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Abstract—Research in graph processing algorithms resulted
in many implementations that aim to make efficient use of
parallelism. Especially on GPUs, many implementations exist.
There is a lot of research into the relative performance of
GPU-based graph algorithm implementations for graphs with
differing topology. Knowledge on what algorithm implementation
to use can significantly speed up graph processing. In order
to benchmark real-world graphs with topological constraints,
but for different scales, a scaling mechanism has recently been
developed. This paper shows whether the relative performance
of Breadth First Search implementations on the GPU is scale-
invariant. First, we assess the scaling mechanism. Second, we
examine the relative performance of the Breadth First Search
implementations at different scales for a diverse set of graphs.
We find that the relative performance is stable, but not scale-
invariant and that one implementation shows better scalability
that the other implementations. Third, we investigate when this
implementation scales better than the others. This experiment
hints that such a transition point might be predictable. Lastly,
a comparison is drawn between the previous experiments, that
make use of scaled real-world graphs, and generated Graph500
graphs.

I. INTRODUCTION

The field of graph processing is ever expanding. From
research and networking to social media giants, graphs are
increasing in complexity. With the increase in data, the
processing of large graphs is becoming more relevant than
ever before. There are challenges in making efficient use of
parallelism for graph processing [ 1.

In order to speed up large graph processing, algorithms
have been developed that exploit Graphics Processing Units
(GPUs). Because computation power is cheap on GPUs, graph
processing can be more efficient. However, how much more
efficient the processing becomes depends on the implementa-
tion and type of graph.

The performance of graph algorithms is usually tested by
benchmarking public graph repositories, such as SNAP and
KONECT [2| 3], but these repositories are limited in size and
variety. When performing such benchmarks, we might be inter-
ested in graphs with specific topological properties. However,
these graphs might not be available in the required size. Too
large a graph might take too much time to benchmark. On
the other hand, we might be interested in the scalability of an
algorithm and would want to benchmark a graph on different
sizes.
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In order to meet the demand in research, a mechanism
has been developed to scale graphs [4]]. This allows graphs
to be scaled to the required size. The scaling mechanism,
developed by Musaafir, can create a family of graphs from an
original graph that is used as seed. This scaling method takes
samples from the original graph. This sampling preserves as
many graph properties as possible. If the graph needs to be
scaled up, these samples are combined to form the new, larger
graph. Musaafir shows that tweaking different parameters for
this combination effects the topology of the resulting graph.

It is also possible to generate graphs of a specific size [SH7].
However, generation with required topological constraints is
a challenge. There is no single framework that can generate
multiple classes of graphs and some classes of graphs can not
be generated at all. In addition, it can be a challenge to get
close to real life graphs.

The performance of different GPU-based graph algorithms
implementations depends on structural properties of the graph.
Examples of such properties are: Number of vertices, average
degree, cluster coefficient. These graph properties can be used
to predict the relative performance of graph algorithms [8}-
10]). Verstraaten et al. compared different implementations and
variants of Breadth First Search (BFS) for different graphs
from the KONECT repository. Similar research was performed
by Merrill et al. Besides BFS, they also included the single-
source shortest path (SSSP) algorithm. Both used their findings
to predict what algorithm to use for a given graph, achieving
a significant performance gain.

During runtime the most efficient implementation, what
algorithm implementation performs best, changes. As such,
performance can be improved if the algorithm implementation
switches at runtime.

Knowing what algorithm implementation performs best is
especially relevant for large graphs, where processing times are
long. It is important to know what implementation performs
best for certain classes of graphs. Once an implementation is
chosen, will it perform well on similar graphs of other sizes?

This research focuses on whether the relative perfor-
mance of different graph algorithm implementations is scale-
invariant. In other words, if we scale a graph, we investi-
gate whether the relative performance-based ranking of the
different BFS algorithm implementations is preserved. While
scaling up graphs, other properties except for the size are



preserved. The scaling mechanism allows for different pa-
rameters. Does the scaling method affect the performance
at different scales? Different algorithm implementations are
tested. Does the relative performance stay the same? Instead
of using real-world graphs, generated graphs can also be used
to measure the impact of size on algorithm implementation
performance. Are there any significant differences between
scaling and generating graphs when examining the relative
performance of algorithm implementations over scale?

II. BACKGROUND
A. Definitions and concepts

1) Scale-invariance: If the performance-based ranking of
the algorithm implementations over different scales on the
same graph stays unchanged, we observe scale-invariance. On
the other hand, if the ranking of the algorithm implementations
does change, the behaviour is scale-variant.

2) Scalability: What happens to the performance of an
algorithm implementation once scaled is considered to be the
scalability of the implementation. If an implementation shows
to relatively perform better than another implementation on a
larger scale graph, it shows better scalability.

When a graph is scaled, the input size to the GPU increases.
As such, the number of threads in use rises. For these
implementations, as explained in section each individual
thread still handles the same amount of information. As such,
because the problem size per processor is fixed, we talk about
weak scaling.

3) Transition point: In this paper, we compare the per-
formance of graph algorithm implementations. It might be
possible that one implementation starts to outperform another.
Such an occurrence will be called a transition point.

B. GPU processing

The CUDA programming model allows for programmers to
utilise the GPU [11} |12]. Code runs parallel on a collection
of threads. These threads are grouped into warps. All the
threads in a warp execute the same instruction. This allows
for highly parallel processing of large regular data. While the
representation of graphs is regular, the graph itself might not
be. This can lead to workload imbalance. As explained in
section the efficiency of an algorithm implementation
depends on how well all threads in a warp are utilised. Not
being able to execute the same instruction within a warp,
leaves idle threads, resulting in a loss of performance.

C. Sample-based graph scaling

Sample-based graph scaling works by combining samples
of an original graph into a new larger graph. An example of
such a mechanism is shown in figure |1} First an input graph,
as shown in figure [Ia] is required. From this input graph, a
sample is taken. Figure [1b|shows a sample of % the number of
vertices from the original graph. Following the sampling, the
samples can be combined to form a new larger graph. Figure
shows how two of the earlier created samples are combined
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(a) Original graph. (b) Graph sample.
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(c) Scaled graph.

Fig. 1: An example of sample-based graph scaling. The
original graph is the input graph for the scaling mechanism.
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Fig. 2: Illustration of the different topologies. Each polygon
represents a graph sample.

to form a graph of % the number of vertices of the original
graph.

The graph scaling mechanism, developed by Musaafir, takes
samples of the original graph and combines these into a larger
graph. These samples should preserve topological features of
the original graph or, in other words, the underlying structure
should be similar. Note that, unlike the earlier example in
figure |1} each sample can be different. One of the parameters,
the sample size parameter, determines how large the samples
are.

Several other parameters in the scaling mechanism can
be tweaked: The topology, type of bridges between graphs
and number of bridges between graphs. Because the scaling
mechanism is sampling based, these sample can be connected
in different ways. This is only relevant when a graph is scaled
up. When scaling down, the single sample does not need to
be connected to anything.

The topology determines how the different samples are
connected. The topologies are: Chain, ring, star and fully
connected. These topologies are illustrated in figure 2] In a
chain, each sample is connected to the next, except for the
last sample, forming a chain. For a ring topology, the samples
form a ring, each connected to the next. In a star, one central
sample is connected to all other samples. A fully connected



topology has each sample connected to every other sample. I1l. RELATED WORK

E_arlier results by Musaar have shown thqt the topologx\_ Difference between algorithms
mainly has an effect on the diameter. A chain, for example,
tends to increase the diameter more than the other topologied;09giaet al. have performed research into graph matching
This is because the only way to reach a vertex in the last graaygorithms. Despite the fact that these algorithms do not run on
of the chain from the rst, is by traversing all the other graph€ GPU, it does show some insight into the relative behaviour
This is not true for the other topologies. of different graph algorithms. This research shows that the

We can either create a bridge between samples by randorfitive performance is dependent on properties of the graph
selecting a vertex in each graph or by using vertices with@d that some algorithms perform better on large graphs
high degree. A consistent nding in earlier experiments is th&##an others|[13]. When comparing two similar algorithms,
picking high degree vertices decreases the average shortedidella et al. show that one algorithm only outperforms
path in the graph. When a path is searched between t@other when the graph is large enough [14]. Similar research
samples, it is likely to be shorter if the samples are connectthis eld by Carlettiet al. compares several graph matching
by vertices with a high degree. algorithms [[15]. The ranking of the algorithms stays the same

The last parameter allows for specifying the amount der different graph sizes, however, the behaviour under scaling
connections between samples. If we would connect sampfi§ers. Something similar is investigated by Voss and Subhlok,
with only a single edge for each connection, the average degrd@ng that how well an algorithm scales also depends on the
and density of the graph decreases. This problem is alleviat€g010gy [16]. One should note that the graphs used by these
by creating multiple edges for each connection between tkesearchers are orders of magnitude smaller than the graphs
samples. Tweaking this setting has an effect on the averdf@" KONECT used in this paper.

_ _ process graphs on the CPU and the GPU using CUDA [12,
D. BFS implementations 17]. Besides con rming that the efciency of an algorithm

We use ve main implementations of BFS: Edge-listdepends on graph topology, they also compared the algorithms
reverse-edge-list (rev-edge-list), vertex-pull, vertex-push af@ similar graphs of different sizes. The relative performance
vertex-push-warp. appears to be quite stable or, in other words, the ranking stays

Both the edge-list and reverse-edge-list implementatioH¥ same. However it is unclear what graphs are used in the
are edge-centric implementations, because they launch &@eriments. Once real world graphs are used, this stability
CUDA thread per edge. The edge-list uses the outgoig§ems to diminish.
edges, whereas the reverse edge-list uses the incoming e
Because every thread has the same amount of work,
edge-centric implementations do not suffer from workload As an alternative to graph scaling, the required graphs could
imbalance. However, because a large amount of threads lgegenerated. We could attempt to control topological features
spawned, they result in many parallel updates and contesiedhe graph generation. In doing so, it might be possible to
atomic updates. generate similar graphs of different sizes. However, the current

The vertex-centric implementations, vertex-pull and vertegraph generators are not exible enough.
push, launch one CUDA thread per vertex. The pull implemen-Miller, Joel C and Hagberg, Aric created a method for
tation updates its own BFS level. The push implementatisandom network generation. These networks can be created for
updates the BFS levels of its neighbours. Because the ver&éy given degree [6]. Milet al. combine two existing methods
degree in a graph varies, these vertex-centric implementatidnk a similar approach [18]. However, this approach is limited
suffer from workload imbalance, especially if vertices wittio directed graphs. Because there is more to graph topologies
a highly varying degree are in the same warp. The puhan just degree, utilising such an approach for performance
implementation only touches a vertex once, therefore menchmarking would limit the generality and applicability of
atomic operations are performed. The frontier is the vertic8ese experiments.
that the algorithm is currently searching in. If no neighbours Guo and Kraines have been able to generate graphs and tune
are in this frontier however, the neighbours are iterated ftre degree, clustering coef cient and power law [19]. While
nothing, wasting time. The push implementation preventis approach is able to control multiple topological factors, it
processing irrelevant neighbours, but in turn requires moielimited to small graphs and doesn't cover all graph features
atomic operations. of interest. The authors conclude that generators that control

The vertex-push-warp implementation is based on tmeultiple topological constraints, in a similar manner, are rare.
vertex-push implementation. Instead of each vertex beingThere are also graph generation methods based on existing
process by one thread, a group of threads is assigned a nungvaphs. Ying, Xiaowei and Wu, Xintao propose such a method
of vertices. Every edge in a vertex is processed by this group[bf. In order to create graphs, random edges of the original
threads. When completed, the group of threads moves on to ¢liaph are selected and switched. The authors note that it is
next vertex. This attempts to reduce the workload imbalanoet possible to preserve multiple features at a time. Therefore,
present in the vertex-centric implementations. utilising this method can not guarantee all the topological

dﬁ].E;SGeneration of graphs



constraints to be maintained. Besides, the size of the newTABLE I: Topological details on the Graph500 graphs.
synthetic graph is limited to that of the original.

. . : Level Size Volume
Using evolutionary computing, Verstraatenal. have been eVel  (vertices) (edges)
able to create a synthetic graph_generator_[?]. This mgthod 12 3353 48358
allows for creation of graphs with topological constraints. 13 6467 101959
Graphs of thousands of vertices were created with this method 14 12550 213088
T . . 15 24196 441406
in minutes. The authors note that there are issues with the scale 16 46815 909601
of the generated graphs. It was not possible to scale the graph 17 90116 1864262
generation to a suf cient size to do benchmarking [8]. 18 173692 3805027

| lusi h i h iani cant limit 19 335204 7740825
_In conclusion, graph generation shows signi cant limita- 20 646127 15700394
tions. The methods that scale well, do not preserve multiple 21 2396657 64155735
topological constraints. The methods that do preserve such 22 4610222 129333677

: le t oni cant size. A h h 23 8870942 260379520
constraints, can not scale to a signi cant size. As such, grap 24 17062472 523602831

generation does not suf ce for benchmarking purposes when
comparing algorithms, where the topology of a graph is of

great importance. Compared to graph repositories, generaigdied up to 2, 4, 8 and 16 times its original size with a sample
graphs can be less noisy. This would be an advantage Wh&sk of 0.5. The time it takes to process a graph also depends
performing benchmarking [8]. on the starting root node. Because the root node changes when
a graph is scaled, we take an average over 20 different root
nodes for each individual scale. Depending on the results, we

_In order to examine the scale-invariance of graph alggay perform additional experiments to investigate anomalies
rithms, we adopted an empirical research method, based §r5caje-variant behaviour.

benchmarking. Speci cally, we selected a set of graphs, scaled
them to various sizes and measure the execution time. This GetGraph500

is comprised of graphs "Pm the KONECT, reposjtory, used | order to see the difference between scaled and generated
by Verstraateret al. in earlier work. We rst investigate the graphs, we run the same benchmarks as before on Graph500

impact of using different scaling parameters. _ gaphs [20]. The Graph500 graphs are generated with a gen-
The computation time of BFS depends on the vertex it sty that is similar to the R-MAT generator [21]. Different

from, the root vertex. Because the scaled graph is differeflye|s of the Graph500 graphs are available, each increase in
we can't use the same root in the scaled versions. Duridie| doubles the size of the graph. Information on the graphs

earlier experiments, this proved to make the performance Un‘f’ﬁ)rovided in table I. All Graph500 graphs are undirected.
different scales highly unstable. To mitigate this effect, the

experiment is repeated for a number of root vertices. Each V. RESULTS
implementation on one scale starts from the same set of rqot Experimental setup
vertices. Additionally, the computation time can differ for each”

run, so we average each traversal over a number of runs. Théll experiments described in this paper we perform on the
exact number of iterations is explained in the results sectiddAS-5 cluster [22]. We use an Nvidia GTX TitanX Maxwell

IV. METHOD

see V. generation cards with 12 GB of onboard memory [23].
_ We use the sample-based graph scaling mechanism devel-
A. Scaling oped by Musaar, as mentioned in section II-C. We also use

In order to tweak the scaling parameters, we scale 2 graghe BFS implementations, as mentioned in section II-D, and
with 18 different scaling parameters and benchmark BRBe GPU-based graph algorithm benchmarking framework that
computations for all these graphs. A comparison betwewgre developed by Verstraaten al.
the results, with differing scaling parameters, should show Throughout this paper we make references to the structure
the effect of the parameters on the relative performaneégraphs in order to interpret the results. Table Il shows such
of algorithms on different scales. The parameters that bégformation on all the graphs that we use. Note that the graphs
show the expected behaviour of scale-invariance, are usech@ive diverse properties.
further experiments. All four topologies, both random and high _
degree connections and 1, 5 and 10 edges per connectior?BarJhe effects of scaling parameters
considered. We used both the  DBpedia and
actor-collaboration graphs for the experiments
investigating the effects of the scaling parameters. These

Algorithm implementations may show different scalabilitygraphs are some of the larger graphs in the repository, but not
This behaviour could depend on graph properties as wdlirge enough to take extensive time to scale and benchmark.
Therefore we benchmarked 5 different BFS implementatiokde scale theactor-collaboration and DBpedia
on a diverse set of graphs. This set is scaled down to 0.5 ayjrdphs up to 4 times their original size.

B. Algorithm scalability comparison



TABLE II: Topological details on the graphs used in this research from the KONECT repository [24].

. Size Volume Average Cluster .
Code Name Type Edge weights (vertices) (edges) degree coef cient Diameter
CL actor-collaboration Undirected  Multiple unweighted 382219 33115812 173.28 16.6% 13
TH arXiv hep-th Coauthorship  Undirected  Multiple unwieghted 22908 2673133 233.38 16.9% 9
GC Google.com internal Directed Unweighted 15763 171206 21.72 1.33% 7
DB DBpedia Directed Multiple unweighted 3966924 13820853 6.97 0.014% 67
DI Discogs Bipartite Multiple unweighted 3780417 14414659 - - 22
PL Prosper loans Directed Multiple unweighted 89269 3394979 76.06 0.31% 8
uc UC Irvine messages Directed Multiple unweighted 1899 59835 63.02 5.68% 8
ND Notre Dame Directed Unweighted 325729 1497134 9.19 8.77% 46
HUi Hudong internal links Directed Unweighted 1984484 14869484 14.99 0.35% 16
AS Route views Undirected  Unweighted 6474 13895 4.29 0.96% 9
IN CAIDA Undirected  Unweighted 26475 53381 4.03 0.72% 17
TH arXiv astro-ph Undirected  Unweighted 18771 198050 21.10 31.8% 14
BK Brightkite Undirected  Unweighted 58228 214078 7.35 11.1% 18

The results are shown in gures 6, 7, 8, 9, 10 and 11. Webmpute faster for scale 4.0 when compared to smaller scales.
see that the computation time does not scale linearly and thét observe that this behaviour is almost absent for the star
the relative performance for both graphs appears not to chaniggology with random bridges in gure 9 and gure 7 for
ranking often. However, there are multiple points where two =1 andn =5, respectively. This is also true for the fully
algorithm implementations do transition. connected topology in gure 11.

For the DBpedia graph the fully connected topol- With the actor-collaboration graph, we observe
ogy, or “Full”, experiences multiple such transition pointsthatn = 1 in gure 6 shows more points of transition than
It does so more often than the star topology. On the=5 andn =10 in gures 7 and 8, respectively. Especially
actor-collaboration graph, the full topology shows the star with random bridging topology for=5 shows less
heavy performance drops. Such drops can be seen arotrnadsition points. Similarlyn = 5 appears to have the least
scale 1.5 in gure 6 and scale 1.7 in gure 7. Therefore wéransition points for thdBpedia graph.
are reluctant to use the fully connected topology in further \we aiso see that, for thactor-collaboration

- graph,
experiments.

the vertex-push implementation experiences the highest num-
In the DBpedia graph, implementations can be seen tber of transition points. Comparable to that, the vertex-push

Fig. 3: A comparison of the relative algorithm performance under scaling for different graphs. Each experiment is repeated 5
times for 20 different root vertices. Vertical axis range zoomed to best t the results. Vertical axis rangé@ahown in
appendix A gure 12.



implementation switches ranking for all experiments for the
DBpedia graph, except for the ring with random bridging
topology in gure 11. Because these experiments solely focus
on different scaling parameters, these observations are inves-
tigated in section V-D.

There appears to be no clear pattern in the differences
between different scaling parameters from these experiments.
Because the star topology with a random bridge and 5 inter-
connections shows the least number of transition points and
appears most stable in terms of scalability, we chose these
parameters for further experiments.

C. Algorithm comparison for different graphs

Figure 3 shows how the performance of different implemen-
tations scales for different graphs. We see that performance-
based ranking is preserved over scales. However, there are a
lot of points where the ranking switches.

The act(;)r—collabo(;gtlo;n g glraph 9”'_3( alllov_ved 10 b€ iy 4: Mean performance of algorithm implementations on
pr%cHesze up to ‘1” InCI(LjJ mgsca e8. S|m(; arbylﬂllsacogls ) to&r)ologically similar graphs over 20 different root vertices and
andHudong graphs could not be processed above scale 2. uns per root vertex. Vertical axis range zoomed to best t

observe that these three graphs are the largest we have 188" esults. Vertical axis range frob®® shown in appendix A
from the repository. Therefore the inability to benchmark thessgure 13

graphs is likely size related. The GPU is not able to process
graphs of such size.

We also observe that the performance difference be-
tween algorithm implementations for different graphs can Another recurrent phenomenon we observe is the better
be as high as an order of magnitude. This highlights tlssalability of the vertex-push implementation. This basically
relevance of being able to employ the best implementereans that the vertex-push implementation switches rank-
tion. The actor-collaboration and arXiv hep-th ing or starts to relatively perform better. In gure 3 this
Coauthorship  graphs show a ranking similar to each othehappens for theactor-collaboration graph, arXiv
The graphs are similar: The cluster coef cients are 16.6% amep-th , Google , DBpedia, UC Irvine  and Notre
16.9%, the diameters 13 and 9 and the average degrees 17Base graphs. Only theProsper loans  graph de nitely
and 233.38. Both graphs are undirected and unweighted. ¥®ws no such behaviour. This raises the question, does vertex-
expect that the similarity in ranking is due to these topologicabish scale better than other algorithms? If so, can a transition

detalils. point be determined? We investigate this further in section
Besides the ranking, the scalability of the algorithms ¥-D.
also similar for theactor-collaboration and arXiv

hep-th graphs. The vertex-push implementation, in botR- The transition point of vertex-push

graphs, starts in a worse ranking and, for larger scalesWe ran further experiments in order to investigate the
is only outperformed by the vertex-push-warp implemerbetter scalability of the vertex-push implementation. These
tation. This phenomena occurs at a smaller scale for tbeperiments include graphs that are topologically similar or, in
actor-collaboration graph. This likely happens at aother words, have a similar underlying structure and attempt
smaller scale because tlaetor-collaboration is the to nd out whether such transition points lie close together for
larger of the two and as such does not need to be scaledsiupilar graphs. The results are shown in gure 4.
as much before that effect to occur. The route views and CAIDA graphs show that the
We also observe a difference in the number of transitiorertex-push implementation heavily switches ranking at some
points per graph. For example, the prosper loans d@ scales. It is unclear to us why exactly this happens. The
Irvine messages  graphs experience more such transitioacalability of vertex-push appears to be unstable.
points than others. Thactor-collaboration , arxiv The route views and CAIDA graphs are slightly
hep-th and Google.com graphs experience less of suctsmaller and have less edges per vertex, whereasrikie
transition points. Because this is different per graph and simstro-ph  and Brightkite graphs are larger and have
ilar graphs, like theactor-collaboration and arXiv more edges per vertex. All graphs are undirected and un-
hep-th graphs, experience a similar number of transitioweighted. ThearXiv astro-ph graph has an average
points, we conclude that this behaviour has to do with thdegree of 21, whereas the other graphs have an average degree
properties of the graph itself. of around 5.



We can see that theoute views  and CAIDA graphs
show no lasting transition points for the vertex-push imple-
mentation. Instead, the implementation is most ef cient from
the start, except on 2 scales for theute views  graph
and 4 scales for th€AIDA graph from the 11 scales for each
graph in total. The opposite is true for taeXiv astro-ph
and Brightkite graphs, where vertex-push only starts to
outperform other implementations on larger scales.

While similar in size, in terms of vertices, tharXiv
astro-ph  and Brightkite graphs have several times
more edges when compared to the other two graphs. We
expect that this has an effect on the relative performance of
the algorithms and on the better scalability of vertex-push.
We also observe that thBrightkite graph shows better
scalability than thearXiv astro-ph graph. The ranking
switches earlier for theBrightkite graph, despite the
Brightkite graph having more edges and vertices. The
arXiv astro-ph graph has more edges per vertex. We
expect that the amount of edges per vertex plays a role in
the scalability of vertex-push.

We also observe that theoute views
graphs show a similar ranking of the
The same can be said for tharXiv astro-ph and
Brightkite graphs. We expect that this is because of t
topological similarities in the graphs. This con rms that th
relative performance of the BFS implementations is inded
dependent on graph properties.

and CAIDA Fig. 5: Mean performance of algorithm implementations on
implementationéhe Graph500 graphs over 20 different root vertices and 5
runs per root vertex. Vertical axis range zoomed to best t
ng results. Vertical axis range froh@ in gure 20 and both
gxes zoomed to highlight lower levels in gure 21 shown in
Ge appendix A

E. Comparison to Graph500 found in earlier research mentioned in section IlI-A that

The results of the benchmarks for the Graph500 grapfi@mpPares graph isomorphism algorithms.
are shown in gure 5. We observe that the experiments on The set of graphs used in this research however, is quite
the Graph500 graphs show the same pattern of preservafigpologically diverse and limited by what KONECT has to
of performance-based ranking over scale. The differencesfer-
computation time between the algorithms are, similarly to We also show that tuning the scaling parameters has little
earlier experiments, multiples of each other. effect on the scalability of algorithm implementation perfor-
Except for the vertex-push implementation, no other implgrance. However, these experiments are limited to 2 graphs
mentations have any transition points between them. On le@eld a single scaling mechanism.
12, the vertex-push implementation starts as second to last. ORve also note that the vertex-push implementation shows
level 24 however, vertex-push is fastest. This further con rmsetter scalability than others. Further experiments con rm this
the better scalability of the vertex-push implementation.  and show that the better scalability is indeed dependent on
Besides that, we observe that the scalability of th®pology. The experiments also show that the transition point
algorithm implementations appears smooth. There asecurs around the same size for graphs that are topologically
no sudden drops in performance. This is similar teimilar. This transition point also correlates with the number

the actor-collaboration and arXiv hep-th of edges per vertex.
Coauthorship  graphs, but different to, for example, the performing the same benchmarks on different levels of
Prosper loans  andNotre Dame graphs in gure 3. the Graph500 graphs shows the same general increase in

computation time. We observe that only the vertex-push im-
plementation switches in performance-based ranking.

We show that the relative performance of BFS implemen- The Graph500 results are similar to that of the scaled real-
tations is stable under scaling, not showing many transitiovorld graphs. However, the Graph500 levels do not show
points. However, the relative performance is not fully scalsudden drops and increases in performance that the scaled
invariant. Within a few multiples of scale, we expect theeal-world graphs do. These anomalies might be caused by
relative performance to stay unchanged. When a graphinsproper scaling of the graphs. If the scaled graph is topo-
scaled to multiple times its original size, one implementatidogically similar to the original, one would not expect such
can start to outperform another. This is similar to the resulssidden performance drops or increases

VI. DISCUSSION



Future Work

This work has focused on BFS, but there are many other
graph algorithms where the same problem of relating im-
plementation performance to topological properties matters.
Future research into the scale-invariance of other graph algo-
rithms might find different classifications.

Merrill et al. describe multi-GPU graph traversal [9]. It
would be interesting to investigate the scale-invariance of such
a mechanism when comparing algorithm implementations.

We have only used 5 BFS implementations. More imple-
mentations and variants exist. Naturally, the results should be
extended if these are used in future research.

Instead of comparing diverse graphs, the relative perfor-
mance under scaling for similar graphs should be examined.
We briefly looked into this in section V-D. However the
experiments are limited to several graphs of only one class.
The field of graph generation might aid in creating repositories
of similar graphs. These repositories would be constrained, as
explained in section II1I-B.

We have shown that the transition points for topologically
similar graphs occurs around the same size. Is it possible to
determine, in detail, where transition points may occur for
different graphs? If this is possible, one might be able to
predict when one algorithm starts to outperform another.
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Fig. 6: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
actor-collaboration graph. Number of interconnections is 1. Vertical axis range zoomed to best fit the results. Vertical
axis range from 10° shown in appendix [A| figure
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