Filtering Undesirable Flows in Networks

Gleb Polevoy Stojan Trajanovski Paola Grosso Cees de Laat

SNE, The University of Amsterdam, The Netherlands

Problems

Consider problems like

- DDoS
- Unimportant flows

Any problem of filtering some "bad" flows to increase the "good" ones.

Needs

While filtering, we need to

- Minimize the effort
- Reasonable time

How?

No theoretical approximations of such filtering.

(1) formally model
(2) prove hardness
(3) give a solution

Model

(1) The network is a directed capacitated graph $G=(N, E), c: E \rightarrow \mathbb{R}_{+}$.
(2) A flow f from node o to d along a path, $f=(\underbrace{v(f)}_{\text {value }}, \underbrace{P(f)}_{\text {path }})$, such that for every edge e :

$$
\sum_{f: e \in P(f)} v(f) \leq c(e)
$$

Model - BFF

Definition (Bad Flow Filtering (BFF))

(1) Input: $\left(G=(N, E), c: E \rightarrow \mathbb{R}_{+}, F, G F, B F, w: B F \rightarrow \mathbb{R}_{+}\right)$.
(2) A solution S is a subset of bad flows to filter.
(3) A feasible solution is a solution such that the good flows can be allocated values such that the total value of the good flows is the maximum possible.
(9) Find a feasible solution with the minimum total weight $w(S) \triangleq \sum_{b \in S} w(b)$.

Model - BFF - Example

The trivial feasible solution BF can be very far from the optimum.

Example

- Edge $\left(V_{1}, V_{2}\right)$ has capacity 2 and $\left(V_{2}, V_{3}\right)$ has capacity 1.
- $v(b)=v(g)=1$.
- The optimal solution is \emptyset, ∞ times better than everything.

Model - BFF and UIBFF

Definition (Bad Flow Filtering (BFF))

Given $\left(G=(N, E), c: E \rightarrow \mathbb{R}_{+}, F, G F, B F, w: B F \rightarrow \mathbb{R}_{+}\right)$, minimize $w(S)$ such that the total good flow is maximum.

Definition (Uniform Intersection Bad Flow Filtering (UIBFF))

BFF where every $g \in G F$ has a set of edges on its path, $E(g) \subseteq P(g)$, such that every other good flow g^{\prime} that intersects g fulfills: i.e. $P(g) \cap P\left(g^{\prime}\right)=E(g)$.

UIBFF is Hard

Hardness of approximation

If $\mathrm{P} \neq \mathrm{NP}$, then UIBFF is not approximable within $2^{\log ^{1-1 / \log \log c(n)}(n)}$, for $n=|E|+|G F|$ and any $c<0.5$. Even if no bad edges intersect one another.

General Approximation Technique: Local Ratio

Finding a feasible set of elements S s.t. $w(S) \triangleq \sum_{x \in S} w(x)$ is minimized by manipulating the weights.
(1) If \emptyset is feasible, return \emptyset.
(2) Otherwise, remove the zero-weight elements, solve recursively, and add them afterwards.
(3) Otherwise, devise an r-effective w_{1} and solve recursively w.r.t.

$$
w_{2} \triangleq w-w_{1}
$$

Definition (r-effective w_{1})

Every feasible solution is an r-approximation w.r.t. w_{1}.

Theorem (LR theorem)

If a feasible solution is an r-approximation w.r.t. w_{1} and w_{2}, then it is also an r-approximation w.r.t. $w_{1}+w_{2}$.

Reminder of Our Problem

Given $\left(G=(N, E), c: E \rightarrow \mathbb{R}_{+}, F, G F, B F, w: B F \rightarrow \mathbb{R}\right)$, minimize $w(S)$ such that the total good flow is maximum.

Our Algorithm (Simplified)

(1) If filtering cannot increase any good flow, return \emptyset.
(2) Else, if there exist bad flows with zero weight, then
(1) remove them,
(2) solve recursively,
(3) add them back.
(3) Else,
(1) Pick any good flow g that can be increased.
(2) Let all the intersecting good flows that can increase be $g_{1} \ldots, g_{p}$. Let $G \triangleq\left\{g, g_{1}, \ldots, g_{p}\right\}$. Let their saturated edges, one from a flow, be $F(G)$, and all the bad flows that contain edges from $F(G)$ be $B(F(G))$.
(3) Let $\delta>0$ be the minimum weight in $B(F(G))$. Define $w_{1}: B F \rightarrow \mathbb{R}_{+}$: $w_{1} \triangleq \begin{cases}\delta & \text { if } b \in B(F(G)), \\ 0 & \text { otherwise } .\end{cases}$
(c) Solve recursively w.r.t. $w-w_{1}$.

Our Algorithm - Analysis

This would be a problem:

However, in UIBFF:

Observation

We can increase the total good flow \Longleftrightarrow we can always increase a good flow by filtering bad ones that intersect it.

Proof.

UIBFF assumes that all the good flows intersect a given good flow at the same edges.

Our Algorithm - Analysis - Measures

Definition

Given a BFF, let k be the largest possible number of good flows that a given good flow intersects. Formally,

$$
k \triangleq \max \left\{\left|\left\{g^{\prime} \in G F \backslash\{g\}: P\left(g^{\prime}\right) \cap P(g) \neq \emptyset\right\}\right|: g \in G\right\}
$$

Definition

For a BFF, let q be the largest number of bad flows that intersect a good flow at any given edge. Formally,

$$
q \triangleq \max \{|\{b \in B F: e \in P(b)\}|: g \in G, e \in P(g)\}
$$

Our Algorithm - Analysis - Approximation Ratio

Reminders

$$
\begin{gathered}
k \triangleq \max \left\{\left|\left\{g^{\prime} \in G F \backslash\{g\}: P\left(g^{\prime}\right) \cap P(g) \neq \emptyset\right\}\right|: g \in G\right\} . \\
\\
q \triangleq \max \{|\{b \in B F: e \in P(b)\}|: g \in G, e \in P(g)\} .
\end{gathered} \quad w_{1} \triangleq \begin{cases}\delta & \text { if } b \in B(F(G)), \\
0 & \text { otherwise. }\end{cases}
$$

w_{1} is $q(k+1)$-effective.

Lemma

Any feasible solution S and optimal S^{*} fulfill: $w_{1}(S) \leq q(k+1) \cdot w_{1}\left(S^{*}\right)$. Proof.
Any feasible solution allows g or at least one of g_{1}, \ldots, g_{p} grow, by filtering at least one of the intersecting bad flows. $\Rightarrow w_{1}(S) \geq \delta$. Always, $w_{1}(S) \leq q(k+1) \delta$.

The correctness and $q(k+1)$-approximation follows by induction.

Our Algorithm - Analysis - Correctness and Ratio

(1) If filtering cannot increase any good flow, return \emptyset.
(2) Else, if there exist bad flows with zero weight, then
(1) remove them,
(2) solve recursively,
(3) add them back.
(3) Else,
(1) Pick any good flow g that can be increased.
(2) Let all the intersecting good flows that can increase be $g_{1} \ldots, g_{p}$. Let $G \triangleq\left\{g, g_{1}, \ldots, g_{p}\right\}$. Let their saturated edges, one from a flow, be $F(G)$, and all the bad flows that contain edges from $F(G)$ be $B(F(G))$.
(3) Let $\delta>0$ be the minimum weight in $B(F(G))$. Define $w_{1}: B F \rightarrow \mathbb{R}_{+}$:

$$
w_{1} \triangleq \begin{cases}\delta & \text { if } b \in B(F(G)) \\ 0 & \text { otherwise }\end{cases}
$$

(4) Solve recursively w.r.t. $w-w_{1}$.

Conclusions

(1) Modeling filtering problems (e.g., DDoS, dispensable flows)
(2) Important, but extremely hard to approximate
(3) Local Ratio $q(k+1)$ approximation
(a) The approximation is tight

Future Work

- Arbitrary intersections (BFF)
- A given allocation algorithm, like max-min fairness

Thank You!

Hardness reduction UIBFF

MMSA_{3} to UIBFF

Proof.

Reduction from Minimum-Monotone-Satisfying-Assignment of depth 3 (MMSA ${ }_{3}$). An MMSA 3 instance

Input: a monotone (with no negative literals) Boolean formula, which is a conjunction (AND) of disjunctions (OR) of conjunctions, such as $\left(\left(x_{1}\right.\right.$ AND $\left.x_{3}\right)$ OR (x_{2} AND $\left.\left.x_{3}\right)\right)$ AND $\left(\left(x_{2}\right.\right.$ AND x_{4} AND $\left.x_{5}\right)$ OR $\left.\left(x_{1}\right)\right)$.
The goal: a satisfying assignment that minimizes the number of variables that are assigned 1.

Hardness reduction UIBFF - Cont.

MMSA_{3} to UIBFF

Proof - Cont.

Satisfying all the disjunctions of the conjunctions is expressed as unblocking all the edges of at least one good flow from all the sets of intersecting good flows.

Algorithm - The Zero Weight Elements

We remove the zero-weight elements, solve recursively, and add them afterwards.
(1) This leaves the solution feasible, since the add the removed afterwards.
(2) The recursive invocation returns a $q(k+1)$-approximation w.r.t. the pruned instance. \Rightarrow It is also a $q(k+1)$-approximation w.r.t. the original instance, because we
(1) have the same optimum cost
(2) have the same solution cost

Algorithm - Tightness

example

(1) Good flows g_{1}, \ldots, g_{n+1} with $c\left(e_{i}^{(2)}\right)=1$.
(2) Bad flows $b_{\{1, n\}}, b_{\{2, n\}}, \ldots, b_{\{n-1, n\}}, b_{\{1,2, \ldots, n+1\}}$ with weight 1 each.
(3) $m+1$ copies of the constructed problem instance. The distinct copies intersect only at the edges $e_{i}^{(2)}$.

Assume the algorithm picks g_{n} of one of the copies. The next invocation removes all the bad flows from all the copies. This returns the solution $B F$, while the optimum is $\left\{b_{\{1,2, \ldots, n+1\}}\right\}$.

