Deanonymisation in Ethereum Using Existing Methods for Bitcoin

Robin Klusman
Tim Dijkuizen

Supervisor: Arno Bakker
Introduction

- **Blockchain**
 - Decentralised
 - Peer-to-peer
 - Miners
 - Anonymous reputation

- **Forensics**
 - Track malicious actors
Introduction

The integrity of the blockchain

Figure 1: Overview of how blocks in a blockchain are linked to each other
Introduction

Blockchain popularity

- Bitcoin
 - 2009
 - ‘Satoshi Nakamoto’

- Ethereum
 - 2015
 - Vitalik Buterin
"Is deanonymisation of clients feasible for the Ethereum network?"
Related Work

- Survey on Bitcoin security and privacy issues
 - Essential background knowledge
 - Attacks on Bitcoin
 - Bitlodge
- Survey on Ethereum smart contracts
 - Aimed at illegitimately obtaining funds
 - DAO attack
Bitcoin
Discovering clients:
- Hardcoded seed servers
- Clients maintain 8 entry-nodes
- `getaddr` message

Transaction propagation:
- Trickling
 - Queueing `inv` messages
 - 100ms
Bitcoin Blockchain

Transactions

- Based on UTXO
- Use up all inputs
- Change

Blocks:

- Merkle tree
- Header hash
- Forks
Bitcoin (& Ethereum) Consensus Model

PoW (Proof of Work):

- Based on computational power
- Against Sybil attack
Ethereum
Ethereum Smart Contracts

- Code written for EVM
 - Turing complete
 - Solidity
- Immutable once deployed
- Miners paid in gas - prevent DoS
- Crowd funding
Ethereum P2P Network

- Kademlia based
- Bootnodes
- Find nodes
 - nodeID from public key
 - Closeness
 - XOR of SHA-3 hash
Ethereum Blockchain

Transactions:

- No UTXO
- Account balance

Blocks:

- Global state
- Transaction trie
- Ommers
Attacks
Existing Attacks - Finding IP Addresses

- Identifying entry-nodes
 - Monitor ‘server’ nodes
 - Listen for `addr` messages
- Monitor network
- Transaction broadcasts
- Very resource intensive

Figure 2: Entry-nodes in Bitcoin
Effectiveness - Finding IP Addresses

- Peers of a node more volatile
- No set number of peers
Existing Attacks - Clustering

- Crawler
- Multi-input transactions
- Transaction ‘change’
Effectiveness - Clustering

- No multi input
- No change
- No shadow addresses
"Is deanonymisation of clients feasible for the Ethereum network?"

Deanonymisation attacks difficult to apply:

- Finding IP
 - Nodes not static
- Clustering
 - No multiple addresses

But, possibilities for similar attacks
Future Work

- **Bootnodes**
 - Shadow network
 - Government

- **Peer selection protocol**
 - Create nodes
 - Identify nodes

- **Attack wallet software**
 - Less resource intensive
References

Questions