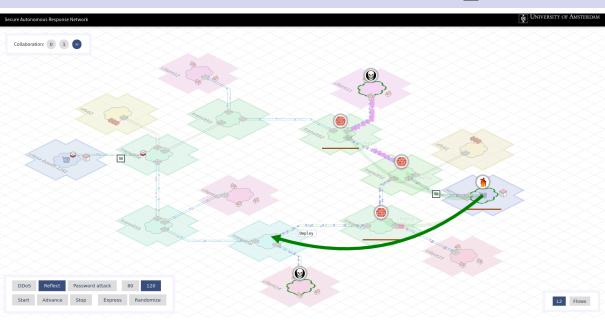
We can use metric *efficiency* to learn the best defense.

Figure 1: Efficiency requires the impact of an attack; impact is the blue area under the graph

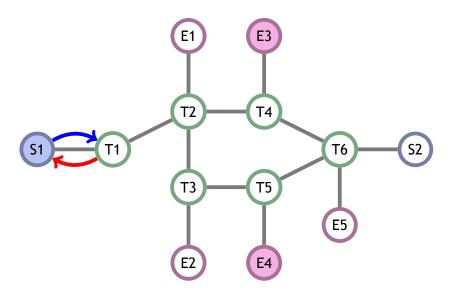
$$\text{E(isRecovered?, I, Ct)} \stackrel{\mathbb{E}}{=} \begin{cases} \beta + \alpha \frac{BT}{BT} + (1-\beta-\alpha) \frac{CT-Ct}{T} & \text{Recovered,} \\ \alpha \frac{\beta}{1-\beta} \frac{BT-l}{BT} + (1-\beta-\alpha) (\frac{\beta}{1-\beta}) \frac{CT-Ct}{CT} & \text{otherwise,} \end{cases}$$

Figure 2: Equation for efficiency

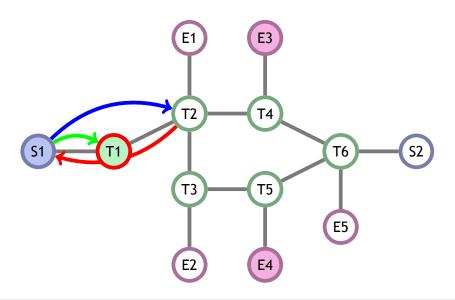

Attack	First choice	Second Choice	
cpu_attack	captcha	honeypot	
pwd_bf_attack	honeypot/captcha	-	
ddos_attack	udp-filter	-	
ddos_attack(light)	udp-filter	udp-rateup	


Table 1: Defence options per attack ranked by efficiency

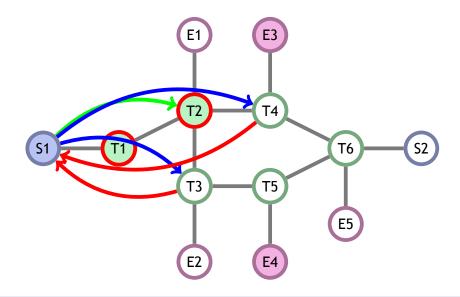
¹koning2017netsoft.


²koning2018fgcs.

Multi-Domain SARNET

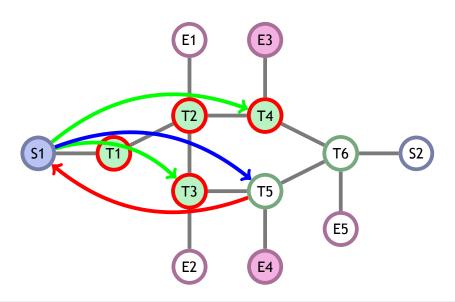


Time: 1 Cost: 0



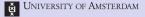
Time: 2

Cost: 10



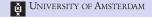
Time: 3 Cost: **20**

Time: 4


Cost: 40

Time: 5 Cost: **50**

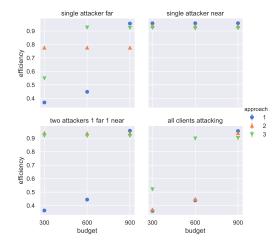
Defense approaches

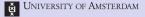


Invoking a multi domain defense can be done in multiple ways. How do these approaches perform in terms of efficiency?

We look at three of them:

- Approach 1: Block everywhere (starting at victim).
- Approach 2: Minimise amount of countermeasures. (or defend close to attacker).
- Approach 3: Minimise defense propagation.

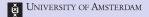

The effect of budget on approach efficiency


- Approach 1 is not so efficient; it always consumes the complete budget.
- For single attacker far situations Approach 2 scores higher than 3.

As a general purpose approach we reccommend Approach 3. However, Approach 3 is not very alliance 'friendly' as it only removes traffic from the target.

Figure 3: approach performance for different budget sizes

From metrics to tasks

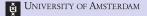


Defences can be comprehensive, tasks are basic and take few parameters.

Each task can be fulfilled by any (capable) member in the alliance.

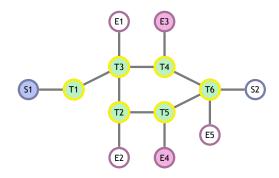
Metric	Observable	Classification	Defence	Task
bandwith	>80%	DDoS	Wait it out	start scrubbing
tcp/udp ratio	>0.9		Filter locally	redirect clean
transactions	<0.8		Filter remotely	redirect dirty
			remote scrubbing	

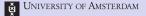
Computational Trust based algorithm


A computational Trust Model allows us to:

- Identify and isolate untrustworthy members
- Estimate the interaction risk
- Deciding whether and with whom to interact

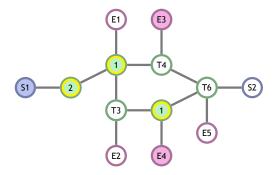
Trustworiness' Factors³

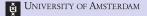

- Competence: The potential ability of the member.
- Integrity: Whether the member fulfills commitments (assumed for now).
- Benevolence: Whether the member acts good and out of kindness.


³deljoo2018sctm.

Benevolence based algorithm.

Assume integrity of alliance members (for now)

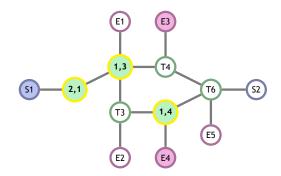


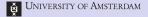


Benevolence based algorithm.

Assume integrity of alliance members (for now)

Rank nodes on competence to perform task 't'

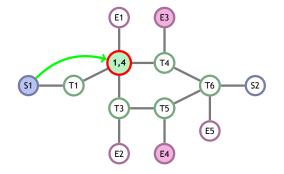



Benevolence based algorithm.

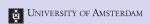
Assume integrity of alliance members (for now)

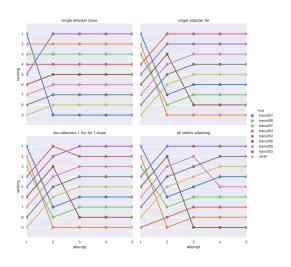
Rank nodes on competence to perform task 't'

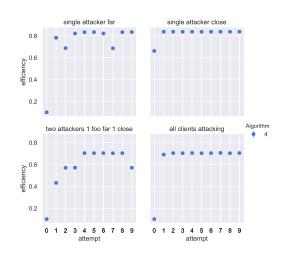
Resolve ties using on benevolence

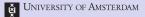

Benevolence based algorithm.

Assume integrity of alliance members (for now)


Rank nodes on competence to perform task 't'


Resolve ties using on benevolence


Ask node with highest ranking


Computational trust in practice

Conclusion


Main contributions:

- A framework for evaluating defenses in different topologies.
- A method to compare and evaluate countermeasure performance.
- Insights in how to defend collaboratively.

New questions:

- How to resolve conflicting requests?
- How do we optimize for the alliance globally (with limited data)?

Thank you!

For more information (slides, papers, demos): https://sarnet.uvalight.net