University of Amsterdam
System & Network Engineering,
MSc

Developing an Ethereum
Blockchain Application

Research Project 2

Written by:

Nikolaos Petros Triantafyllidis
Nikolaos.Triantafyllidis@os3.nl

Supervised by:
Oskar van Deventer, TNO
oskar.vandeventer@tno.nl

Erwin Middelesch, TNO

erwin.middelesch@tno.nl

February 19, 2016

Abstract

This project aims to evaluate Ethereum, a decentralized platform for the
deployment of Smart Contracts on the Blockchain. Our approach is to
initiate initiate a private Ethereum test network, on which we will develop
and deploy a decentralized Smart Contract application. The steps towards
building the development environment as well as the developed application
are demonstrated in this report. Our gathered experiences as well as our
estimation about the potential of the Ethereum project are presented in our
evaluation.

Contents

ﬁ Introd uctioﬂ

1.1 ResearchQuestionuuu.....
1.2 Ethical Considerations

Background Information

2.1 Bitcoin e
2.2 Blockchain
2.3 Proof of Work & Proof of Stakel
2.4 SmartContracty
2.5 Cryptographic hash functionsl
2.6 Turing Completenesg

The Ethereum Project

3.1 Ethereumhistoryl
3.2 Ethereumoprojectd
3.3 Ethereum implementations
B4 Ethereum concepty v v v v e i et
.41 AccoUNtS v v i e e e
3.4.2 Contracts and Transactions
B.4.3 Registrarg

B5 Solidityl - . . . v
3.5.1 Txee§
3.5.2 Eventy e
B.5.3 Functionsu.uiiiiiiiiiii..

3.5.4 Function Modifiers
B.6 Buildingatestnetwork.

@

TheDistributed Application

4.1 The Contractin Natural Languagel
4.2 TheJusticeToken
4.3 Contractentitieg.ot

4.4 PublicFunctionsiiii....
4.5 Limitations and Proposed Extensions
4.6 Setup SCriptd v vt

E Evaluatioﬂ

5.1 Difficultyl
5.2 Computational Power and Storage

6 Conclusio
Future Work

)|

Pppendix: Source codé

Chapter 1

Introduction

Since its inception in 2008, Bitcoin [[1] has managed to gain a lot
of momentum and popularity and is now considered a stable
alternative currency and economy system, as well as a strong
subculture movement.

The underlying technology of Bitcoin, the blockchain, a
distributed database model used to validate the financial
transactions in a decentralised manner, is considered tamper
proof [2]. For that reason a blockchain based approach
can be used for applications beyond monetary, especially in
contexts where anonymity, privacy and censorship resistance
are important aspects.

A new tool called Ethereum[3] was first described in 2013 and
was officially launched in 30 July 2015. Ethereum is a platform
designed to run smart contracts over a decentralised network of
peers. A smart contract in the concext of Ethereum is described
as 'an application that runs exactly as programmed without
downtimes, censorship, fraud or third party interference’ [3].

The Ethereum project claims that its mission is to fully
decentralize the Internet ‘as it was supposed to work’[3] by
providing a platform on top of which anyone can start a
decentralized Internet service, secured by the blockchain. The
hypothesis posed is that Ethereum will make it easy to launch
blockchain-based applications without needing to start a new
blockchain protocol or cryptocurrency.

The aim of this project is to test the validity of this hypothesis
by building a decentralized application on top of the Ethereum
network. Moreover, gaining insights on the inner workings of
Ethereum and development experience on the platform will
allow us to empirically evaluate Ethereum in terms of ease of
use, development time, performance, added value, and future
potential.

The rest of this introductory chapter is dedicated to presenting
our research questions as well as any ethical considerations
that we came across during the completion of this project. The
second chapter provides the definitions as well as additional
information regarding fundamental concepts needed for
understanding the context of this report. The next chapter
gives an in-depth presentation of the Ethereum project and
its surrounding concepts. The fourth chapters describes the
application built for the needs of the project while the fifth
chapter presents our gathered experiences and evaluation of
Ethereum. The sixth chapter concludes the report and answers
the research questions and the last chapters suggest future
extensions of the project.

1.1 Research Question

The main research question we will try to answer in this project is
the following: Can Ethereum be directly used to rapidly deploy
meaningful and sufficiently performing trusted applications
with added value over traditional approaches?

To make the above question more clear we can analyse it to the
following subquestions:

1. Can Ethereum be used to deploy non-trivial applications?

2. Can we achieve acceptable application performance even
with the currently present constraints?

3. What is the typical time needed for an Ethereum
application to be developed and launched?

4. What is the added value of using Ethereum over a more
traditional development approach?

1.2 Ethical Considerations

No ethical issues arose during the completion of the project.
The Ethereum contracts developed for the needs of this project
were executed on a private test network. No connections to the
live Ethereum Frontier network were made, and thus no ‘real’
Ether was spent. No personally identifiable information or any
otherwise sensitive data was gathered during this project.

Chapter 2

Background Information

We find it useful at this point to give working definitions as well
some background information for certain key concepts whose
basic understanding is fundamental in the following chapters.
Form a firm grasp of the concepts below, the reader is advised
to study the corresponding bibliography.

2.1 Bitcoin

Bitcoin is described as a consensus network that constitutes a
system for online payments as well as a digital currency [5]. It is
considered the first fully decentralized payment network which
is capable of operating on a pure peer-to-peer basis outside the
control of any central authority [[1].

Transactions in the Bitcoin network are maintained and verified
in a distributed transactions ledger called the blockchain [7].
The system is secured against double-spending and reversed
transactions through a process called mining, which involves
solving certain cryptographic hash puzzles as a Proof of Work.
Each transaction is also signed with the private key of the
transaction initiator and addressed to the public key of the
recipient [2]. Because of the use of these cryptographic
features, the term Cryptocurrency has emerged.

Bitcoin was first described in 2008 in a white paper authored
by the, still unidentified, person or group of people behind the
pseudonym Satoshi Nakamoto [7]. In January 2009 the first
Bitcoin client software was released as an open-source project
and the Bitcoin network came to life.

This was also the time when the first bitcoin transaction took
place. Since then, Bitcoin has seen big growth as more and
more companies and organizations started accepting it as a
method of payment. The popularity of the currency has been
reflected in the, ever fluctuating, Bitcoin to US Dollar exchange
rate. Indeed, a single Bitcoin had started to be sold for 0.05% at
its creation days, peaking at 1242$ in 2013, a price comparable
to an ounce of gold [4]. The universal symbol for the bitcoin
currency is BTC.

A number of factors related to the Bitcoin network security,
bugs in the client application software implementations as well
as several events in the global economy have either raised or
lowered confidence in Bitcoin, and have in turn affected the
Bitcoin price, which at the moment (January 2016) fluctuates
around the 400% area. The above issue with the price instability
as well as other factors, inherent in the very nature of Bitcoin,
has led many, including its strong supporters[6], to question its
viability as a stable alternative payment system.

Bitcoin, however, has brought the technology that allows us to
run fully decentralized applications and eliminate the trust to
any central authority or server infrastructure. Thus, it is essential
to understand the inner workings of Bitcoin in order to be able
to grasp the concepts that will be presented in the following
chapters. These terms will be explained in the sections below.

2.2 Blockchain

The blockchain is the publicly verifiable, distributed
transactions ledger that secures the Bitcoin network against
double-spending, forgery and reversed transactions.

In an abstract view, the blockchain is a data structure that
consists of time ordered, linked blocks that contain a number of
transactions. The blocks are linked in the sense that each block
includes the ID of the previous block in the chain [2]. The ID of
each block itself is the cryptographic hash of its contents. Thus
it becomes apparent that each block depends on the previous
block thus forming a chain that in order to be recreated all
blocks leading to the current one will have to be recreated as
well.

To make the function of the blockchain more apparent let us
look at the following naive scenario.: User Bob wants to send
an amount of Bitcoin (let's assume 1.5 BTC in this example)
to user Alice. Bob makes a transaction referencing a number
of previous transactions (called ‘input’ in the Bitcoin protocol)
whose value sums to 1.5 BTC, and is addressed to Alice. This
transaction is broadcast to the Bitcoin network. Now the
network nodes have to confirm that, the referred input does,
firstly, indeed belong to Bob and secondly it is unspent, i.e.
has not been referenced as the input of a previous transaction.
Once this confirmation has been granted the ownership of 1.5
BTC is transferred from Bob to Alice. Now Alice can proceed to
provide the service that Bob is paying for.

Parent: 0x00000000...
: 0x2fe90...

Hash: Oxbabe...
Hash T i

Parent: 0x2fe90...

Transactions: null ‘ #1: 0x4e38...
nonce: 0xb10... #2: Oxe56a...

Parent: Oxbabe...
Hash: 0x1337...
Transactions:

: Oxfafa...

Parent: 0x507e...
Hash: 0x1234...
Transact tions: null

nonce: OxcOe...

Block 0

h Block 1 Block 2 Block n
(Genesis)

Figure 2.1: Schematic representation of the Blockchain

What if, however Bob has no intention to pay Alice the 1.5
BTC and, in parallel to the first transaction, sends a second
transaction sending the same 1.5 BTC back to himself? There
is a high chance that certain nodes receive the malicious
transaction first and the whole network reaches the consensus
that the 1.5 BTC transferred from Bob to himself is valid. In that
case Alice has provided the service for free. Thus, there needs
to be a mechanism that provides orderign for the transactions.
That is where the blockchain is of value.

Once the transactions have reached the nodes and have
been verified as valid, certain work towards discovering an
appropriate grouping of these valid transactions. This processis
called mining and the nodes who participate miners. Each one
of these groupsis called a block and points to the previous block
of grouped transactions, thus forming a chain (hence the name
blockchain). Once a block is inserted in the blockchain, the
transactions it contains are considered accepted by all nodes
in the network.

However, merely forming a group of transactions and
suggesting it to the network would mean that anybody would
be able to do it which would mean, for one, that the network
would be flooded with simultaneous blocks and consensus
would never be reached. Secondly it would be possible for
anyone to forge blocks with the transactions they would like
to include to the network, which would not actually solve the
problem of securing the Bitcoin system. For that reason mining
is a very demanding process in terms of computational time
and resources.

Each block contains a reference to the previous block, a
set of new transactions plus a random value (nonce). The
contents of the block are hashed and if the output of the
hash function is below a predefined target then the block is
considered mined and gets broadcast to the network. Thus,
mining basically means discovering the right nonce which,
together with the contents of the block will produce the
desired hash. Due to the properties of cryptographic hash
functions (discussed below) it is practically impossible to try
and cheat the network by precomputing a set of nonces. The
fact that the solution to this cryptographic problem has been
discovered by the nodes is considered as Proof of Work and
for that reason the block is accepted by the network. In the
current implementation of the Bitcoin protocol the miners are
rewarded with 25 BTC for the effort they invest into the mining
process.

The current difficulty of Bitcoin mining, reflected in the
predefined target, means that a new block is discovered in
the network approximately every 10 minutes. There is always
of course the probability that two blocks are discovered and
transmitted at the same time. In this case the blockchain is
forked and the nodes continue to mine on the branch they have
received first. The consensus is resolved again once a new block
arrives and the chain with the longest length, i.e. the chain with
the biggest proof of work is considered the valid branch. The
transactions in the stale branch are returned to the transaction
pool, to be mined at a later stage.

10

Parent: 0x2fe90... Parent: Oxbabe...
Parent: 0x00000000... Hash: Oxbabe... Hash: 0x1337... Parent: 0x1337...
Hash: 0x21e90... ‘ T i ‘ Transactions: Hash: 0x83ef...

ions: null #1: 0x4e38... #1: Oxfafa... T ions: e
nonce: 0xb10... #2: OxeS6a... #2: 0xe0ed... nonce: 0x666...
nonce: 0xcle... #3: Oxcafe
nonce: 0x11d...

Block 0

(Genesis) Block 1 Block 2 Block 3

Parent: 0x1337...
Hash: 0x6060...
Transactions:

#1 0x8080
nonce: 0x667...

Block 3

Figure 2.2: Schematic representation of a forked Blockchain.

The above example shows that the blockchain is actually
tamper-proof. If a malicious user would like to change a
transaction that is deeper within the chain that would mean
that they would have to recompute all the blocks that follow
the block containing that transaction. That would mean they
would have to perform a very expensive operation multiple
times in the row, on the same time beating the rest of the mining
network in the race of discovering new blocks. This power of the
blockchain has led to its use for applications outside Bitcoin.

11

hash(B-EB) < t

Figure 2.3: Schematic representation of mining. Hashing the contents of
the parenthesis should result to a value lower than target t. Mining involves
finding the correct nonce that will allow the production of such a value.

12

2.3 Proof of Work & Proof of Stake

We have mentioned above that the Bitcoin network miners
have to solve certain cryptographic puzzles as a Proof of Work.
The concept as well as the term Proof of Work, however, has
preceded Bitcoin. Proof of Work (POW) in general is a measure
used to prevent the abuse of a service, by requiring the service
requester to spend a considerable amount of of computational
resources and time before the service can be granted [8] [9].

There are two flavors of POW protocols, challenge-response
and solution-verification. Challenge-response protocols
assume a client-server architecture, where the client requests
a service from a server and in turn gets provided with a
challenged to solve. Once the solution is submitted and
verified the service is granted.

In solution-verification POW protocols the challenge is self
produced by the party that needs to prove their work. Once
the puzzle gets solved the solution together with the request
are sent to the interested remote parties, which in turn verify
the solution and grant the requested service. Itis such a class of
a POW protocol that Bitcoin and other cryptocurrency systems
utilize.

A different approach to Proof of Work has been suggested
for verifying cryptocurrency transactions, called Proof of Stake
(POS). In this approach, instead of having to prove an amount
of work spent on the block generation, the nodes have to prove
ownership of their currency balance. In POS systems the blocks
are mined by the nodes voting on which will be the next block in
the chain. Voting rights are distributed according to the ‘stake’
each node has in the network. For example if a node has 1%
of the total currency available they also hold 1% of the voting
rights on the blockchain.

13

The very fact the voting rights are distributed according to stake
in the currency share creates problems leading to centralization
and monopolization of the blockchain around the nodes with
the biggest stake. Moreover, since the creation of blocks if
costless, this opens the door to nodes arbitrarily creating infinite
amounts of blockchain forks in an attempt to double-spend the
currency. A number of solutions to these problems has been
suggested, however this falls outside the scope of this report.

A number of cryptocurrency systems such as Peercoin [10] and
Nxt [11], among others, utilize a version of a Proof of Stake
protocol.

2.4 Smart Contracts

The term Smart Contract was introduced by Nick Szabo
[12] and refers to a set of computer protocols and user
interfaces intended for formalizing and securing relationships
and agreements over computer networks. Smart contracts
often capture and translate the clauses of traditional legal
contracts into a set of computer logic rules which are executed
as any computer program. Smart contract programs are in a
lot of cases used to enforce the observation of the contractual
clauses by all participating parties [[13].

14

2.5 Cryptographic hash functions

A cryptographic hash function is a function that maps any chunk
of data onto a fixed length string of characters. A cryptographic
hash function is considered practically irreversible, as in it is
computationally infeasible to compute the original message
given its hashed value [14].

Such a function must adhere to certain features in order to be
considered a good and secure cryptographic hash function.First
of all it must provide compression in the sense that the output
must be relatively small compared to the input. Moreover it
has to be easy to compute a hash of any input value in a small
amount of time and the time complexity should not grow rapidly
as the length of the input grows. Lastly it must be resistant to
collisions, meaning that it has to be computationally infeasible
to find any two distinct values that produce the same hash
function output. Should such a collision be discovered then the
function is considered to be broken.

Similarly to chaotic systems, where a small change in the initial
conditions has a significant impact to the output of the system,
cryptographic hash functions demonstrate what is called the
avalanche effect. According to this effect, the smallest change
in the input of the function must result to an extended change
of the output. According to the Strict Avalance Criterion, each
of the output bits must change with a 50% probability [[15].

2.6 Turing Completeness

Turing Completeness is a Computational Theory term used to
denote that a system that acts on data can compute any function
that the Universal Turing Machine [[16] can compute.

According to the Church-Turing thesis [17], any real world
computation can be carried out by a Turing machine. That
effectively states that no automaton can ever be built that has
more computing capability (as to the number of functions it can
compute) than the Turing machine [[16].

15

Having that in mind, we can understand that by characterizing
a system, such as a programming language, as Turing complete
we are basically stating that this system can be arranged in such
a fashion that it can perform any real world computation.

At this point we shall note that the concept of Turing
completeness does not take into account performance or
resource consumption aspects [17]. Naively put, it essentially
states that if a there is a solution to a problem and we have
a system that can simulate a Turing machine then the solution
to that problem will be found by this particular system, in a
variable amount of time, having consumed a variable amount
of resources.

16

Chapter 3

The Ethereum Project

Ethereum is an open source project first introduced in
2013, initially described as a “Next-Generation Smart Contract
and Decentralized Application Platform”. At first glance
Ethereum is a peer-to-peer network and an exchangeable
cryptocurrency that allows nodes to share computing resources
for the execution of programmable smart contracts on the
blockchain. There are however multiple different ways to
describe Ethereum depending on ones point of view.

In the official guides Ethereum is also described as a "World
Computer’, inthe sense thatit can be seen as a single computing
platform which anyone in the world is able to use. In this
world computer any number of programs can be encoded and
executed, and any participating code can interact and have
access to the state of each one of these programs.

17

In other words, with Ethereum any user can have access to a
cheap, zero-infrastructure, global platform that provides a very
interesting set of features:

e User authentication, verified by the use of cryptographic
signatures.

e Easily deployable paymentlogic. A payment system can be
setup on Ethereum very quickly with no third party reliance.

e Total DDoS resistance. Each application on Ethereum is not
executed on any single node; rather it is executed on each
and every node on the system. As long as there is one
node maintaining the blockchain the application will run
perpetually and will be able to be interfaced by any joining
node.

e Limitless interoperability. Each Ethereum contract can
seamlessly interact with any other contract instance via the
provided interfaces in the Ethereum ecosystem

* No server infrastructure. As mentioned before Ethereum
is completely built on top of a Peer-to-Peer network
with no central server infrastructure involved. Thus, the
deployment of an application on the blockchain does not
require the setup and the costs of setting and maintaining
servers.

Having said this, we can understand that Ethereum strives to
provide a platform where anyone can easily deploy and run
Internet services.

18

On a different level, Ethereum can be seen as a facility that
enables the creation of smart organizations, i.e. groups of
people that want to work together to achieve a goal and have to
define and enforce a set of rules. Ethereum aspires to be a the
tool used to run anything that falls between a trade agreement
between two people and the full orchestration of a government
organization. For example, if we imagine that real world objects
(e.g. acameraoralock) can read the Ethereum blockchain, then
according to the rules of the running contracts only their rightful
owners would be able to use them.

The Ethereum developers claim that they are working towards
building the ‘Internet as it was supposed to be’, as in that
their intent is to bring full decentralization back to the Internet.
Indeed the Internet was designed as a decentralized system,
however it is apparent that it is nowadays concentrated around
major hubs such as Internet Service Providers, Cloud Providers,
Social Networks, etc. This has led to the phenomenon where
the big players of the Internet to enforce their own rules and
impose censorship on the distributed content and exclusion
of certain parties. In a centralized system users always have
to trust the good intentions of some type of authority, be it a
government or a company that provides a service. Ethereum
strives to eliminate that trust, or rather distribute it among all
the participating nodes.

To conclude this introductory section we find it useful to present
a concise definition, that captures the essence of Ethereum. This
definition was provided by Gavin Wood, one of the pioneers
of the project, and describes Ethereum as ‘a collection of
non-localized singleton programmable data structures’[18].

19

3.1 Ethereum history

Ethereum was first described by Vitalik Buterin in his
article 'Ethereum: A Next-Generation Cryptocurrency and
Decentralized Application Platform’[19], in early 2014.
Its formal definition was given later that year in Gavin
Wood's 'Yellow Paper’[20]. The development of the first
implementation started shortly after [21].

On 22 July 2014 the official Ethereum crowdsale was launched
[22]. Its purpose was to release the first batch of Ether,
the internal cryptocurrency that serves as a transaction cost
payment token. The crowdsale ended on 2 September 2014,
lasting 42 days [22]. For the first 14 days one could purchase
2.000 Ether for 1 BTC, an amount which was reduced to 1.337
Ether for 1 BTC afterwards. By the end of the sale 60.102.216
Ether was sold to 9.007 buyers for the cost of 31.529 BTC, which
by that time had a value of 18.439.000 $ [24, 25].

On July 30 2015 the first official release as well as the first
live network, called the Ethereum Frontier, was launched[26].
This can be considered as the Beta testing phase of Ethereum.
On this network all purchased Ether can be redeemed. The
future releases in the Ethereum network are called, in order,
Homestead, Metropolis and Serenity [23].

20

3.2 Ethereum projects

The statistics regarding the Ethereum blockchain make it
apparent that the project has attracted a lot of attention. There
is already a number of decentralized applications and concepts
built on top of Ethereum, some of which show great potential.
We find it useful to present three of these applications that we
believe that show great promise as well as demonstrate the
power of Ethereum:

e Slock.it: A decentralized physical lock. It involves an
Ethereum mini computer as well as an electronic lock that
can listen to the blockchain. The concept is that one can
lock any asset (e.g. apartment, car, bicycle) behind the
‘Slock’ and anyone in the world can rent this asset for a
fee in Ether. If the transaction is verified then the renting
party can unlock the physical asset with their private key
and can use it for the duration of the lease. This project very
well showcases how Ethereum can connect to the physical
world [27].

* BlockApps Strato: A full stack technology solution that
allows easy development and deployment of enterprise
applications on the Blockchain. It provides a set of
tools such as private blockchain ledgers, smart contract
development graphical interfaces as well as semi-private
P2P networks, i.e. networks that can be isolated and on
the same time be able to communicate with the Ethereum
network [28].

e Colony: A decentralized platform that enables the creation
of decentralized companies across the world. It aspires to
bring together people with different skill sets that might
want to work together towards a common goal. A reward
called 'nectar’ is released periodically and people compete
for it by contributing ideas, making decisions or performing
some sort of work. There is also a community based
reputation system that reflects the merit of each individual
as well as their impact in the community [29].

21

3.3 Ethereum implementations

Ethereum has three different officially maintained
implementations written in C++ [30], Go[31]] and Python[32],
all of which are perfectly interoperable over the Ethereum
network. More specifically:

e Eth: The C++ implementation; it it said to perform faster
than the other implementations and it also is the the
basis for the the Mix IDE[33] a contract development
toolkit. It comes with a number of network analysis tools
like Alethzero[34] and it is suggested as a development
platform for Internet of Thins projects. It is also the only
client that supports GPU mining [35].

* Geth: The Golang implementation; Geth will be the basis
for the future Mist web browser[36]. It is suggested the
proper development platform for Web-based applications
[35].

e Pyethapp: The Python implementation; Pyethapp is
intented mostly for educational purposes. Users wishing to
understand the inner workings of Ethereum and are willing
to contribute to its expansion are invited to use Pyethapp
due to its code readability and clarity. It is not however
intended for high-end usage since it lacks in performance
[35].

While we could experiment with all three implementations for
the needs of this project, we chose Geth for simplicity and to
battle time constraints. Thus, any mention of the Ethereum
client in the next sections and chapters refers to the Geth
implementation.

22

3.4 Ethereum concepts

Below the main concepts of Ethereum are explained in a theoretical
as well as a technical perspective. For the formal definitions

of these concepts the reader is invited to read the Ethereum

Yellow Paper written by Gavin Wood[20].

3.4.1 Accounts

In Ethereum any entity that holds an internal state is associated
with an account, i.e. a private/public key pair. The public key is
also considered the address of the account.

Ethereum distinguishes two types of accounts, Externally
owned accounts and contracts. An externally owned account
is a personal account controlled by a private key. The owner
of the private key can send ether or messages to other external
accounts. A contract is basically an account that holds its own
logic mapped into the code that controls it [37].

23

3.4.2 Contracts and Transactions

As mentioned in the previous section a contract is an account
that contains code, and itis basically Ethereum’s way of inserting
programmable logic into the blockchain. Contracts, in general,
are meant to serve the following purposes [38]:

e Storing the state of values meaningful to other contracts
or external entities. For example a cryptocurrency contract
can hold the account balances of anyone interacting with
that contract.

* Serving as an external account with special access policies.
This could be for example a messaging service that only
forwards messages if certain conditions are met.

* Mapping and managing relationships among a number of
users. For example one could map the logic of a real world
financial contract which will always be enforceable within
the Ethereum environment.

e Acting like software libraries by providing functions to
other contracts. Contracts can interact with each other
by passing messages which can contain amounts of Ether,
byte arrays or account addresses. When a contract receives
such a message it can return data which are consumable by
the message sender, thus essentially serving as a traditional
function call.

The Ethereum execution environment is inert until something
sets itin motion. Transactions are the mechanism through which
actions are triggered. Any user can send a transaction from their
account to another external account or to a contract. In the first
case they can transfer Ether from their balance to the balance
of a different user, but other than that these transactions do not
have much more interest. In the second case, when the recipient
is a contract, the contract wakes up and executes its code.

24

A contract can read or modify its internal state, consume the
received message or in turn trigger the execution of a different
contract by sending it a message. When the execution of an
action and all of its subsequent actions stops, the environment
returns to a halting state until the next transaction is received.

Contracts are written in one of the specialized contract
specification languages. These include, Solidity [40]
(resembles JavaScript), Serpent (resembles Python) [41]
and LLL (resembles LISP) [42]. The code is then compiled into
Bytecode which is executed in Ethereum’s state machine called
the Ethereum Virtual Machine and it is referred to as EVM [43].

3.4.3 Registrars

As mentioned before all entities in Ethereum are associated
with an addressable account. Each account is referred to
by its 160-bit or 40 hexadecimal character long public key.
While this works perfectly for the execution machine, it is
rather difficult for the users to remember the addresses of all
entities of interest. For that reason a registrar contract, which
maps hexadecimal addresses to user specified names, comes
hard-coded in the blockchain. By default the client points to
the registrar address compiled in the Ethereum network. If a
user would like to deploy a different registrar they would have
to recompile the contract code and instantiate it again in the
Ethereum blockchain.

The above example shows that, while anyone can deploy the
same contract multiple times and interact with several of its
instances, the value of a contract is defined by its utilization by
the network. Anyone can deploy an alternative registrar service
and register an arbitrary number of names and addresses on
it. However, as long as the network uses the registrar that was
deployed first, the alternative service is practically useless.

25

3.4.4 Ether

Ether is a type of cryptocurrency created to serve as the ‘fuel’
of the Ethereum network. Its purpose is to be used to pay
the network nodes for the amount of computational resources
they provide in order to secure the blockchain or execute the
contracts. Ether can be obtained either by participating in the
mining process, where each mined block is rewarded with 5
Ether, or by purchasing it from a third party.

Ether has a number of denominations the smallest of which is
called 'Wei' which equals to 10"® Ether. Bellow you can find a
list of the Ether denominations as they relate to Wei:

e Wei: 1

Ada: 1000

e Fentoether: 1000

e Kwei: 1000

e Mwei: 1000000

e Babbage: 1000000

e Pictoether: 1000000

e Shannon: 1000000000

e Gwei: 1000000000

¢ Nano: 1000000000

e Szabo: 1000000000000

* Micro: 1000000000000

* Microether: 1000000000000

e Finney: 1000000000000000

e Milli: 1000000000000000

e Milliether: 17000000000000000
e Ether: 1000000000000000000

26

Einstein: 1000000000000000000000

Kether: 1000000000000000000000

Grand: 1000000000000000000000

Mether: 17000000000000000000000000

* Gether: 1000000000000000000000000000

* Tether: 17000000000000000000000000000000

It is obvious that the use of all the above names is impractical,
thus anything other than Ether and Wei is rarely used.

3.45 Gas

The network needs to be rewarded for the amount of
computation they provide in order to execute the smart
contracts. The amount of Ether paid for each transaction is
reflected in the concept of gas.

Each computational activity (e.g. a CPU cycle) costs a certain
amount of gas units. The total computational complexity within
a transaction defines its final gas expenditure. Each transaction
specifies a gas price, i.e. the price the sender is willing to pay
for a unit of gas in Wei. The gas price is an incentive for miners
to include the transaction in a block. A miner is free to ignore
any transaction with a low gas price.

Each transaction specifies a gas limit, i.e. the maximum amount
of gas units the sender is willing to expend on this transaction.
Since predicting the exact amount of gas each transaction will
expend is impossible, the sender must set an upper limit of gas
they are willing to pay for the transaction in order to protect
themselves from running out of funds (if, for example they
invoke an infinite loop). The concept of a gas limit applies to
blocks as well and it reflects the sum of the gas spent by all the
transactions in a block. Its purpose is to prevent each block from
getting too large, which would have an impact on the creation
and propagation of the blocks in the network, and by extension
the performance of the system.

27

If the sender of a transaction does not have enough Ether in
their account to cover for the transaction then the execution
aborts and any intermediate state changes are rolled back to
their values before the transaction was send. The gas spend
up until that point is subtracted from the account of the sender
to cover for the computational costs that occurred before the
execution stopped.

To make the concept of gas more clear let us take a look at one
example. If a transaction consumes 300 CPU cycles and each
CPU cycle costs one unit of gas the transaction simply would
cost 300 gas units. If the gas price is set to 5x10'" Wei (the
default value in Ethereum client) then the whole transaction
would cost 1.5x10'? Wei (1.5x10® Ether). If the sender of
the transaction had specified the gas limit to be for example
1.4x10'2 Wei, the transaction would have been aborted as soon
as it would have expended that value. Yet the sender would
have to pay that amount.

Table shows the gas fees for each type of operation as they
are presented in the ether.fund website [44]:

Operation | Gas | Description

step 1 Default amount of gas to pay for an execution cycle

stop 0 Nothing paid for the STOP operation

suicide 0 Nothing paid for the SUICIDE operation

sha3 20 | Paid for a SHA3 operation

sload 30 | Paid for a SLOAD operation

sstore 100 | Paid for a normal SSTORE operation (doubled or waived sometimes)
balance 20 | Paid for a BALANCE operation

create 100 | Paid for a CREATE operation

call 20 | Paid for a CALL operation

memory 1 Paid for every additional word when expanding memory
txdata 5 Paid for every byte of data or code for a transaction

transaction | 500 | Paid for every transaction

Table 3.1: Amount of gas units to be paid for each EVM operation. Source:
http://ether.fund/tool/gas-fees

28

http://ether.fund/tool/gas-fees

3.4.6 Mining

Ethereum much like most blockchain technologies uses a
mining process to secure the network. The process involves
the production of blocks whose validity will be verified by the
network. Just as the Bitcoin protocol, a block is only valid if it
contains a Proof of Work of a certain difficulty.

The PoW algorithm used by Ethereum is called Ethash [45] and
it involves finding a nonce input to the algorithm so that the
result is below a certain threshold depending on the difficulty.
The mining difficulty is automatically adjusted so that a block is
produced every 12 seconds.

Ethash is designed to be memory hard in order to be impossible
to implement on ASIC(Application-Specific Integrated Circuit)
machines. This is because in order for the PoW to be calculated,
a subset of a fixed resource depending on the block header
and the nonce. This resource, a Directed Acyclic Graph (DAG),
is 1GB in size and it is different every 30000 blocks. With
12s block time 30000 blocks amount to a 100 hours period,
called an ‘epoch’. This DAG depends solely on the height of the
blockchain and it can be, thus, pre-generated. Its generation
takes a few minutes and no block can be produced before
the DAG is generated. However, the full graph is not needed
for block verification since the appropriate subsets can be
calculated from a 16MB cache, requiring low CPU power and
memory [39].

The miners receive a reward for the computational effort they
invest on the network. The amount they receive includes a
static reward of 5 Ether for the discovered block and all the
gas expended within the block, i.e. the gas consumed by all
the transactions in that block. The static reward is issues as a
transaction from the miners themselves while the transaction
costs are paid by each transaction sender. It is expected that
as the network grows, the transaction gas within each block
will surpass the value of the static rewards and will be the main
incentive for mining [39].

29

Interestingly enough, Ethereum also rewards blocks in a forked
chain called ‘Uncles’. An uncle is a block that is an ancestor of
the current block but it is not part of the main (longest) chain.
For example if we are currently on block number 30 its parent is
block 29 whose parent is block 28. If there is another block that
points to block 28, that block is an uncle of block 30. A block
is considered an uncle only if it is up to 6 blocks back from the
current block. The reward for a valid uncle is 7/8 of the static
block rewards, that is 4.375 Ether. A maximum of 2 uncles per
block is allowed [39].

Ethereum chooses to reward uncles in order to neutralize
the effect of mining rewards being collected by one central
institution, due to network lag. Moreover, this increases security
by including more work in the Blockchain. For a full grasp of
the incentive behind rewarding uncles the reader is advised to
read Vitalik Buterin's article ‘'Toward a 12-second Block’[46] and
Yonatan Sompolinsky's and Aviv Zohar's paper ‘Accelerating
Bitcoin’s Transaction Processing’[47]].

At the moment, the mining difficulty on the live Ethereum
network is such that only GPU hardware can perform this action.
CPU mining is possible but the probability that any real Ether
can be mined that way is minimal [48].

3.5 Solidity

Solidity is one of the high level programming language used
to describe smart contracts. Solidity is the language that is
officially maintained by the Ethereum project and suggested in
the guides as the main contract language. Solidity is Object
Oriented and it resembles JavaScript. Below we will present
some of its main features.

30

3.5.1 Types

Solidity supports a number of different data types. Like any
traditional language it supports booleans, integers and strings.
There is no support for floating point variables as of yet [50].

A very interesting data type is that of an Ethereum address.
It holds the 20 byte representation of an Ethereum account
address, be it an external account or a contract. The address
data type has internal predefined members to check the
balance of an account or transfer Ether via a contract, as well
as to call functions from other contracts [50].

Solidity also supports structs and enumerations as well as byte
arrays that can hold data of any type. Moreover, solidity support
mappings which are in essence key-value stores that map keys
of any data type to values of any data type as well. An accessor
function is created for each declared variable.

3.5.2 Events

Events are the way Solidity provides in order for accessing
the transaction logs, a special data structure in the Blockchain.
Functions can emit these events populated with return values,
and event messages will be broadcast and stored on the
blockchain. Each application has to specify certain JavaScript
callback functions that listen for these event messages and print
them to the user interface. Event messages are not accessible
from within contracts, not even the contracts that have created
them [51].

31

3.5.3 Functions

Solidity distinguishes two types of functions, constant and
transactional. Constant functions are the those functions whose
purpose is to return a value and cannot update the state of the
contract. They can be called directly and do not consume gas
since they do not modify the blockchain. Transactional functions
are used to modify the state of the contract. Whenever called
an amount of gas has to be supplied to cover the transactional
costs. Constant functions need to be declared as such by using
the keyword ‘constant’ [S51].

There are four levels of visibility for Solidity functions. These are:

e External: External functions are part of the contract
specification and they can be called by other contracts, but
they are not accessible by the contract it self.

e Public: Public functions can be called by the contract itself
or by any external contract or entity.

e Internal: Internal functions can only be accessed by the
contract itself and its derivative (inherited) contracts.

e Private: Private functions are visible only to the contract
itself and cannot be called by any external entity or
derivative contract.

3.5.4 Function Modifiers

Function Modifiers are constructs used to change the behaviour
of a function. They are mainly used to check if a condition
is satisfied before a function can be executed. Modifiers
are inheritable properties of functions and each function can
belong to multiple modifiers [S1].

32

3.6 Building a test network

Each Ethereum release is accompanied by a network of peer
nodes. On this network computation has to be paid for with
Ether that has to be either purchased or mined on the live
blockchain. However, if one wishes to try the technology
and build a decentralized Ethereum application in a test
environment without spending ‘real’ Ether or expending large
computational resources in order to mine it, they can build a
private network, isolated from the live Ethereum network. On
a private network the initial block difficulty can be adjusted in
such a way that CPU mining can produce blocks in small time.
Any Ether produced cannot be redeemed in the live network
since it was mined on a different blockchain. However it can be
used to cover transaction costs in the same network.

For the needs of this project such a network was initiated,
comprising of 3 peer nodes, an OS X 10.11 laptop, an Ubuntu
15.04 workstation and a Debian 8.3 server. All the nodes have
installed the Geth Ethereum client. The peers can join the
network by invoking the following command:

geth \\

—networkid <id> —datadir . \\
——genesis /path/to/genesis.json \\
—nodiscover console \\
2>>geth.log

The last part of the of the command is to redirect the large
amount of log entries produced, from the interactive shell
towards an external file.

By default the peer discovery mechanism is on, and the peers
find each other via whispering. However, since the Ethereum
client comes with a set of hard coded static peers, which will try
to connect to the private network, we turn off the discovery with
the 'nodiscover’ flag. In that case we will have to add each peer
from the interactive shell by the following command:

>admin.addPeer(”enode://pubkey@ip: port”)

33

The ‘enode’ parameter is composed by the public key of the
node, the IP address of the host and the TCP port where
the Ethereum client is listening at. The Ethereum address of
each node can be obtained by running the following (with an
example output):

>admin.nodelnfo.enode
"enode://99e11e03aa79ef746957add61d3017053ebea
142e3c147d32aa4fa9ddf7df7{f2ec85fdb3e09cd5¢c%cd
cdb6ba88d6ff81e20ec0740cb612a4ddc016dff598acbes
@192.168.1.1:30303"

In order for the nodes to start syncing they will have to belong to
the same network ID and have a matching genesis block. While
the genesis block for the live network has to be produced by a
python script[49] in a private network the genesis block can be
any valid block with no parent. For example:

{
"nonce”: "Oxcafebabeblaablaa”,
“timestamp”: “0x0",

"parentHash”: "0x000000000000000000000000000

0000000000000000000000000000000000000",
"extraData”: "0x0",

“gasLimit”: "0x8000000",

“difficulty ”: "0x400000",

"mixhash”: "0x000000000000000000000000000
0000000000000000000000000000000000000",
"coinbase”: "0x3333333333333333333333333
333333333333333",

"alloc”: {

}

34

While the above make the procedure seem relatively simple, the
amount and quality of the documentation and official guides
provide a rather steep learning curve and one could easily run
into frustrating issues. For example, the guides suggest that
the ID of a private network should be large enough to avoid
collisions. However it is not mentioned that there is a maximum
value that the network ID can have. A greater value will cause
the peers not to communicate. A safe ID should fall within the
range of 99-99999.

Moreover, one should be careful not to include a too smallinitial
difficulty in the genesis block. In such a case blocks would be
mined rapidly by all the nodes in the network without allowing
them to sync between each discovered block. That can lead
to the phenomenon that a node will constantly be mining on
a stale fork of the blockchain and will be eventually be kicked
out of the network as a ‘useless peer".

35

Chapter 4

TheDistributed Application

As has been mentioned before the main purpose of Ethereum is
the deployment of fully decentralized smart contracts. Thus, we
developed such a smart contract in Solidity, Ethereum'’s contract
representation language. The decentralized application we
decided to build simulates the procedure of a civil court of law.

In certain jurisdictions civil law cases are tried according to the
adversarial system which states that the case is discussed in
front of an impartial person (judge) or group of people (jury)
and the party that claims their case in the best way, according
to the opinion of the impartial judging body, wins the case.
This is opposed to the inquisitorial system that is applied during
criminal law cases, according to which the court of law attempts
to establish absolute facts that will determine the outcome of
the case.

Our application is based on such a system; in its essence one
party decides to call an opponent to the court and debate a
case. The side with that persuades the jury about the superiority
of their claims, wins their votes and by extension the case. The
allowed level of participation for each entity in the system is
reflected in an exchangeable token that we will call ‘justice”.
Moreover, we suggest the collection of an amount of Ether from
the judges and jurors to serve as a collateral, ensuring that they
will not leave the case without participating.

36

At this point we have to absolutely point out that the author
of this report does not in any case advocate the transition of
the administration of justice from the, properly educated in
jurisprudence, legal entities to anonymous Internet users, or
any other form of faceless body of people for that matter. This
type of application was selected solely due to the fact that it
can very well showcase the capabilities of Ethereum. It involves
the creation of a new cryptocurrency, the implementation of the
operational rules of a democratic organization as well as the
digitization of a real world administrative procedure. All the
above are domains in which Ethereum’s contribution can have
great impact.

4.1 The Contract in Natural Language

The logic of developed smart contract can be captured in the
following natural language clauses:

1. The plaintiff creates and initiates the case.

1.1 Appoint a treasurer.
1.2 Appoint defendant.
1.3 Provide the address of the exchangeable ‘justice’ token.
1.4 Setinitial variables (description, debate rounds, etc.).

2. Opposing parties set the bench by appointing judges.

2.1 If bench is full no more judges can be added.

2.2 If there is an attempt to add a judge by an entity that
is not plaintiff/defendant judge will not be added.

2.3 No judge can be added twice.
3. Jurors add themselves to the jury.

3.1 If jury is full no more jurors can be added.
3.2 Ajuror cannot be added twice.

4. All parties must request their preallocated amount of ‘justice”.

4.1 Jurors and judges must send a predefined amount of
ether to the treasurer as a participation collateral.

37

5.

9.
10.

Opposing parties state their arguments exchanging turns
over a number of debate rounds.

5.1 The debate process cannot start if all the participating
parties have not assumed their roles.

5.2 No party can speak out of turn.

5.3 Each argument costs one unit of ‘justice’.

5.4 Atthe end of each round the turn is toggled to the
other party.

Judges can interfere at any point and provide their stance
on the submitted party arguments.

6.1 Each judge interference costs one unit of ‘justice’.

. Jurors vote on the outcome of the case.

7.1 Jurors cannot vote if the debating process has not
been concluded.

7.2 Each vote costs one unit of ‘justice”.

. Votes are counted and winning party is announced

8.1 Counting procedure cannot start if the voting has not
concluded

Collateral and rewards are released to the bench and jury.

Case is considered closed.

4.2 The Justice Token

For the purposes of controlling the flow of the procedure and
ensuring that each participating entity does not exceed their
allowed participation limit (e.g. a juror can only cast a single
vote), we have created a cryptocurrency to be distributed as
a token among the court roles. Each taken action within the
contract costs one unit of the justice token.

38

4.3 Contract entities

The different entities that participate in this contract are described
below:

e Plaintiff: The plaintiff is the party that has a claim over the
opposing party. In our case the plaintiff initiates the case
and sets the configurable parameters of the contract.

e Defendant: The defendant is the party that opposes the
plaintiff. They have the right to appoint one or more judges.
The amount of justice given to both parties equals the
number of the debating rounds.

® Bench: The bench is the body of the judges. In this particular
implementation of the case contract the role of a judge
might seem unnecessary since they only have the right to
interfere at any point without their interference actually
affecting the procedure.

e Jury: The jury votes upon the outcome of the case once
the debating has concluded. In our implementation each
member of the jury has only a single vote (thus, one token
of justice) and there is no configurable level of agreement
between the jurors. Simple majority will win the case. Moreover,
there is no check to make sure that the number of jurors is
always an odd number, thus a tie is a possible outcome.

* Treasurer: The role of the treasurer might also seem unclear
in the current implementation. The general responsibility
of the treasurer is to collect the collateral and distribute
the ‘justice’ token.

4.4 Public Functions

The following methods are the publicly invokable functions that
allow users to interact with the contract either to read or modify
its internal state.

e Case: The contract is simply called ‘Case’ and the function
that has the same name as the contract is its constructor

39

method. The method is invoked in order for the contract
to be instantiated in the blockchain, and it is called with

a set of initial parameters. This parameters are bench size
etc. When invoked correctly it emits a ‘caselnitiated’ event.

* newJudge: This method can only be invoked by the opposing
parties and it used to appoint new judges. Either the plaintiff
or the defendant must call the function supplying the public
address of a personal account. Upon successful execution
the supplied account is added to the bench of judges and
a'judgeAdded’ event is emitted. In case that one of the
addition rules is violated (e.g. bench is full, or judge already
added) a ‘judgeNotAdded’ event is emitted.

* newdJuror: Any account that wishes to participate as a juror
can add themselves to the jury body, provided that they
do not already serve as a judge or juror, they are not one
of the opposing parties and the maximum number of jurors
has not been reached. Upon successful invocation a jurorAdded
event is emitted. A jurorNotAdded event is emitted otherwise.

e requestJustice: All the participating parties, except the
treasurer must request for their preallocated amount of
‘justice’ token to be sent to them. In the case that the requestor
is either a judge or a juror, they must send a predefined
amount of ether to the contract as a collateral. A justiceSent
or justiceNotSent event is emitted, according to the result
of the method.

e partySpeak: This method is called by either the plaintiff or
the defendant when they need to present their arguments.
There are internal checks to ensure that only the opposing
parties can submit arguments for the case. There is also
an internal check to ensure that parties cannot submit arguments
out of turn. The method raises a partySpoke or an outOfTurn
event in the cases of success and failure respectively. The
method can only be called after all the participating parties
have assumed their role.

e judgeSpeak: This method can only be called after the debatign
procedure is ready to start and only by the judges, whenever

40

they wish to interfere to the case. It emits a judgeSpoke or
a judgeMute event depending on the outcome of the call.

juryVote: Each juror votes on the outcome of the case by
calling this function and submitting 0 in favor of the dedendant
and 1 in favor of the plaintiff. It emits a juryVoted event in

the case of success and a juryNotVoted event otherwise.

This method can only be invoked after the debating process
has concluded.

caseClosed: The final method is called only after the voting

has lapsed and its purpose is to count the votes and annouce

the winner of the case. It will emit a plaintiffWon or defendantWon
or tied event depending on the outcome of the case.

41

4.5 Limitations and Proposed Extensions

Our implementation of the contract provides certain limitations
that prevents the contract to be executed as designed. We will
present some of them briefly below:

® The collateral collection mechanism does not work due to
an implementation bug. This halts the contract execution
due to a modifier function checking if the collateral has
been collected.

® There is no check if the amount of collateral sent is the
predefined amount.

® There is no control over the validity of a vote. If ajurorsends
a number 1 value the vote is added to the plaintiff and any
other value is added to the defendant.

e There is no control in place to check if one party is already
participating as a different role (e.g.The plaintiff can be a
juror as well)

® Anyone can tamper with the justice balance of another
entity. The justice balance is not a locked wallet.

e A party can fill up the bench by themselves without giving
the other party a chance to appoint a judge.

However most of these limitations can be overcome with little
effort by additional checks injected sporadically in the code

42

Moreover we can suggest certain extensions to the design of
the contract that will make it more meaningful:

* A more active role can be given to the judges. For example
a judge can decide if the case has a basis to go forward or
it will be shutdown.

e A rewarding system can be put in place in order
to distribute rewards to the parties according to the
participation, while on the same time it ensures a fair trial.

e We can ensure that the outcome cannot be tied by
enforcing an odd number of jurors. Moreover we can
configure the level of consensus to be reached within the
jury for the outcome to be accepted (e.g. Simple majority,
2/3 majority, unanimous verdict, etc.)

* More meaning should be given to the justice token. Now it
is just a number being passed between the parties and the
treasurer. In a future implementation the token could have
a more active role in the process.

4.6 Setup scripts

In order to make the application more complete we wrote
a number of scripts in JavaScript that setup the execution
environment, by creating and registering accounts for the
participating entities, distributing Ether among them as well as
automatically deploying and mining the contracts. Moreover,
several callback functions have been defined in order to
monitor the platform for incoming events and respond to them.

43

Chapter 5

Evaluation

In this chapter we will present the experiences we gathered,
using Ethereum from an operational as well as a development
point of view.

Generally, Ethereum has brought some extremely powerful
concepts into life and can certainly be a huge leap forward
towards the decentralization of the Internet. However, it is
still under heavy development and suffers from low maturity
and lack of proper documentation. It demonstrates certain
performance and stability issues and the security status of the
platform is largely uncertain. Indeed, the official guides warn
strongly against running anything production ready on the
current version of Ethereum.

Below we share some of our insights regarding different aspects
of our evaluation.

44

5.1 Difficulty

There is a clear imbalance between the difficulty of setting
up and operating a development environment and actually
developing an Ethereum application. Ethereum consists of
several different components and its foundation lies in complex
concepts rooted in cryptography, mathematics, economics, etc.
While a deep understanding of these concepts is not mandatory
for setting up an Ethereum client or a private network of peers,
the user a lot of times has to rely on outdated or unclear guides,
spread around different sources that sometimes conflict with
each other. Moreover, the guides often reference other sources
that have been abandoned or deleted.

Developing, on the other hand, is much more intuitive since
it largely resembles traditional object oriented programming.
Although the solidity tutorial is itself also not completed,
and sometimes introducing fundamental concepts for the first
time in the FAQ section, it is relatively easy for anyone with
some programming experience to rapidly develop and deploy
complex smart contracts. However, the debugging and release
process is not as intuitive as one might be used to. Each change
inthe code involves redeploying a contractinstance and waiting
for it to be mined in the Blockchain before the developer can
interact with it again. This can sometimes be counterproductive.

A measure of the aforementioned imbalance between
development and operations is the fact that it took nearly
2 weeks to get to a point where we have a network of nodes
syncing with each other correctly and we are at a position to
understand why everything works the way it does. In contrast it
took roughly 3 days to have an initial yet fully functional version
of the contract we described in chapter 4.

45

5.2 Computational Power and Storage

We have mentioned before that the Ethereum network
discovers new blocks every 12 seconds. This means that
there is a release of a burst of computational power each
time the a block is discovered and the state of the Blockchain
is updated. While this is an acceptable waiting time for a
number of applications, such as every day financial transactions
(transferring funds can take a few days if a foreign bank is
involved for example), it is forbidding for certain time critical
applications such as industrial operations or health procedures.

Moreover, a big scalability issue becomes apparent if we think
that the state of the blockchain has to be stored in each
individual client. If Ethereum potentially grows to support
thousands or millions of applications this model cannot work.

There is effort invested into solving the issues above by adding
new elements in the Ethereum ecosystem. These include
Swarm, a bittorrent-like P2P storage system [52], Whisper, a
low level messaging application [53] and Mist a front-end web
browser[36]. These components are at a Proof of Conceptstage
and have not been used at all during this project.

5.3 Cost

In the third chapter we described the concept of gas by
giving an example. Let us revisit this example specific to our
contract. Our contract compilation costed 2.8x10° units of gas
to compile. Multiplying it with the standard gas price we have
2.8x10°x5x10"°=1.4 x 10" Wei = 0.14 Ether. According to
the price of Bitcoin at the time of the Ether sale this amount is
roughly 0.45%. Thus compiling a medium sized contract costs
a around 0.5% depending on the gas price. However, each
transaction that interacts with the contract costs a fraction of this
price.

46

5.4 Security

An interesting security question might arise. Can malware
be built in the Blockchain? The intuitive answer is that
this is not possible. ~While Ethereum can map anything
that can be programmed into a Blockchain smart contract,
smart contracts are applications that hold enforce certain logic
and relationships between entities but in contrast to other
programming models, smart contracts do not handle files or
initiate network connections.

However, the security of the whole platform depends on the
security of the Ethereum Virtual Machine (EVM) and each client
implementation. In theory if there is an implementation flaw in
the Ethereum client a contract could try and print an executable
command that will actually have impact on the client (e.g.
initiate an Ether transfer from an unlocked account). Moreover
if the EVM implementation has exploitable issues one could
attempt to break out of the contract execution environment and
attempt to inject code in the memory of the host machine with
destructive effects.

Furthermore, it is possible to see the executable bytecode
representation of the contract but the high level source code
is not always available so a contract might claim to perform
an action while in reality it does something else. Even if the
contract code and the version of the compiler through which
its executable was produced, is known there is always a level of
trust involved.

Even so, a contract can very openly do something illegal,
such as spreading threats or classified content or even byte
representations of child pornography imagery. Due to the lack
of proper identification (the contract initiator is merely a 40
character address) and a central controlling authority, all the
nodes in the network can potentially host illegal content.

47

Chapter 6

Conclusion

In this chapter we will present our conclusions in regard to how
they answer our research questions.

Our main research question was: Can Ethereum be directly
used to rapidly deploy meaningful and sufficiently performing
trusted applications with added value over traditional
approaches?

We can argue that the answer, in general, is yes. We have
demonstrated that a full decentralized application can be
developed and launched with minimal effort to the Ethereum
network. The application we have developed is much more
than a trivial 'Hello World’ project and it is fully decentralized
which adds great value.

More specifically:

Can Ethereum be used to deploy non-trivial applications?

As we said before the application we built involves features,
such as transferring of funds or public verifiability of votes,

which in traditional approaches are too complex and very
difficult to solve. Thus the answer is a clear yes.

48

Can we achieve acceptable application performance even with
the currently present constraints?

If we can look past the 12 second block time problem,
we can achieve performance which for a large number of
applications is totally acceptable.

What is the typical time needed for an Ethereum application to
be developed and launched?

We are not in a position to give a totally clear answer to
this question, since we can only estimate the mean deployment
time. An application of course can be launched instantly after
it is developed. Development time, however, depends heavily
on the experience of the developer and complexity of contract
in question. However, since there is no infrastructure involved,
the overhead of having to setup servers and database systems
is waived, which greatly speeds up the process.

What is the added value of using Ethereum over a more
traditional development approach?

The added value of Ethereum becomes apparent by the
fact that every application is decentralized and is controlled by
no single authority. In our court of law example, in a traditional
client-server approach one would have to trust the operational
authorities for ensuring the security of the system and not
tampering themselves with the data. In the case of Ethereum
this trust is eliminated or rather it is distributed among the
nodes.

49

Chapter 7

Future Work

This project stands between fully investigating the technical
inner workings of Ethereum and looking at the platform from
an abstract, application development point of view. There is a
great amount of research to be done all aspects of Ethereum
and a large number of projects can be spawned in order to
extend the present work.

First of all, for the needs of this project we only used a subset
of all the features offered by Ethereum. One could look much
deeper into the implementation of the project and use all
features and tools (such us the interfacing capabilities between
applications) available to leverage even more the power of
Ethereum. Moreover, since only the Golang implementation
was used we could also get involved with the other client
implementations and evaluate the additional features they
offer.

Apparently we can build upon the already developed contract
to overcome its limitations and further extend it to provide
bigger functionality. Moreover, we could complement it with
a proper web-based user interface, which would allow us to
evaluate JavaScript API provided by Ethereum.

50

In a more technical sense we could also attempt a proper
performance benchmarking and cost evaluation for a set of
different applications. Furthermore, since the security of
the platform is largely uncertain, a lot of effort could be
invested into discovering and potentially fixing its vulnerable
components.

Lastly, Ethereum can be the basis of great research in the
social sciences fields. By developing a number of different
contracts, regarding crowdsourcing, alternative economies,
and democratic organizations, one could design a number of
very interesting and useful social experiments.

51

Bibliography

[1] Rooney, B. (2016). Bitcoin worth almost as much as gold.
[online] CNNMoney. Available at: http://money.cnn.com/
2013/11/29/investing/bitcoin-gold/index.html

[2] Antonopoulos, A. (2015). Mastering Bitcoin. Sebastopol,
CA: O'Reilly.

[3] Ethereum.org, (2016). Ethereum Frontier. [online]
Available at: http://ethereum.org

[4] Rooney, B. (2016). Bitcoin worth almost as much as gold.
[online] CNNMoney. Available at: http://money.cnn.com/
2013/11/29/investing/bitcoin-gold/index.html

[5] Bitcoin.org, (2016). FAQ - Bitcoin. [online] Available at:
https://bitcoin.org/en/faq

[6] Pristley T. "Bitcoin Declared An Inescapable Failure”.
Forbes.com, (2016)[online] Available at: http://
www.forbes.com/sites/theopriestley/2016/01/
15/bitcoin-declared-an-inescapable-failure/
#1bdc02749bf8

[7] Nakamoto, Satoshi (October 2008). “Bitcoin: A
Peer-to-Peer Electronic Cash System” Available at: https:
//bitcoin.org/bitcoin.pdf

[8] Dwork, Cynthia; Naor, Moni (1993). “Pricing via
Processing, Or, Combatting Junk Mail, Advances in
Cryptology”. CRYPTO'92: Lecture Notes in Computer
Science No. 740 (Springer): 139-147.

52

http://money.cnn.com/2013/11/29/investing/bitcoin-gold/index.html
http://money.cnn.com/2013/11/29/investing/bitcoin-gold/index.html
http://ethereum.org
http://money.cnn.com/2013/11/29/investing/bitcoin-gold/index.html
http://money.cnn.com/2013/11/29/investing/bitcoin-gold/index.html
https://bitcoin.org/en/faq
http://www.forbes.com/sites/theopriestley/2016/01/15/bitcoin-declared-an-inescapable-failure/#1bdc02749bf8
http://www.forbes.com/sites/theopriestley/2016/01/15/bitcoin-declared-an-inescapable-failure/#1bdc02749bf8
http://www.forbes.com/sites/theopriestley/2016/01/15/bitcoin-declared-an-inescapable-failure/#1bdc02749bf8
http://www.forbes.com/sites/theopriestley/2016/01/15/bitcoin-declared-an-inescapable-failure/#1bdc02749bf8
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[9] Jakobsson, Markus; Juels, Ari (1999). "Proofs of Work
and Bread Pudding Protocols”. Communications and
Multimedia Security (Kluwer Academic Publishers):
258-272.

[10] Peercoin.net, (2016). Peercoin. [online] Available at:
https://wuw.peercoin.net

[11] Nxt.org, (2016). Nxt.org | Decentralized Financial
Ecosystem. [online] Available at: http://nxt.org

[12] Szabo, N. (1997). Formalizing and Securing Relationships
on Public Networks. First Monday, 2(9).

[13] Szabo.best.vwh.net, (2016). Secure Property Titles with
Owner Authority. [online] Available at: http://szabo.
best.vwh.net/securetitle.html

[14] Stamp, M. and Low, R. (2007). Applied cryptanalysis.
Hoboken, N.J.: Wiley-Interscience.

[15] Webster, A. F.; Tavares, Stafford E. (1985). “On the
design of S-boxes". Advances in Cryptology - Crypto ‘85.
Lecture Notes in Computer Science 218. New York, NY,:
Springer-Verlag New York, Inc. pp. 523-534

[16] Sipser, M. (1997). Introduction to the theory of
computation. Boston: PWS Pub. Co.

[17] Lewis, H. and Papadimitriou, C. (1981). Elements of
the theory of computation. Englewood Cliffs, N.J.:
Prentice-Hall.

[18] Ethereum.gitbooks.io, (2016). What is ethereum? |
Ethereum Frontier Guide. [online] Available at: https:
//ethereum.gitbooks.io/frontier-guide/content/
ethereum.html

[19] Buterin, V. (2014). Ethereum: A Next-Generation
Cryptocurrency and Decentralized Application Platform.
[online] Bitcoin Magazine. Available at: https://goo.gl/
yrrUFm

53

https://www.peercoin.net
http://nxt.org
http://szabo.best.vwh.net/securetitle.html
http://szabo.best.vwh.net/securetitle.html
https://ethereum.gitbooks.io/frontier-guide/content/ethereum.html
https://ethereum.gitbooks.io/frontier-guide/content/ethereum.html
https://ethereum.gitbooks.io/frontier-guide/content/ethereum.html
https://goo.gl/yrrUFm
https://goo.gl/yrrUFm

[20] Wood, G., ETHEREUM: A SECURE DECENTRALISED
GENERALISED TRANSACTION LEDGER. (2014). [online]
Available at: http://gavwood.com/paper.pdf

[21] Ethereum, (2014). C++ Code+Build FAQ. [online]
Available at: http://forum.ethereum.org/discussion/.
170/c-code-build-faq

[22] Ethereum Blog, (2014). Launching the Ether Sale -
Ethereum Blog. [online] Available at: https://blog.
ethereum.org/2014/07/22/1aunching-the-ether-sale

[23] Ethereum Blog, (2015). The Ethereum Launch Process
- Ethereum Blog. [online] Available at: https://blog.
ethereum.org/2015/03/03/ethereum-launch-process/

[24] Ether.Fund, (2016). Ether Price & Market for Ethereum |
Ether.Fund. [online] Available at: http://ether.fund/market

[25] Ethereum Blog, (2014). Ether Sale: A Statistical
Overview - Ethereum Blog. [online] Available
at: https://blog.ethereum.org/2014/08/08/
ether-sale-a-statistical-overview/

[26] Ethereum Blog, (2015). Ethereum Launches - Ethereum
Blog. [online] Available at: https://blog.ethereum.org/
2015/07/30/ethereum-launches

[27] Slock.it, (2016). Slock.it. [online] Available at: http://
slock.it

[28] BlockApps | Strato, (2016). Blockapps Blockchain
Development Tools. [online] Available at: http://www.
blockapps.net

[29] Colony.io, (2016). Colony. [online] Available at: http://

colony.io

[30] Isocpp.org, (2016). Standard C++. [online] Available at:
https://isocpp.org

[31] Golang.org, (2016). The Go Programming Language.
[online] Available at: https://golang.org

54

http://gavwood.com/paper.pdf
http://forum.ethereum.org/discussion/170/c-code-build-faq
http://forum.ethereum.org/discussion/170/c-code-build-faq
https://blog.ethereum.org/2014/07/22/launching-the-ether-sale
https://blog.ethereum.org/2014/07/22/launching-the-ether-sale
https://blog.ethereum.org/2015/03/03/ethereum-launch-process/
https://blog.ethereum.org/2015/03/03/ethereum-launch-process/
https://blog.ethereum.org/2014/08/08/ether-sale-a-statistical-overview/
https://blog.ethereum.org/2014/08/08/ether-sale-a-statistical-overview/
https://blog.ethereum.org/2015/07/30/ethereum-launches
https://blog.ethereum.org/2015/07/30/ethereum-launches
http://slock.it
http://slock.it
http://www.blockapps.net
http://www.blockapps.net
http://colony.io
http://colony.io
https://isocpp.org
https://golang.org

[32] Python.org, (2015). Welcome to Python.org. [online]
Available at: https://www.python.org

[33] GitHub, (2015). ethereum/wiki. [online] Available
at: https://github.com/ethereum/wiki/wiki/Mix:
—The-DApp-IDE

[34] GitHub, (2016). ethereum/alethzero. [online] Available at:
https://github.com/ethereum/alethzero.

[35] Ethereum.org, (2016). Install the Command Line Tools.
[online] Available at: https://ethereum.org/cli

[36] GitHub, (2016). ethereum/mist. [online] Available at:
https://github.com/ethereum/mist

[37] Ethereum.gitbooks.io, (2016). Account types and
transactions | Ethereum Frontier Guide. [online] Available
at: https://ethereum.gitbooks.io/frontier-guide/
content/account_types.html

[38] Ethereum.gitbooks.io, (2016). Contracts and transactions
| Ethereum Frontier Guide. [online] Available at: https:
//ethereum.gitbooks.io/frontier-guide/content/
contracts_and transactions_intro.html

[39] Ethereum.gitbooks.io, (2016). Introduction | Ethereum
Frontier Guide. [online] Available at: https://ethereum.
gitbooks.io/frontier-guide/content/mining.html

[40] Ethereum.github.io, (2016). Solidity, Ethereum Smart
Contract Programming Language. [online] Available
at:http://ethereum.github.io/solidity/

[41] GitHub, (2015). ethereum/wiki. [online] Available at:
https://github.com/ethereum/wiki/wiki/Serpent

[42] Ethereum, (2014). LLL. [online] Available at: https://

forum.ethereum.org/categories/111

[43] GitHub, (2015). ethereum/wiki. [online] Available at:
https://github.com/ethereum/wiki/wiki/White-Paper

[44] Ether.Fund, (2016). Gas Fees for Ethereum Operations.
[online] Available at: http://ether.fund/tool/gas-fees

55

https://www.python.org
https://github.com/ethereum/wiki/wiki/Mix:-The-DApp-IDE
https://github.com/ethereum/wiki/wiki/Mix:-The-DApp-IDE
https://github.com/ethereum/alethzero
https://ethereum.org/cli
https://github.com/ethereum/mist
https://ethereum.gitbooks.io/frontier-guide/content/account_types.html
https://ethereum.gitbooks.io/frontier-guide/content/account_types.html
https://ethereum.gitbooks.io/frontier-guide/content/contracts_and_transactions_intro.html
https://ethereum.gitbooks.io/frontier-guide/content/contracts_and_transactions_intro.html
https://ethereum.gitbooks.io/frontier-guide/content/contracts_and_transactions_intro.html
https://ethereum.gitbooks.io/frontier-guide/content/mining.html
https://ethereum.gitbooks.io/frontier-guide/content/mining.html
http://ethereum.github.io/solidity/
https://github.com/ethereum/wiki/wiki/Serpent
https://forum.ethereum.org/categories/lll
https://forum.ethereum.org/categories/lll
https://github.com/ethereum/wiki/wiki/White-Paper
http://ether.fund/tool/gas-fees

[45] GitHub, (2015). ethereum/wiki. [online] Available at:
https://github.com/ethereum/wiki/wiki/Ethash

[46] Ethereum Blog, (2014). Toward a 12-second
Block Time - Ethereum Blog. [online] Available

at:https://blog.ethereum.org/2014/07/11/
toward-a-12-second-block-time

[47] Sompolinsky, Y. and Zohar, A. (2013). Accelerating
Bitcoin’s Transaction Processing Fast Money Grows on
Trees, Not Chains. Available at: https://eprint.iacr.
org/2013/881.pdf

[48] Ethereum.org, (2016). Get Ether. [online] Available at:
https://ethereum.org/ether

[49] Ethereum Blog, (2015). Final Steps - Ethereum Blog.
[online] Available at: https://blog.ethereum.org/2015/
07/27/final-steps

[50] Solidity.readthedocs.org, (2016). Types — Solidity 0.2.0
documentation. [online] Available at:http://solidity.
readthedocs.org/en/latest/types.html

[51] Solidity.readthedocs.org, (2016). Contracts — Solidity
0.2.0 documentation. [online] Available at: http://
solidity.readthedocs.org/en/latest/contracts.html

[52] Ethereum, (2015). Swarm. [online] Available at: https:
//forum.ethereum.org/categories/swarm

[53] GitHub, (2014). ethereum/wiki. [online] Available at:
https://github.com/ethereum/wiki/wiki/Whisper

56

https://github.com/ethereum/wiki/wiki/Ethash
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time
https://eprint.iacr.org/2013/881.pdf
https://eprint.iacr.org/2013/881.pdf
https://ethereum.org/ether
https://blog.ethereum.org/2015/07/27/final-steps
https://blog.ethereum.org/2015/07/27/final-steps
http://solidity.readthedocs.org/en/latest/types.html
http://solidity.readthedocs.org/en/latest/types.html
http://solidity.readthedocs.org/en/latest/contracts.html
http://solidity.readthedocs.org/en/latest/contracts.html
https://forum.ethereum.org/categories/swarm
https://forum.ethereum.org/categories/swarm
https://github.com/ethereum/wiki/wiki/Whisper

Appendix: Source code

All the Source Code developed for the needs of this project,
including the Solidity Smart Contracts as well as the JavaScript
setup scripts can be found in the following github repository.
https://github.com/ntrianta/rp2ethereun

57

https://github.com/ntrianta/rp2ethereum

	Introduction
	Research Question
	Ethical Considerations

	Background Information
	Bitcoin
	Blockchain
	Proof of Work & Proof of Stake
	Smart Contracts
	Cryptographic hash functions
	Turing Completeness

	The Ethereum Project
	Ethereum history
	Ethereum projects
	Ethereum implementations
	Ethereum concepts
	Accounts
	Contracts and Transactions
	Registrars
	Ether
	Gas
	Mining

	Solidity
	Types
	Events
	Functions
	Function Modifiers

	Building a test network

	TheDistributed Application
	The Contract in Natural Language
	The Justice Token
	Contract entities
	Public Functions
	Limitations and Proposed Extensions
	Setup scripts

	Evaluation
	Difficulty
	Computational Power and Storage
	Cost
	Security

	Conclusion
	Future Work
	Bibliography
	Appendix: Source code

