Breaking CAPTCHAs on the Dark Web

Using neural networks to enable scraping

RP #62, Kevin Csuka & Dirk Gaastra

Supervisor: Yonne de Bruijn, Fox-IT
6 February, 2018

University of Amsterdam
Introduction
Scraping the Dark Web

Useful for threat intelligence companies
Scraping the Dark Web

Useful for threat intelligence companies

... sometimes hard to get to.
Useful for threat intelligence companies

... sometimes hard to get to.

Mainly the blockades, such as CAPTCHAs, is an issue for the scrapers.
Figure 1: CAPTCHA example

- Completely Automated Public Turing test to tell Computer and Humans Apart
Figure 1: CAPTCHA example

- Completely Automated Public Turing test to tell Computer and Humans Apart
- Test to determine whether the user is human or not
Main question

How would a scraper be able to circumvent CAPTCHAs that prevent it from properly scraping dark web websites?
Main question

How would a scraper be able to circumvent CAPTCHAs that prevent it from properly scraping dark web websites?

Sub-questions:

1. Impact of solving CAPTCHAs
Main question

How would a scraper be able to circumvent CAPTCHAs that prevent it from properly scraping dark web websites?

Sub-questions:

1. Impact of solving CAPTCHAs
2. Solve CAPTCHAs by using Optical Character Recognition (OCR)?
Main question

How would a scraper be able to circumvent CAPTCHAs that prevent it from properly scraping dark web websites?

Sub-questions:

1. Impact of solving CAPTCHAs
2. Solve CAPTCHAs by using Optical Character Recognition (OCR)?
3. Solving CAPTCHAs by using Machine Learning (ML)
Related Work
1. Lawrence et al. created their own dark web scraping tool, D-miner; CAPTCHAs were solved by human labor [1]
1. Lawrence et al. created their own dark web scraping tool, D-miner; CAPTCHAs were solved by human labor [1]

2. Ryan Mitchell demonstrated how to solve CAPTCHAs using Optical Character Recognition with Tesseract [2]
Related Work

1. Lawrence et al. created their own dark web scraping tool, D-miner; CAPTCHAs were solved by human labor [1]
2. Ryan Mitchell demonstrated how to solve CAPTCHAs using Optical Character Recognition with Tesseract [2]
3. Torch has previously been used to train a neural network to solve CAPTCHAs by Arun Patala [3]
Methods
Two methods to solve the questions:

1. Categorizing dark web websites
2. Breaking CAPTCHAs
1. Categorizing websites

- Which ones are up?
- Are there any duplicates?
- Which ones block scraping?
- What kind of blockade are they using?
1. Categorizing websites

Analysis of 633 dark web websites
1. Categorizing websites

Analysis of 633 dark web websites

- Which ones are up?
1. Categorizing websites

Analysis of 633 dark web websites

- Which ones are up?
- Are there any duplicates?
Analysis of 633 dark web websites

- Which ones are up?
- Are there any duplicates?
- Which ones block scraping?
1. Categorizing websites

Analysis of 633 dark web websites

- Which ones are up?
- Are there any duplicates?
- Which ones block scraping?
- What kind of blockade are they using?
2. Breaking CAPTCHAs

There are 3 common approaches to defeat CAPTCHAs:

1. Using a service which solves CAPTCHAs through human labor
2. Exploiting bugs in the implementation that allow the attacker to bypass the CAPTCHA
3. Character recognition software to solve the CAPTCHA
2. Breaking CAPTCHAs

There are 3 common approaches to defeat CAPTCHAs:
2. Breaking CAPTCHAs

There are 3 common approaches to defeat CAPTCHAs:

1. Using a service which solves CAPTCHAs through human labor
2. Breaking CAPTCHAs

There are 3 common approaches to defeat CAPTCHAs:

1. Using a service which solves CAPTCHAs through human labor
2. Exploiting bugs in the implementation that allow the attacker to bypass the CAPTCHA
There are 3 common approaches to defeat CAPTCHAs:

1. Using a service which solves CAPTCHAs through human labor
2. Exploiting bugs in the implementation that allow the attacker to bypass the CAPTCHA
3. Character recognition software to solve the CAPTCHA
There are 3 common approaches to defeat CAPTCHAs:

1. Using a service which solves CAPTCHAs through human labor
2. Exploiting bugs in the implementation that allow the attacker to bypass the CAPTCHA
3. **Character recognition software to solve the CAPTCHA**
Testing two common types of CAPTCHA:

Figure 2: CAPTCHAs set 1, generated using PHP

Figure 3: CAPTCHAs set 2, generated with Python
2. Breaking CAPTCHAs

Figure 4: Training the neural network

- **Train 100,000 images**
- **TensorFlow**
- **neural network**

- **pcknR**
- **N8GCy**
- **j9c8m**
- ...
2. Breaking CAPTCHAs

Figure 5: Login web page with generated CAPTCHA
2. Breaking CAPTCHAs

Figure 6: Workflow of solving CAPTCHA with TensorFlow via Scrapy
Results
1. Categorizing websites

Figure 7: Percentage of scraping blockade using CAPTCHAs (n = 465)
1. Categorizing websites

Figure 7: Percentage of scraping blockade using CAPTCHAs

(n = 465)
1. Categorizing websites

Figure 8: Percentage of scraping blockades using CAPTCHAs

(n = 465, n = 55)
Figure 9: Success rate of Tesseract and TensorFlow (n = 1,000), higher is better
2. Breaking CAPTCHAs - TensorFlow vs. Tesseract

Figure 9: Success rate of Tesseract and TensorFlow (n = 1,000), higher is better
Levenshtein distance: minimal edit distance to get the correct result [5]

E.g. kitten to mitten = 1
2. Breaking CAPTCHAs - TensorFlow vs. Tesseract

Levenshtein distance: minimal edit distance to get the correct result [5]

E.g. kitten to mitten = 1

Figure 10: Combined Levenshtein distance, lower is better
Conclusion
Conclusion

- Circumventing CAPTCHAs is necessary to scrape blocked parts of websites
Conclusion

- Circumventing CAPTCHAs is necessary to scrape blocked parts of websites
- Machine Learning is most effective
• Circumventing CAPTCHAs is necessary to scrape blocked parts of websites
• Machine Learning is most effective
• However, if immediacy takes precedent over success rate and accuracy, then Tesseract (OCR) might be a better option
Future Research
A more granular analysis of dark web websites:
A more granular analysis of dark web websites:

- What content?
A more granular analysis of dark web websites:

- What content?
- Any content hidden, due to lack of privileges?
Future Research

Increase readability for Tesseract by "cleaning up" the image

<table>
<thead>
<tr>
<th>Original</th>
<th>Thresholded</th>
<th>OCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>66htv</td>
<td>66htv</td>
<td>66htv</td>
</tr>
</tbody>
</table>

Figure 11: Removing noise from CAPTCHA [6]
Future Research

Achieve a more efficient training model, by using character segmentation

Figure 12: CAPTCHA character segmentation [7]
Future Research

Try more CAPTCHAs:
Future Research

Try more CAPTCHAs:

- Increased difficulty
Future Research

Try more CAPTCHAs:

- Increased difficulty
- If software to generate the CAPTCHAs, including the answers, is not available; send a training set to be solved by human labor. This costs money, $1.39 per 1,000 images [8]

[5] extremetech.com

[6] ahm3dibrahim.wordpress.com

[7] medium.com