SARNET Alliance

Ameneh Deljoo

Cees de Laat, Tom van Engers and Leon Gommans

Systems and Networking Lab **University of Amsterdam** a.deljoo@uva.nl

Motivation

- Defence against organized attacks requires collaboration amongst service providers
- Protection of the network can often only be guaranteed and financed as a shared effort
- Network of organizations evolve over time and become more complex
- > Find a "**right**" partner is a challenging task.

We need to:

Define a more sophisticated and computationally executable method to select the "right" partner for sharing data and intelligence.

Requirements To Create An Alliance

Contributions

- Evaluate, measure and maintain trust among the alliance members.
- Present and implement the computational trust model (SCTM).
- **Risk estimation** through the SCTM model. The SCTM facilitates risk-based partner selection to select the **"right"** partner to collaborate in joint tasks.
- A governance model to define a set of policies and rules.

Trust and its Antecedents

Organize, Maintain and Evaluate Trust

- "x" expects "y" to do task (τ) and "y" will not exploit vulnerabilities of "x" when "y" faced with the opportunity to do so. Therefore, "y":
 - Has the **potential ability** to perform a given task (competence),
 - Adheres to a set of rules agreed upon and acts accordingly to fulfill the commitments (integrity), and
 - Acts and does good even if unexpected contingencies arise (benevolence).

Adopted from Mayer et al. (1995) ``An Integrative Model of Organizational Trust"

Computational Trust Model (SCTM)

Int (nbr_v , y, s_i) Identify three distinctive integrity **Evaluation Function** trustworthiness factors Int (nbr_v ,y, s_i) (Benevolence, Integrity and **Competence**) competence Com (nbr_v , y, s_i) **Evaluation Function Evaluate Trust in a dynamic** *Com* (nbr_v ,y, s_i) $Ec(x, y, s_i)$ way Trustworthiness TW (x,y, s_i) **Evaluation Function** Trust Gather the direct and indirect • TW (x,y, s_i) Tr (x,y, s_i) evidence on a trustee Ben (x,y, s_i) benevolence **Evaluation Function** Ed(x, y, si; Kb,) Update Trust value Ben (x,y, s_i) Kbx Originator's Outcome of Req. Rep_t Destination's Id Task type

a task

ld

Context Definition

In order to define the situations that lead to an agreement between a trustor and a trustee:

- d₁ = trustor,
- d₂= trustee,
- d₃ = time,
- d₄= location,
- d₅= task,
- d₆= complexity,
- d₇= deadline,
- d₈= Outcome
- Three different outcome of tasks

$$\mathsf{val}\,(d_8) = \begin{cases} 1\,, & if \ d_8 = Fd \\ 0.5\,, & if \ d_8 = Fdd \\ 0\,, & if \ d_8 = V \end{cases}$$

• A trustor looks at its Kb to collect the evidence on a trustee based on past interactions.

$$val_d(.) \rightarrow [0,1]$$

$$Ed(x, y, s_i; kb_x) = \{d_8(x, y, s_i) \in kb_x\}$$

$$val_d(Ed(x, y, s_i; kb_x)) = \frac{1}{N_x} \sum_{d_8(x, y, s_i) \in Ed(x, y, s_i; kb_x)} val(d_8(x, y, s_i))$$

 $\mathsf{val}\left(d_{8}\right) = \begin{cases} 1 , & \text{if } d_{8} = Fd \\ 0.5 , & \text{if } d_{8} = Fdd \\ 0 , & \text{if } d_{8} = V \end{cases} , N_{x} = number \ of \ enrises \ in \ the \ Kb's \end{cases}$

Кь _х					
Originator's Id	Destination's Id	Reqt	Rept	Task type	Outcome of a task

 A trustor asks a trustee's direct neighbors to send him their evidence on a given trustee.

$$val_c(.) \rightarrow [0,1]$$

$$Ec (nbr_y, y, s_i) = \{ Ed(u, y, s_i; kb_u) \mid u \in nbr_y \}$$
$$val_c(Ec(x, y, s_i)) = \frac{1}{N_{nbr}} \sum_{Ed(u, y, s_i; kb_x) \in Ec(nbr_y, y, s_i)} val_d(Ed(u, y, s_i; kb_u))$$

 N_{nbr} = number of neighbors that contribute to the val_c

SCTM

Benevolence Function

 Based on the <u>direct</u> interactions between trustor x and trustee y in the situation s_i.

$$Ben(x, y, s_i) = val_d(Ed(x, y, s_i, kb_x))$$

Competence Function

• Evaluate based on the **all available** evidence on Trustee (e.g. y,z)

 $Com(nbr_y, y, s_i) = val_c(Ec(nbr'_y, y, s_i)), nbr'_y = nbr_y \setminus \{x\}$

Deljoo, Ameneh, et al. "The Impact of Competence and Benevolence in a Computational Model of Trust." IFIP International Conference on Trust Management. Springer, Cham, 2018.

Integrity Function

• The given trustee's integrity is computed by:

$$Int(nbr_{y}, y, s_{i}) = \frac{\sum_{Kb_{u} \in nbr_{y}} N_{Fd} (Kb_{u}, y)}{N_{Ec}}$$

where

$$N_{Fd}(Kb_{u}, y) = |(Ed(u, y, s_{i}, kb_{u}))| u \in nbr_{y} \& val(d_{8}(u, y, s_{i})) = Fd |$$

Estimating Trust based on Competence and Benevolence functions

$$Tw(x, y, s_i) = \frac{1}{3}(Com(nbr_y, y, s_i) + Int(nbr_y, y, s_i) + Ben(x, y, s_i))$$
$$Tr(x, y, s_i) = Tw(x, y, s_i)$$

Risk Estimation

Risk Estimation

Risk Estimation

Interaction Risk $(R_i(x, y, s_i))$ in the Alliance Consists of:

- Relational Risk $(R_r(x, y, s_i))$: The **probability** and **consequence** of **not having** a successful cooperation (Benevolent behavior).
- Performance Risk $(R_p(x, y, s_i))$: The **probability** and **consequences** that alliance **objectives** are not **realized** despite **satisfactory cooperation** among the partner (the competence of the given member).

$$R_{i}(x, y, s_{i}) = w_{1}(1 - Com(x, y; s_{i})) + w_{2}(1 - Ben(x, y; s_{i}))$$
$$R_{i}(x, y, s_{i}) = \alpha \left(1 - Com(nbr_{y}, y, s_{i})\right) + (1 - \alpha)(1 - Ben(x, y, s_{i})), \qquad 0 \le \alpha \le 1$$

 $w_1 = \alpha$, $w_2 = 1 - \alpha$

T. Das, B.-S. Teng, Risk types and inter-frim alliance structures, Journal of management studies 33 (6) (1996) 827{843.

Case Study

A Collaborative Network

Notation

Description	Representation	Value Range
Agent	x,y	
Society of Agents (trustor, trustee)	$x, y \in A$	
Knowledge based of trustor x	Kb_x	
Set of Situations	$S = \{s_1, s_2,s_n\}$	
Tasks	au	
Sub-tasks	$ au_{s1}, au_{sn}$	
Context	$D = \{d_1, d_2,, d_8\}$	
d_8	$\{Fd, Fdd, V\}$	1,0.5,0
All the direct evidence on y in the situation s_i	$Ed(x, y, s_i; Kb_x)$	
All the available evidence on y from y 's neighbors in the situation s_i	$Ec(nbr_y, y, s_i)$	
Trustee's trustworthiness toward trustor x in the situation s_i	$TW(x, y; s_i)$	[0,1]
Trust x on y in the situation s_i	$Tr(x, y; s_i)$	[0,1]

Calculate the Outcome

\$\$ d₈ = Outcome
\$ Three different outcome of tasks
Fd(Fullfil duty)
Fdd(Fullfil duty with delay)
V(Violate)

$$\mathsf{val}(d_8) = \begin{cases} 1 , & if \ d_8 = Fd \\ 0.5 , & if \ d_8 = Fdd \\ 0 , & if \ d_8 = V \end{cases}$$

(Кb _х					
Originator's Id	Destination's Id	Req _t	Rept	Task type	Outcome of a task

Algorithm 1 Calculate the Outcome Based on the Task's Deadline.

Require: $Time_w$: time window. **Require:** Req_t : request time. **Require:** Rep_t : report time. $d_7 = Rep_t - Req_t$ if $d_7 <= Time_w$ then $d_8 = Fd$ **else if** $d_7 > Time_w$ then $d_8 = Fdd$ **else if** $d_7 = 0$ then $d_8 = V$ **end if return** d_8

Simulation settings and their illustrations

Parameters	Values	Illustrations
Α	Fixed	Number of nodes in the network
au	Fixed	Type of task (defend and mitigate the attack)
N_x	6	Number of entries in the Kbs
$t_{request}$	Initiate the simulation	Request time
t_{report}	Receive the feedback on the request	Report time
Δt_w	10 s	Time window
α	0.3	Weight factor
S	4	number of situations
$ au_s$	4	number of sub-tasks

Scenario

Domain "N" wants to choose ideal domains for collaboration in order to **mitigate and defend against a certain attack.**

Task (τ): Mitigate and defend against a certain attack.

Sub-tasks:

- τ_{s1} : provide resources within a certain time window,
- τ_{s2} : monitor a certain traffic,
- τ_{s3} : block a certain link,
- τ_{s4} : implement a certain counter measurement.

Selecting a "right" partner algorithm

Algorithm 2 Selecting a "right" partner (trustee) to collaborate on performing a task. Input: benevolence, competence and $Ri(x, y, s_i)$

- Employ the benevolence (see Section 3.3) and the competence (see Section 3.4) functions to calculate the competence and benevolence for all the members.
- 2: Identify the first trust discriminator for each task to assign the weight to each factor.
- Use the value of the benevolence and competence to evaluate the interaction risk for each member (see Section 5).
- Recommend a domain for each task such that its estimated interaction risk Ri(x, y, s_i) is minimal.
- 5: if two members have the same $Ri(x, y, s_i)$ then
- Select a member with the maximum benevolence value.
- 7: end if
- 8: return Selected member(s)

Result

Evaluation Result

The value of benevolence for three different algorithms

The value of competence for three different algorithms

Governance framework

Policies & Common rules (Governance framework)

- We use the **Service Provider Group (SPG)** framework to define a set of common rules and Policies
- A normative Agent Based Model (N-BDI*) to monitor the members' behavior
- Eduroam, Cyber threat Alliance
- Digital Data Market Place https://klm-4tlas.herokuapp.com/
 - Employ the block chain and smart contract to implement the rules.
 - Stability of the Digital Data Marketplace.

Conclusion

- To evaluate the trustworthiness of a trustee the direct and indirect evidence on the given trustee were taken into account.
- The **trust** value is computed by **three** trust factors, namely **competence**, **integrity** and **benevolence**.
- Benevolence is computed from direct evidence between a trustee and a trustor
- Competence and integrity are assessed on the base of the received feedback from the other alliance members (a trustee's direct neighbors).
- We are able to collect a variety of evidence on a trustee by introducing eight dimensions for each context.

Conclusion

- The interaction risk estimated through the SCTM by combining benevolence and competence.
- The **weighting factors** used to determine different weights to select the partners based on the task.
- We evaluated the SCTM framework with **SARNET Emulation** developed by Ralph.
- The **N-BDI* framework** defined to monitor the member's behavior.

Thank you.

Ameneh Deljoo a.deljoo@uva.nl