
ElectroMagnetic

Fault Injection

Characterization

on ARM Cortex-A9

George Thessalonikefs

George.Thessalonikefs@os3.nl

University of Amsterdam

February 5, 2014

Introduction

Hardware Fault Injection

Induce faults to hardware through side channels:

 Clock

 Power supply

 Electromagnetic radiation

 Light

 Temperature

Goals

 Change behavior

 Change data

2

ElectroMagnetic Fault Injection

3

For inducing a significant voltage spike, distance d < D

Source: Riscure

EMFI vs VCC & Optical FI

No preparation needed for the target

VCC FI : Need to work with capacitors to glitch

the core voltage line

Optical FI : Decapsulation of the chip

Countermeasures for:

VCC FI: Glitch sensors

Optical FI: Light sensors

4

Picture:

Decapsulated chip

EMFI in action

http://www.youtube.com/watch?v=dew0KD_-ypw
5

Research question

6

What are the effects of ElectroMagnetic

Fault Injection (EMFI) on embedded chips?

Setup

7

Setup

8

Target

Wandboard

SOLO

Freescale i.MX6 Solo Processor

Using an ARM Cortex-A9 Single Core

Specifications:

• 32-bit processor

• ARMv7 architecture based on RISC

• Clock speed of 792 MHz:

 1,26 ns/cycle

• Pipeline

• Dual-issue superscalar

• Out-of-order

• Speculative execution

• 8-stage

9

Dual-issue superscalar Pipeline

Example:

10

http://en.wikipedia.org/wiki/File:Superscalarpipeline.svg

IF: Instruction Fetch

ID: Instruction Decode

EX: Execute

MEM: Memory access

WB: Write Back

ARM Cortex-A9 Pipeline

11

http://www.arm.com/images/A9-Pipeline-hres.jpg

Code instrumentation

Initialize registers to known values

Trigger ON

Critical area code

Trigger OFF

Print results

Code was written in ARM assembly to avoid

C compiler’s optimization

12

Critical area code

R0 initialized to 0xFFFFFFFF

R1 initialized to 0x00000001

Unrolled loop of 32 pairs of instructions:

Logical operation

Shift R1 1-bit to the left

Logical operations:

BIC (BIt Clear)

EOR (Exclusive OR)

13

Visualization of fault injection

14

Blue line: Trigger signal

Red line: Coil current

Correct Output

BIC version
R0: 00000000 R1: 80000000 R2: FFFFFFFF R3: 020B4000

R4: A54444A5 R5: A55555A5 R6: A56666A5 …….

EOR version
R0: 00000000 R1: 80000000 R2: FFFFFFFF R3: 020B4000

R4: A54444A5 R5: A55555A5 R6: A56666A5 …….

15

Full chip detailed scan

16

Die detailed scan

17

Glitches with desired results

18

Glitch results

Logical operation not executed

Suspects:
 Instruction Fetch

 Instruction Execution

Write back

Expected result:

 R0: 00000000 R1: 80000000

Glitched result:

 R0: 00000001 R1: 80000000
 19

Glitch results

Logical shift not executed

Suspects:
 Instruction Fetch

 Instruction Execution

Write back

Expected result:

 R0: 00000000 R1: 80000000

Glitched result:

 R0: 80000000 R1: 40000000

 20

Glitch results

Logical operation and Logical shift not executed

Suspects:
 Instruction Fetch

 Instruction Execution

Write back

Expected result:

 R0: 00000000 R1: 80000000

Glitched result:

 R0: 80000001 R1: 40000000
21

Glitch results

Data abort exception due to unaligned

access

Suspects:

PC register glitched

Stack corrupted

22

Glitch results

Prefetch abort exception due to non-existing

memory regions

Suspects:

PC register glitched

Stack corrupted

23

Conclusion

Edges of the chip more sensitive than the top of

the die

No unused register corruptions

Difficult to constantly have the same results with

EMFI

24

Future work

Comparison of full area scans of the package

between ALU and memory instructions

Research the impact of EMFI on jump

commands

25

Thank you

Questions?

26

