
Filtering Undesirable Flows in Networks

Gleb Polevoy Stojan Trajanovski Paola Grosso Cees de Laat

SNE, The University of Amsterdam, The Netherlands

contact: G.Polevoy@uva.nl 1

Problems

Consider problems like

DDoS

Unimportant flows

Any problem of filtering some “bad” flows to increase the “good” ones.

contact: G.Polevoy@uva.nl 2

Needs

While filtering, we need to

Minimize the effort

Reasonable time

contact: G.Polevoy@uva.nl 3

How?

No theoretical approximations of such filtering.

We

1 formally model

2 prove hardness

3 give a solution

contact: G.Polevoy@uva.nl 4

Model

1 The network is a directed capacitated graph G = (N,E), c : E → R+.

2 A flow f from node o to d along a path, f = (v(f)︸︷︷︸
value

,P(f)︸︷︷︸
path

), such that

for every edge e: ∑
f :e∈P(f)

v(f) ≤ c(e).

contact: G.Polevoy@uva.nl 5

Model – BFF

Definition (Bad Flow Filtering (BFF))

1 Input: (G = (N,E), c : E → R+,F ,GF ,BF ,w : BF → R+).

2 A solution S is a subset of bad flows to filter.

3 A feasible solution is a solution such that the good flows can be
allocated values such that the total value of the good flows is the
maximum possible.

4 Find a feasible solution with the minimum total weight

w(S)
∆
=
∑

b∈S w(b).

contact: G.Polevoy@uva.nl 6

Model – BFF – Example

The trivial feasible solution BF can be very far from the optimum.

Example

Edge (V1,V2) has capacity 2 and (V2,V3) has capacity 1.

v(b) = v(g) = 1.

The optimal solution is ∅, ∞ times better than everything.

b g
V1 V3V2

contact: G.Polevoy@uva.nl 7

Model – BFF and UIBFF

Definition (Bad Flow Filtering (BFF))

Given (G = (N,E), c : E → R+,F ,GF ,BF ,w : BF → R+), minimize
w(S) such that the total good flow is maximum.

Definition (Uniform Intersection Bad Flow Filtering (UIBFF))

BFF where every g ∈ GF has a set of edges on its path, E (g) ⊆ P(g),
such that every other good flow g ′ that intersects g fulfills:
i.e. P(g) ∩ P(g ′) = E (g).

g1

g2

g3

b1

g4

contact: G.Polevoy@uva.nl 8

UIBFF is Hard

Hardness of approximation

If P 6= NP, then UIBFF is not approximable within 2log
1−1/ log logc (n)(n), for

n = |E |+ |GF | and any c < 0.5. Even if no bad edges intersect one
another.

contact: G.Polevoy@uva.nl 9

General Approximation Technique: Local Ratio

Finding a feasible set of elements S s.t. w(S)
∆
=
∑

x∈S w(x) is minimized
by manipulating the weights.

1 If ∅ is feasible, return ∅.
2 Otherwise, remove the zero-weight elements, solve recursively, and

add them afterwards.

3 Otherwise, devise an r -effective w1 and solve recursively w.r.t.

w2
∆
= w − w1.

Definition (r -effective w1)

Every feasible solution is an r -approximation w.r.t. w1.

Theorem (LR theorem)

If a feasible solution is an r -approximation w.r.t. w1 and w2, then it is also
an r -approximation w.r.t. w1 + w2.

contact: G.Polevoy@uva.nl 10

Reminder of Our Problem

Given (G = (N,E), c : E → R+,F ,GF ,BF ,w : BF → R), minimize w(S)
such that the total good flow is maximum.

contact: G.Polevoy@uva.nl 11

Our Algorithm (Simplified)

1 If filtering cannot increase any good flow, return ∅.
2 Else, if there exist bad flows with zero weight, then

1 remove them,
2 solve recursively,
3 add them back.

3 Else,
1 Pick any good flow g that can be increased.
2 Let all the intersecting good flows that can increase be g1. . . . , gp. Let

G
∆
= {g , g1, . . . , gp}. Let their saturated edges, one from a flow, be

F (G), and all the bad flows that contain edges from F (G) be B(F (G)).
3 Let δ > 0 be the minimum weight in B(F (G)). Define w1 : BF → R+:

w1
∆
=

{
δ if b ∈ B(F (G)),

0 otherwise.

4 Solve recursively w.r.t. w − w1.

contact: G.Polevoy@uva.nl 12

Our Algorithm – Analysis
1 / 4

This would be a problem:

g3
g1

b1
g2

b2

However, in UIBFF:

Observation

We can increase the total good flow ⇐⇒ we can always increase a good
flow by filtering bad ones that intersect it.

Proof.

UIBFF assumes that all the good flows intersect a given good flow at the
same edges.

contact: G.Polevoy@uva.nl 13

Our Algorithm – Analysis – Measures
2 / 4

Definition

Given a BFF, let k be the largest possible number of good flows that a
given good flow intersects. Formally,

k
∆
= max

{∣∣{g ′ ∈ GF \ {g} : P(g ′) ∩ P(g) 6= ∅
}∣∣ : g ∈ G

}
.

Definition

For a BFF, let q be the largest number of bad flows that intersect a good
flow at any given edge. Formally,

q
∆
= max {|{b ∈ BF : e ∈ P(b)}| : g ∈ G , e ∈ P(g)} .

contact: G.Polevoy@uva.nl 14

Our Algorithm – Analysis – Approximation Ratio
3 / 4

Reminders

k
∆
= max

{∣∣{g ′ ∈ GF \ {g} : P(g ′) ∩ P(g) 6= ∅
}∣∣ : g ∈ G

}
.

q
∆
= max {|{b ∈ BF : e ∈ P(b)}| : g ∈ G , e ∈ P(g)} .

w1
∆
=

{
δ if b ∈ B(F (G)),

0 otherwise.

w1 is q(k + 1)-effective.

Lemma

Any feasible solution S and optimal S∗ fulfill: w1(S) ≤ q(k + 1) · w1(S∗).

Proof.

Any feasible solution allows g or at least one of g1, . . . , gp grow, by
filtering at least one of the intersecting bad flows. ⇒ w1(S) ≥ δ.
Always, w1(S) ≤ q(k + 1)δ.

The correctness and q(k + 1)-approximation follows by induction.
contact: G.Polevoy@uva.nl 15

Our Algorithm – Analysis – Correctness and Ratio
4 / 4

1 If filtering cannot increase any good flow, return ∅.
2 Else, if there exist bad flows with zero weight, then

1 remove them,
2 solve recursively,
3 add them back.

3 Else,
1 Pick any good flow g that can be increased.
2 Let all the intersecting good flows that can increase be g1. . . . , gp. Let

G
∆
= {g , g1, . . . , gp}. Let their saturated edges, one from a flow, be

F (G), and all the bad flows that contain edges from F (G) be B(F (G)).
3 Let δ > 0 be the minimum weight in B(F (G)). Define w1 : BF → R+:

w1
∆
=

{
δ if b ∈ B(F (G)),

0 otherwise.

4 Solve recursively w.r.t. w − w1.

contact: G.Polevoy@uva.nl 16

Conclusions

1 Modeling filtering problems (e.g., DDoS, dispensable flows)

2 Important, but extremely hard to approximate

3 Local Ratio q(k + 1) approximation

4 The approximation is tight

contact: G.Polevoy@uva.nl 17

Future Work

Arbitrary intersections (BFF)

A given allocation algorithm, like max-min fairness

contact: G.Polevoy@uva.nl 18

Thank You!

contact: G.Polevoy@uva.nl 19

Hardness reduction UIBFF

MMSA3 to UIBFF

Proof.

Reduction from Minimum-Monotone-Satisfying-Assignment of depth 3
(MMSA3). An MMSA3 instance

Input: a monotone (with no negative literals) Boolean formula,
which is a conjunction (AND) of disjunctions (OR) of
conjunctions, such as ((x1 AND x3) OR (x2 AND x3)) AND
((x2 AND x4 AND x5) OR (x1)).

The goal: a satisfying assignment that minimizes the number of
variables that are assigned 1.

contact: G.Polevoy@uva.nl 20

Hardness reduction UIBFF - Cont.

MMSA3 to UIBFF

Proof - Cont.

Satisfying all the disjunctions of the conjunctions is expressed as
unblocking all the edges of at least one good flow from all the sets of
intersecting good flows.

MMSA3

conjunction (AND)

disjunction (OR)

conjunction (AND)

variables x

UIBFF

bad flows bx

Edges of a good flow

A set of good flows intersecting at an edge

All the sets of intersecting good flows

contact: G.Polevoy@uva.nl 21

Algorithm - The Zero Weight Elements

We remove the zero-weight elements, solve recursively, and add them
afterwards.

1 This leaves the solution feasible, since the add the removed
afterwards.

2 The recursive invocation returns a q(k + 1)-approximation w.r.t. the
pruned instance. ⇒ It is also a q(k + 1)-approximation w.r.t. the
original instance, because we

1 have the same optimum cost
2 have the same solution cost

contact: G.Polevoy@uva.nl 22

Algorithm - Tightness

example

1 Good flows g1, . . . , gn+1 with c(e
(2)
i) = 1.

2 Bad flows b{1,n}, b{2,n}, . . . , b{n−1,n}, b{1,2,...,n+1} with weight 1 each.

3 m + 1 copies of the constructed problem instance. The distinct copies

intersect only at the edges e
(2)
i .

Assume the algorithm picks gn of one of the copies. The next invocation
removes all the bad flows from all the copies. This returns the solution
BF , while the optimum is

{
b{1,2,...,n+1}

}
.

gn

g1 g2 gn−1

gn+1

b{1,n}

b{2,n}

b{n−1,n}

b{1,2,...,n,n+1}

contact: G.Polevoy@uva.nl 23

	The Problems
	Model
	Hardness
	Approximation
	Conclusions
	Appendix
	Hardness
	Approximation

