Research project
MySQL record carving

Esan Wit Leendert van Duijn
Supervisor: Kevin Jonkers

February 10, 2014

Abstract

Databases are the driving force for many applications. These
databases may contain sensitive or mission critical information. When
records are deleted remnants of data remain on the filesystem. This
project describes a method for recovering data from MySQL databases
after deletion. It discusses the use of template matching and data val-
idation to find records which may have been deleted. The proof of
concept implementation can successfully retrieve parts of the deleted
data. The methodology described can also be used on other systems
which store data in similar, structured fashion.

Contents

(1 Introduction|

2 Related workl
B_Goall

[4 Background|
4.1 MyISAM|. . . .

4.2 InnoDBl

5 Observations|
.1 MyISAM static|

(5.2 MyISAM dynamic]

(5.3 InnoDB Antelope Compact|

(.4 InnoDB Antelope Redundant|

[6_Methods|

[6.1 Template Matchingl

[6.1.1 Datatypes|

6.1.2 Caveats

[6.2.3 Example validators|

[6.3 Scanning|

[6.4 High level algorithm|

7 Proof of Concept)|

B Testsl

9 Conclusion|

IT

13
13
13
13
14
14
14
15
15
16
16
16
17

18

19
19
20
21
22

25

(10 Further research|

[A_Documentationl
[A.1 Scanner usage and configuration|
[A.1.1 Settings
A.1.2 Validatorsl
[A.2 Generic field types|
[A2.1 Nullfield.
[A.2.2 Non specific field

(B Documentation MyISAM engine|

|[C Documentation InnoDB engine]

(C.1 Row formatl
(C.1.1 Primary key|

(C.1.2 Transaction ID and Roll pointer{

(C.1.3 Redundant header and Record Directory|

(C.1.4 Compact header and variable length header|

[C.2 Scanner supported types|
|£:|2.1 Illllli!tzlgz fig:l!l:il ------

(C.2.4 Integers
c25 Bitl.

[C2.7 Float Double and Reall 43

C28 Datel 44

C29 Timel 44

(C.2.10 Timestamp| 44

C2.11 Yearl 44

C2.12 Enuml oo 44

(C.2.13 Decimal and Numericl. 44

(C.2.14 Datetimel o 44

[D Configuration examples| 44
(E2_Data used 1n tests| 46
[E.1 Deletion and header structurel 46
(.2 Simple InnoDB compact test|. 48
(.3 World dataset! oo 49
(£.3.1 MyISAM configurationl 50

[£.3.2 InnoDB configuration|. 52

IV

1 Introduction

MySQL is a popular database implementation and is commonly used in many
LAMP-based applications. Upon deletion of database record by means of a
DELETE statement the data is considered removed. MySQL databases, and
also other database systems[I], do not remove or overwrite the information
on disk. As a result parts of the data are recoverable which may not be
intended.

When searching vendor websites on how to recover deleted records devel-
opers say that this data is inaccessible or requires extensive effort to partially
restoreﬂ Although 7 years have passed, there are not many readily available
tools which attempt to extract this data. Tools that do exist suffer from
a high false positive rate[2] [3]. This research tries to find a method of data
recovery which can be used on database systems to recover the data remain-
ing after deletion, and is generic enough to be usable for different database
systems.

Forensic research into databases, and particularly record carving, is not as
developed as forensic research into file carving but many techniques are com-
patible between these fields. Most research pertaining to database systems is
focussed on using metadata or recovery using alternative sources[I} 4} [5, 6] [7].
In contrast file carving is a well established field and the file carving toolkit
is an ever-expanding one. This research intends to bring the two fields closer
by using techniques developed for carving entire files to extend methods for
carving database records. It is a continuation of research done into record
recovery on SQLite databases by [Pooters et al.[2] and applying those tech-
niques on MySQL. The proposed method extends the earlier research by us-
ing validation techniques to reduce invalid results. Data validation of carved
records is important to enable data carving of partial data, which may have
been left behind, without having to manually filter through an abundance of
false positives.

"http://forums.mysql.com/read.php?21, 135990, 137776#msg- 137776

http://forums.mysql.com/read.php?21,135990,137776#msg-137776

2 Related work

Database systems are not typically designed with any cleanup when it comes
to deleted records. Work by |Stahlberg et al.[1] shows that many database
systems are prone to leaving data behind, at least partially, upon deletion.

Some research has been done in analyzing different aspects of database
systems. [Kieseberg et al.[7] proposes a method for validating the data con-
tained in the database and proving authenticity. Frithwirt et al.[[5] focusses
on recovery of manipulation queries, UPDATE, INSERT and DELETE, from log
files. But less research is done in recovery of the deleted records.

Existing solutions proposed by [Pooters et al.[2] and [Percona LLC[3] are
based on template matching to recover data of specific databases. These
solutions, however, are targeted to very specific database systems and both
suffer from high false positive rates for simple templates.

Garfinkel[S] proposes the use of validation for carving fragmented files.
Although this technique is primarily meant for validating fragmented files the
principle can be used in template matching to reduce false positives incurred
by template matching.

3 Goal

The goal of this project is to develop a carving method for the recovery
of deleted database records that works for MySQL, version 5.6.16 which is
the currently recommended release. For this we must first investigate the
following;:

e What data remains after deletion of a record?
e What methods exist for recovering (parts of) this data?

e Can this be extended to recover from more general damagd?| or other
database systems?

e How do the differences between competing database systems relate to
record recovery?

The answers to these questions will be used to create a proof of concept
implementation to recover deleted records.

2For instance file system corruption, incorrect or missing indexes

4 Background

First, an understanding of the MySQL internals is required to decide on how
to proceed. Since MySQL is designed to allow data to be handled by different
storage engines[9, chapter 14] there is a significant difference in how data is
stored on disk. The storage engine is a module determining how queries
should be executed, data stored, indexes maintained and more. Each storage
engine can therefore employ vastly different techniques for handling data.

This project focusses on InnoDB and MyISAM. These are the two most
common storage engines used by MySQL installations. MyISAM was the
previous default storage engine and InnoDB is the new default storage en-
gine since MySQL version 5.5 As such these engines are considered most
relevant.

4.1 MyISAM

MyISAM uses an Indexed Sequential Access Method(ISAM) file overlay to
store all rows. A row holds both the record data and record header, also
called a record. All data is stored in a .MYD file. This file contains all rows in
a sequential, but possibly unsorted, order. If a record is deleted it is marked
as deleted on the position it is located. A file could then possibly look like

figure [1]

Record 1 \ Record 2 \ Record
3 \ Record 4 \ Record 5
Deleted record ‘ Record 7

Figure 1: Layout of a . MYD file

4.1.1 Row formats

MyISAM comes with two flavors for the storage. A fixed row format and a
dynamic row format. Each row format is meant to improve on either storage
requirements of data or access time of data.

Fixed row format In the fixed row format each row uses a record of
identical length to store data. Regardless of the length of actual data present
in the record. For instance strings which are stored may be padded with

3http://dev.mysql.com/doc/refman/5.5/en/innodb-default-se.html

http://dev.mysql.com/doc/refman/5.5/en/innodb-default-se.html

spaces to fill the required length. This enables the engine to efficiently read
the record from disk.

Dynamic row format The dynamic row format stores a record in as much
space as is required to hold the data. This is the default row format when
there is a column of variable length in the table, e.g. text, varchar or blob.
A text column containing a string of length n can take as little as n bytes
storage, see section for details.

4.2 InnoDB

The InnoDB engine is the new default engine used by MySQL, as opposed
to MyISAM it uses a hierarchical page based storage file.

InnoDB has two file formats Antelope and Barracuda, the latter supports
two more row types which change the storage type for TEXT and BLOB fields.

Data is stored in pages, with a maximum size of 16KB[I0] section 21.2].
These pages are organized in a B-tree index, with the so called clustered
index containing the actual records. The clustered index is stored in the ibd
file.

This research is focused on the so called leaf pages which hold the record
data including a header. Due to the limited page size some data or column
types are not stored locally but on a separate, overflow page, as opposed to
the purely sequential storage of MyISAM data files. The overflow pages are
separate from the leaf pages and are reserved for larger objects This means
that any carver should implement functionality to carve the linked storage
page. Also if the linkage data is overwritten or lost it becomes impossible to
match the data to the original record by conventional means.

In the older row formats (see larger fields are stored partially off
page, with the first 768 bytes locally stored together with a 20 byte value
to locate the remainder[9, Section 14.2.9.4]. The newer formats store only
the 20 byte value to the full field stored off page[9, Section 14.2.9.3|, saving
space in the page where the record is stored.

5 Observations

Our experiments show several properties which can be instrumental in re-
covering records after deletion.

While a DELETE statement is designed to remove a record from the
database, neither InnoDB or MyISAM overwrite deleted records in place.
The header data is updated to reflect the new state of the record which may
also overwrite data from the beginning of the record. Our experiments show
deletion is handled differently depending on the storage engine and selected
row format.

When deleting records we observed that though deleted their data re-
mained until they were overwritten by further statements. Small scale test-
ing on InnoDB suggests that on deletion all records remain partially intact
until we delete the last record at which point the software reinitialized parts
of the datafile. The same test on MyISAM revealed that even though the last
record in the datafile was deleted, it was not directly truncated and could be
partially recovered.

In order to recover a deleted record, and distinguish between intact records,
we analyzed deletion of records for several distinct row formats. The tests
were done on several records and tables, giving consistent results regardless
which specific record was deleted.

5.1 MyISAM static

Under the MyISAM Static row format parts of the data remain after deletion,
this can be observed in figurd2] where part of the data file is shown before
and after deletion. The underlined bytes in the figure are changed due to the
deletion and the eressed bytes belong to a field which is no longer complete
and thus makes a complete recovery of this data impossible.

Due to the fixed size of fields in the fixed row format deletion does not
prevent recovery of data beyond the overwritten header and fields, as both
sizes and relative offsets in a record are constant. Thus deletion prevents full
recovery of data, but does not prevent partial recovery of longer rows.

The records are color coded to show the individual fields, the schema for

this table can be found in [E.1]

0070
0080
0090
00a0
00bO0
00c0
00d0
00e0
00£0
0100
0110
0120

0070
0080
0090
00a0
00bO0
00c0
00d0
00e0
00£0
0100
0110
0120

66
52
65
Be
44
00
00
39
63
00
00
6e

38
ea
65
00
75
00
00
62
66
00
00
6b

33
57
6e
00
69
00
00
39
38
00
fd
65

66 38 33

44
00
00
39
63
00
00
6e

75
00
00
62
66
00
00
6b

69
00
00
39
38
00
fd
65

63
a3
64
18
6a
00
00
33
33
00
03
72

63

6a
00
00
33
33
00
03
72

39
00
65
4c
6e
00
00
66
33
00
00
73

39

4c
6e
00
00
66
33
00
00
73

64
00
72
65
40
00
00
33
31
00
00
00

64

65
40
00
00
33
31
00
00
00

00
00
74
65
6f
00
28
66
62
00
00
00

65
6f
00
28
66
62
00
00
00

00
00
20
Be
73
00
35
30
37
00
0d
00

00
00
76
64
33
00
62
36
65
00
4b
00

00
fd
61
65
2e
00
61
38
65
52
65
00

Original
00 00 00 00 00 00 00 00 00 0O
52 ea 57 a3 00 00 00 00 00 00 ff ff ff ff ff ff
65656646572 74207661 620447569 6a
660000 18

Be
73
00
35
30
37
00
0d
00

64
33
00
62
36
65
00
4b
00

00
02
Be
72
6e
00
61
32
36
ea
76
00

00
00
20
74
6¢C
00
36
32
38
15Y4
69
00

00
00
44
2e
00
00
31
35
66
a3
6e
11

00
00
75
76
00
00
65
30
64
00
20
6a

00
12
69
61
00
00
34
62
38
00
4a
6f

00
4c
6a
6e
00
00
63
36
00
00
6f
Be

65
2e
00
61
38
65
52
65
00

72
6e
00
61
32
36
ea
76
00

After deletion

74
6¢C
00
36
32
38
57
69
00

2e
00
00
31
35
66
a3
6e
11

76
00
00
65
30
64
00
20
6a

61
00
00
34
62
38
00
4a
6f

6e
00
00
63
36
00
00
6f
Be

|eendert van Duij|
In...Leendert.van|
|Duijn@os3.nl....|

[...... (5baabledc|
| 9b93£3£0682250Db6 |
| c£8331b7ee68£d8. |
[R.W....|

|eendert van Duij|
In...Leendert.van]|
|Duijn@os3.nl. ... |

[...... (5baabledc|
| 9b93£3£0682250b6 |
| c£8331b7ee68fd8. |
[R.W....|

Figure 2: Fragment of MyISAM data file in Fixed row format

5.2 MyISAM dynamic

Under the MyISAM Dynamic row format parts of the data remain on dele-
tion, this can be observed in figure [3| where part of the data file is shown
before and after deletion. The underlined bytes in the figure are changed
due to the deletion, the eressed bytes belong to a field which is no longer
complete and thus makes a complete recovery of this data impossible.

The records are color coded to show the individual fields, the schema for
this table can be found in [E.]]

040
050
060
070
080
090
0a0
0b0
0cO

040
050
060
070
080
090
0a0
0b0
0cO

30
00
65
Ge
69
31
35
66
08

30
00
ff

61
00
65
18
6a
65
30
64
fe

61
00
ff

30
00
Be
4c
6e
34
62
38
03

30
00
ff

34
00
64
65
40
63
36
52
00

34
00
ff

61
03
65
65
6f
39
63
ea
00

61
00

64
00
72
6e
73
62
66
57
00

64
00

66
63
74
64
33
39
38
a3
0d

66
00

38
01
20
65
2e
33
33
00
4b

38
68

33
08
76
72
Be
66
33
00
65

63
fe
61
74
6¢
33
31
00
76

Original

39
02
Be
2e
28
66
62
00
69

33 63 39

64
00
20
76
35
30
37
00
Be

52
00
44
61
62
36
65
03
20

ea
00
75
6e
61
38
65
00
4a

57
12
69
44
61
32
36
57
6f

a3
4c
6a
75
36
32
38
01
6e

64 52 ea 57 a3
ff ff ff ff ff ff ff £ff

ff

ff

ff

ff

6e
69
31
35
66
08

18
6a
65
30
64
fe

4c
Be
34
62
38
03

65
40
63
36
52
00

65
6f
39
63
ea
00

6e
73
62
66
57
00

64
33
39
38
a3
0d

65
2e
33
33
00
4b

76—61-6204475696a

72
6e
66
33
00
65

74
6¢
33
31
00
76

2e
28
66
62
00
69

After deletion

76
35
30
37
00
Be

61
62
36
65
03
20

Be
61
38
65
00
4a

44
61
32
36
57
6f

75
36
32
38
01
6e

|02042df83c9dR . W. |

|eendert van Duij|
In.Leendert.vanDu|
| ijn@os3.nl(5baab|
| 1e4c9b93£3£06822 |
| 50b6cf8331b7ee68 |
[fdBR.W........ W. |

|n.Leendert.vanDul
|ijn@os3.nl(5baab|
| 1e4c9b93£3f06822 |
| 50b6c£8331b7eeb8 |
|[fdSR.W........ W. |

Figure 3: Fragment of MyISAM data file in Dynamic row format

5.3 InnoDB Antelope Compact

Under the InnoDB Compact row format both the data and significant parts
of the header (documented in remain intact on deletion, this can be
observed in figurdd] where part of the data file is shown before and after
deletion. The underlined bytes in the figure are changed due to the deletion.

The changed fields are reserved for the Transaction ID and Roll pointer
(see are overwritten and including parts of the header so it represents
a correct state after deletion .

The records are color coded to show the individual fields, the schema for
this table can be found in [E.I

0c090
0c0al
0c0bO
0c0cO
0c0do
0c0e0
0c0f0
0c100
0c110
0c120
0c130
0c140
0c150
0c160

0c090
0c0a0l
0cOb0
0c0cO
0c0d0
0c0e0
0c0£f0
0c100
0Oc110
0c120
0c130
0c140
0c150
0c160

01
69
33
64
64
18
01
20
61
61
38
65
11
81

01
69
33
64
64

02
20
61
61
38
65
11
81

10
74
62
36
52
00
66
44
Ge
61
32
36
0od
4e

10
74
62
36
52
00
27
44
6e
61
32
36
0d
4e

45
40
31
36
ea
75
01
75
44
36
32
38
00
b9

45
40
31
36
ea
00

18

06
75
44
36
32
38
00
b9

73
6f
36
36
57
00
1d
69
75
31
35
66
00
00

73
6f
36
36
57
00
45
69
75
31
35
66
00
00

61
73
30
64
a3
00
4c
6a
69
65
30
64
00
00

61
73
30
64
a3
00
4c
6a
69
65
30
64
00
00

6e
33
39
30
00
00
65
6e
6a
34
62
38
20
01

6e
33
39
30
00
00
65
6e
6a
34
62
38
20
01

20
2e
66
61
00
02
65
4c
Ge
63
36
52
ff
66

20
2e
66
61
00
02
65
4c
6e
63
36
52
ff
66

After deletion

57
6e
66
30
00
00
6e
65
40
39
63
ea
18
01

69
6¢
66
34
00
00
64
65
6f
62
66
57
00
2a

74
38
62
61
80
00
65
6e
73
39
38
a3
00
4b

Original

b7
6e
66
30
00
00

69
6¢
66
34
00
00

74
38
62
61
80
00

45
62
66
64
28
01
72
64
33
33
33
00
00
65

45
62
66
64
28
01

73
65
63
66
18
81
74
65
2e
66
33
00
03
76

73
65
63
66
18
81

61
33
35
38
12
4e
20
72
Ge
33
31
00
00
69

61
33
35
38
12
74

Be
63
31
33
00
b9
76
74
6¢
66
62
00
00
Be

Be
63
31
33
00
54

2e
39
61
63
00
00
61
2e
35
30
37
80
00
20

2e
39
61
63

00

57
34
61
39
00
00
6e
76
62
36
65
28
01
4a

57
34
61
39
00

20

00

Be
65
40
39
63
ea
18
01

64
65
6f
62
66
57
00
2a

65
6e
73
39
38
a3
00
4b

72
64
33
33
33
00
00
65

74
65
2e
66
33
00
03
76

20
72
Be
33
31
00
00
69

76
74
6¢
66
62
00
00
6e

61
2e
35
30
37
80
00
20

6e
76
62
36
65
28
01
4a

| . .Esan WitEsan.W|
| it@os3.n18be3c94 |
|3b1609fffbfcblaal
| d666d0a04adf83c9 |

| .f..Leendert van]|
| DuijnLeendert.v|
| anDuijn@os3.nl5b|
|aa61e4c9b93£3f06 |
|82250b6cf8331b7e|
|e68fdSR.W...... ¢

| .N....f.*xKevin J|

| . .Esan WitEsan.W|
| it@os3.n18be3c94 |
|3b1609fffbfc51aal
| d666d0a04adf83c9 |

o tT. . |
| .? .ELeendert van|
| DuijnLeendert.v|
| anDui jn@os3.nl5b]|
|aa61e4c9b93£3£06 |
| 82250b6c£8331b7e|

| .N....f.*Kevin J|

Figure 4: Fragment of InnoDB data file in COMPACT row format

10

5.4 InnoDB Antelope Redundant

Under the InnoDB Redundant row format both the data and significant parts
of the header (documented in remain intact on deletion, this can be
observed in figure |5| where part of the data file is shown before and after
deletion. the underlined bytes in the figure are changed due to the deletion.

The changed fields are reserved for the Transaction ID and Roll pointer
(see are overwritten and including parts of the header so it represents
a correct state after deletion .

The records are color coded to show the individual fields, the schema for
this table can be found in [E.I

11

0c090
0c0a0l
0cOb0
0c0cO
0c0d0
0c0e0
0c0£f0
0c100
O0c110
0c120
0c130
0c140
0c150
0c160
0c170
0c180

0c090
0c0a0l
0cOb0
0c0cO
0c0d0
0c0e0
0c0£f0
0c100
0Oc110
0c120
0c130
0c140
0c150
0c160
0c170
0c180

Figure 5:

00
Be
33
39
30
00
18
00
6e
76
62
36
65
60
00
4b

00
Be
33
39
30
00
18
00

00
20
2e
66
61
00
13
01
20
61
61
38
65
5f
00
65

00
20
2e
66
61
00
13
01

00
57
6e
66
30
00
01
73
44
6e
61
32
36
5b
03
76

00
57
Be
66
30
00
00
ec

01
69
6¢c
66
34
00
6f
01
75
44
36
32
38
57
00
69

01
69
6¢c
66
34
00
00
08

81
74
38
62
61
80
00
1d
69
75
31
35
66
2f
00
Be

81
74
38
62
61
80
00
55

Be
76
62
36
65
60
00
4b

20
61
61
38
65
5f
00
65

44
Ge
61
32
36
5b
03
76

75
44
36
32
38
57
00
69

69
75
31
35
66
2f
00
Be

67
45
62
66
64
6¢
00
4c
6a
69
65
30
64
le
00
20

67
45
62
66
64
6¢
00
4c
6a
69
65
30
64
le
00
20

cb
73
65
63
66
6b
00
65
6e
6a
34
62
38
11
01
4a

cb
73
65
63
66
6b
00
65
6e
6a
34
62
38
11
01
4a

After deletion

00
61
33
35
38
67
02
65
4c
Be
63
36
52
Oa
81
6f

00
6e
63
31
33
63
00
6e
65
40
39
63
ea
04
67
6e

01
2e
39
61
63
3b
00
64
65
6f
62
66
57
00
cb
6b

Original

00
61
33
35
38
67
02
65
4c
6e
63
36
52
Oa
81
6f

00
6e
63
31
33
63
00

01
2e
39
61
63
3b
00

73
57
34
61
39
23
00
65
6e
73
39
38
a3
00
00
65

73
57
34
61
39
23
00

01
69
33
64
64
11
01
72
64
33
33
33
00
20
00
72

01
69
33
64
64
11
01

10
T4
62
36
52
Oa
81
74
65
2e
66
33
00
13
01
73

10
74
62
36
52
Oa
81

45
40
31
36
ea
04
67
20
72
6e
33
31
00
00
73
6a

45
40
31
36
ea
04
76

73
6f
36
36
Y
00
cb
76
T4
6¢
66
62
00
T4
01
6f

73
6f
36
36
57

55

61
73
30
64
a3
00
00
61
2e
35
30
37
80
00
2a
6e

61
73
30
64
a3
00

20

00

6e
65
40
39
63
ea
04
67
6e

64
65
6f
62
66
57
00
cb
6b

65
6e
73
39
38
a3
00
00
65

72
64
33
33
33
00
20
00
72

74
65
2e
66
33
00
13
01
73

20
72
Be
33
31
00
00
73
6a

76
74
6¢
66
62
00
74
01
6f

61
2e
35
30
37
80
00
2a
6e

..s..Esal
In WitEsan.Wit@os|
|3.n18be3c943b160]|
|9fffbfc51laad666d |
| 0a04adf83c9dR.W. |

|..s..Leendert val
In DuijnLeendert. |
| vanDuijn@os3.nl5]|
|baa61e4c9b93£3£0 |
|682250b6cf8331b7 |
|ee68fdSR.W. |

..8.%|
|Kevin Jonkersjon|

..s..Esal
In WitEsan.Wit@os|
|3.n18be3c943b160 |
|9fffbfcb51laad666d |
| 0a04adf83c9dR.W. |
I lkgc;#... .|

|ULeendert val
In DuijnLeendert. |
| vanDui jn@os3.n15]|
|baa61e4c9b93f3f0|
| 682250b6cf8331b7 |

..8.%|
|Kevin Jonkersjon|

Fragment of InnoDB data file in REDUNDANT row format

12

| header | field1field2.. fieldN |

Figure 6: Generic row format

’ header_field \ integer_field \ text_field \ text_field \ timestamp _field ‘

Figure 7: Example of a possible template

6 Methods

Initial analysis of data files used by the MyISAM and InnoDB engines show
that rows are stored in a similar format, see figure 6] Due to this generic
form this record may be found using template matching.

6.1 Template Matching

The proposed method uses template matching to extract sequential data
from the data files which adhere to a particular template. This template is
designed to mirror the on-disk storage structure of a record. An example of
a template is given in figure[7] As seen in the figure the template mirrors the
generic row format used by the engines in that it specifies a header followed
by data fields. If a header is not available this may be omitted in which case
the template will merely attempt to match the given fields.

6.1.1 Datatypes

A requirement of template matching is the ability to read and verify binary
data from the table. As such the template must specify the expected order
of datatypes in a record. The template matcher will parse data and attempt
to map the input to the specified datatypes. Due to the differences in storage
for datatypes between InnoDB and MyISAM a custom field parser must be
made for a each storage engine. This also means that, in our implementation,
a template created for InnoDB can not be used for MyISAM.

Since some datatypes have impossible values it is possible to eliminate
those. An example of this could be an ENUM field within the record. An ENUM
has all available options specified. As such, any value which is not one of the
expected values excludes the existence of an ENUM field on that location.

6.1.2 Caveats

One of the caveats of template matching is that it is very dependent on the
quality and complexity of the template. The more elaborate and complex the

13

template is, the fewer possible matches will exist. For instance, attempting
to match a template of structure INTEGER, INTEGER will result in many false
positives. But a template describing a structure consisting of INTEGER, ENUM,
TEXT, TIMESTAMP, TEXT will generally have fewer false positives.

Another shortcoming of template matching is the inability to match split
records. Database systems do not always store all data sequentially, large
records may be split into multiple sections to fit in the available storage.
Template matching only works if there is sequential data that matches the
template. Although split records are not included in the rest of this research it
should be noted that partial templates are allowed and may match fragments
of data contained in split records.

6.1.3 Consideration of NULL fields

The storage engine MyISAM uses the record header to determine which fields
in a record are NULL, removing them from the data area of a stored record.
While this is is of little concern when accessing live data, the deletion of a
record overwrites this crucial information as documented in section [B.1.1]
To properly carve deleted MyISAM records with NULL fields the set of
templates selected for carving should include specific templates which ac-
count for all feasible combinations of NULL fields. By not accounting for
NULL fields in a record the template matching phase can produce incorrect
output and miss records which do not fit due to missing and misaligned fields.

6.1.4 Consideration of record headers

The storage engine InnoDB uses row headers to store the sizes and presence of
fields in a record. These headers (see sections|C.1.3|and |C.1.4)) are required to
correctly parse variable size types, NULL fields and are used by the database
internally for administration.

Since our experiments show (see sections and that these headers
are only partially overwritten we can use them during carving to obtain both
the sizes and NULL indicators of each field. The header not only contains
a flag to indicate whether a record is deleted but can also be checked for
certain patterns not used in any valid record.

6.2 Validation

Template matching may find false positives when matching random or mis-
aligned data. For this reason the use of validators is proposed. A validator is
meant to exclude impossible matches and reduce the amount of improbable

14

matches. Validators may exist for both field validation and row validation.
Each validator returns a score between 0 and 1 which is used as a probability
value of the record being correct. This allows the validators to be unsure of
the validity but still allow the record to be considered valid if other validators
agree.

Even validators producing large amount of false positives can be beneficial
to use prioritize further, manual, analysis. There is an inherent trade off
between the number of false positives and false negatives which should be
taken into consideration.

6.2.1 Field validators

A field validator attempt to validate the content of field. Field validation can
be based on datatype or content. An example of a datatype validator would
be the parsing method itself. As explained in section [6.1.1] some values can
not possibly be valid for certain datatypes. Thus the template cannot match
on that location and should be ignored. This results in the algorithm moving
on to the next possible data and template combination.

Other validators that can be used are content aware validators. These
validators describe specifics of the contents of a field. For instance a validator
could be defined on a VARCHAR field which is used to store email addresses.
The validator can then simply check whether or not the content contains
valid syntax for an email address. If the content does not then we matched a
record which did not have a email address and as such is an incorrect match
of the template. Each validator returns a probability score of the field being
valid.

A field level validator can be used to limit recovery to only deleted records
by having a field validator match on the the correct flag being set in the record
header.

6.2.2 Row validators

Finally when taking a step back in granularity you reach the row validators.
Each field has successfully been matched to data and passed its individual
validators. A row validator can use the fields to validate each other, compar-
ing fields, detecting impossible Combinationf].

This final check is used to produce a score, which will determine if a
match is “valid” enough to keep. The score can be based on weighing the
probabilities given by field validators, tests which include multiple fields or
external tools to validate (parts) of the record.

4for example, last login before registration date

15

If the outcome is over a given threshold then the match is considered
valid else the match is logged or discarded. Should a record be accepted by
this test the score will be included in the output to aid in further analysis.

6.2.3 Example validators

e [s the last login date after the registration date?

e [s the username considered legal by the system using the database?
e Is an integer within the expected range?

e Is a product price above zero?

e Does the username match the users real name or email address?

e [s this the user that posted message X7

e [s the avatar for a user an image of a known filetype?

e Is an url valid?

e Are the post message and post title related in any way?

6.3 Scanning

In order to carve for the records using template matching our proof of con-
cept uses a scanner which has 2 operational modes, a thorough byte-by-byte
sliding window scanner, or a more intelligent mode which skips the data
claimed by existing validated records.

The scanner internally uses a rudimentary queue to schedule any location
to scan, this queue receives suggestions from the scanner based on its oper-
ational mode and whether a record was matched and validated after each
attempt.

6.3.1 Consideration of data of interest

Once a record is successfully matched and validated it can be used to speed
the scanning process by eliminating locations to check, or even getting an
estimate of where the next valid record is stored.

To use a record for this purpose we have determined the following meth-
ods:

e Eliminate Range(Recordpecation + 1, Recordpecation + Recordgie — 1)
offsets since they are part of the data of the this record

16

e Parse and follow the offset/pointer information in a (partially) intact
header

e Consider Recordygcation + Recordsg; e

The downside of these optimizations is that when a record is matched
incorrectly any correct records might be skipped since they would conflict
with the previously found record. In order to get the all possible matches
in a file these optimizations should be evaded, or only used to prioritize the
scanning engine.

6.4 High level algorithm
Bringing it all together yields the following algorithm:

for location € candidates do
for template € templates do
record <= parse(location, template)
if success(record) then
score <= validate(record)
if score > threshold then
results < results, (location, score, template, record)
candidates < candidates, suggestion(record.length)
end if
end if
end for
end for

In order to build a practical implementation some constraints should be
considered:

e The candidates should not accept previously scanned locations to
prevent duplicate results and infinite loops

e Carving potentially malicious data sources may require extra consider-
ation to prevent crashes or worse

e The execution may be parallelized in several places, e.g. per location
or per template

e When retaining results total memory consumption might become an
issue on larger datasets

17

7 Proof of Concept

Our implementation is written for Python 2.7, its system requirements de-
pend heavily on the configuration used and target file to carve.

e Memory, the entire file to be carved is loaded into memory

e Memory, the more matches are encountered the more memory is ac-
tively used

e CPU, Faster is generally better
e 10, the program may generate significant amounts of output

e 10, when running in debug mode a large amount of extra print state-
ments will be executed

e The program is a sequential proof of concept and should be expected
to behave as such

The code

Our implementation will be hosted on Github under the BSD 3 clause license
https://github.com/esanwit/SQLCarvel

Usage
For usage and documentation see [A.1]

18

https://github.com/esanwit/SQLCarve

8 Tests

8.1 Small scale, InnoDB Compact with deleted entries

In order to test recovery from an InnoDB table using the compact row format
a table was created several test entries, a total of 7 items were inserted and
6 of those were deleted. Running on this small set we expected some false
positives however due to the structure containing an enum field we hoped to
limit these during testing. For details on the created table see

For this test the following template was used, full configuration may be

found in [E.2

Listing 1 : Template used for InnoDB testing

structure_inno = scanner_shared.RowFormat(” Inno._Compact._SomeNULL” |
{ "null”: False, "varlen”: False
: , : ,
"name” : ”header” , "type”: inno.InnoCompactHeader},
{ ?null”: False, "varlen”: False,
"name” : 7id”, "type”: inno.Int, ”signed”:True},
{ "null”: False, "varlen”: False,
"name” : 7 TransactionID” | ”type”: inno.InnoTransactionlD },
{ "null”: False, "varlen”: False,
"name” : ” RollPointer” , "type”: inno.InnoRollPointer},
{ "null”: False, "varlen”: True
: , : ,
"name” : "name” ; "type”: inno.SmallVarchar},
{ "null”: True, "varlen”: True
: , : ,
"name” : ”last”, "type”: inno.SmallVarchar},
{ ?null”: True, ”"varlen”: True
: , : ,
"name” : ”email” , "type”: inno.SmallVarchar},
{ "null”: False, "varlen”: False
: , : ,
"name” : 7 gender” , "type”: inno.SmallEnum,
2] ” ., 9 : ” ., RED) 2 BE) P2
enum_map” : True, ”enum_mapping”: {1:"male”, 2:”female” }},
{ ?null”: False, ”varlen”: False, "name”: "other”,
"type”: inno.SmallEnum, ”enum_map” :True,
“enum_mapping” : {1:”male”, 2:”female” ;3:”Wookie” ;4:” Anon” }},
{ "null”: True, ”varlen”: False, "name”: ”birthdate”
"type”: inno.Noise, "max_len”:4, "min_len”:4}
"name” :”ignoreme” ; "type”: scanner_shared.Null},
{?null”: True, "varlen”: False, "name”: ”favedate”
"type”: inno.Noise, "max_len”:4, "min_len”:4}
"name” :”ignoreme” , "type”: scanner_shared.Null},

1)

19

[

The template shown in listing |1l matches the template as shown in table
In order to recover the fields Birthdate and Favedate, which were of type
timestamp a Noise field (see section [A.2.2)) was used.

Header Row Header

Primary key | Signed INT

Internal field | Transaction ID

Internal field | Roll Pointer

Name Varchar

Lastname Varchar (Nullable)

Email Varchar (Nullable)

Gender Enum

OtherEnum | Enum

Birthdate Timestamp, not parsed, 4 bytes

Favedate Timestamp, not parsed, 4 bytes
Table 1: Structure matched by template specified in listing

Present | Deleted | False | Total

Template | 1 6 5 12

Validated | 1 6 0 7

Expected | 1 6 0 7

Table 2: Results of template matching on a small test set.

Due to the two enum fields there were early validators which eliminated
all but 12 from the matched records. As shown in table 2 the row validation
managed to eliminate 5 matches which did not adhere to the constrains.
The row validator used checked whether the primary key was within the
range of 1 to 10000 and if the username field contained ASCII characters.
Manual inspection showed that all created and deleted records were correctly
recovered.

World dataset

In order to expose our system to a larger, more realistic dataset it was tested
against the “world” database from MySQI[] This dataset was adjusted to
create both a MyISAM and an InnoDB table. From these tables 100 records
were deleted using the normal SQL delete statement. For the structure of
the table used and the records deleted see section [E.3l

8.2

Shttps://dev.mysql.com/doc/world-setup/en/index.html

20

https://dev.mysql.com/doc/world-setup/en/index.html

8.2.1 MyISAM

To run the software on the MyISAM version of the table we used the following
template, full configuration may be found in section [E.3.1]

Listing 2 : Template used for MyISAM version World dataset

scanner_settings ["row_format” | = |
scanner_shared . RowFormat (”Not_deleted .City” , |

{ ”"name” :”ignoreme” , "type”: scanner_shared.Null},

{ 7"name”: "header”, "type”: inno.Noise,
"min_len”: 1, "max_len”:1,
"validator”: validate_isamnotdel ;, "min_validation”: 0.5},

{ 7"name”: "ID”, "type”: isam.Int, "signed”: True,
"validator”: validate_id , "min_validation”: 0.5},

{ 7"name”: "Name” , "type”: isam.CharFixed, ”char_length”: 35},

{ 7"name” : " CountryCode” , "type”: isam.CharFixed,
"char_length”: 3},

{ 7"name”: 7" District”, "type”: isam.CharFixed,
"char_length”: 20},

{ 7"name”: ”Population”, "type”: isam.Int, "signed”:True},

DR

scanner_shared . RowFormat (” Deleted .City”, |

{ ”"name” :”ignoreme” ; "type”: scanner_shared.Null},

{ ”"name”: "header”, "type”: inno.Noise,
"min_len”: 7, "max_len”:7, "validator”: validate_isamdel ,
"min_validation”: 0.5},

{ "name”: "ID”, "type”: scanner_shared.Null},

{ 7"name”: "Name” , "type”: isam.CharFixed, ”char_length”: 33},

{ 7"name”: 7 CountryCode” , "type”: isam.CharFixed,
7char_length”: 3},

{ 7"name”: 7 District”, "type”: isam.CharFixed,
"char_length”: 20},

{ 7"name”: ”"Population”, "type”: isam.Int, "signed”:True},

])7

This template is designed to recover two types of record, both deleted
and non deleted. Distinction is required because in the deleted record the
primary key field and first 2 bytes of the character field are overwritten.

In early validation a deleted record is identified by the 0 byte in its record
header, intact records are validated by a range check on the primary key. The
template so far will generate quite some false positives as any null byte can

21

be seen as a header, and any 4 byte value as an integer.

In order to reduce false positives the record level validators is composed
of several simple validations, in this test for the system to consider a match
valid all of these need to match:

e Country code, this field needs to be 3 upper case letters
e Population, this number should be between 1 and a rough billion people

e (City name, this field may not contain more than 7 spaces prior to the
last non whitespace character

Found 17150
Validated 4079
Validations Failed | 0

Tried 273295

Table 3: Results of the world dataset for MyISAM table

Test results can be seen in table The template itself matched 17150
locations. Only 4079 of those matches also validated against the valida-
tors. Manual analysis showed all records were recovered, both deleted and
intact with the correct templates. This was expected as no further update
or insert statements were executed after deletion.

These results also show that strict validation and template matching can
be used to recover data from a MyISAM database even when parts of the
data are overwritten due to deletion.

8.2.2 InnoDB

In order to run the test on an InnoDB table in compact row format we
adjusted the template to match, see for the full configuration used.

Listing 3 : Template used for InnoDB version World dataset

scanner_settings ["row_format” | = |
scanner_shared . RowFormat (” Inno_City”, |
{ "name”: "header”, "type”: inno.InnoCompactHeader},
{ 7"name”: "ID” | "type”: inno.Int, "signed”: True,
"validator”: validate_id , "min_validation”: 0.5},
{ 7"name”: ”TransactionID” | "type”: inno.InnoTransactionID },
{ "name”: ”"RollPointer”, "type”: inno.InnoRollPointer},

22

{ ”"name”: "Name” , "type”: inno.CharFixed, ”char_length”: 35},
{ 7"name” : 7 CountryCode” , "type”: inno.CharFixed,
"char_length”: 3},
{ "name”: 7" District”, "type”: inno.CharFixed,
?char_length”: 20},
{ ”"name”: ”"Population” , "type”: inno.Int, ”signed”:True},

1

With the validators set to match
e Primary key, this field needs to be the range 1 to 10000

e Country code, this field needs to be 3 upper case letters

e Population, this number should be between 1 and a rough billion people

Furthermore the fields containing the Name and District are assigned a score
based on the ratio of expected characters in the string. In essence where a
mundane name scores higher than one with unexpected whitespace or other
random characters, e.g. Score(Holland) > Score(\0a\OaHolla).

This test shows that using early validation in this template reduces the
false positives to a manageable number. It also illustrates that the use of
context aware validators can reduce the amount of recovered records even
further.

Found 9193
Validated 4142
Validations Failed | 0

Tried 507922

Table 4: Results of the world dataset for InnoDB table

As can be seen in table {4| the validation phase brings the number of
matches down to 4142. However some false positives were also encountered
as can be seen by the fact that more then 4079 entries were validated.

Analysis shows that all our deleted record were recovered and intact, this
was expected as only the delete statement was executed.

Some false negatives were encountered due to one of the validators not
scoring foreign characters correctly.

The false positives returned by the scanner were duplicate, intact records
which can possibly be explained by internal reorganization as InnoDB at-
tempts to retain efficiency. During reorganization records are copied to other

23

pages and the original page is marked as empty although the record remains
on the page[I0].

24

9 Conclusion

We set out to recover deleted data from two popular storage engines used
by MySQL doing so in a manner which can easily be adapted for other
databases. By using template matching we could recover deleted records
in the data files used by InnoDB and MyISAM, recovering all data until
overwritten by subsequent insert or update statements. Because InnoDB
does not overwrite data belonging to the fields upon deletion it is capable of
fully recovering a deleted InnoDB record. MyISAM records however are only
partially recoverable due to the deletion header which may overwrite data.

Though template matching shows it is sensitive to generating large num-
bers of false positives, more so for smaller and simpler templates, validation
on both field and row level can bring these down by introducing context
aware checks. Simple checks such as ranges for integers and textual context
for strings have already shown their effectiveness.

Because the algorithm works directly on the data files it is possible to
recover data from tables which have become corrupted and impossible to
read by the database itself. Although the corrupted record itself may be
missed by the algorithm all intact records may be extracted.

As shown by the proof of concept both supported engines share the same
codebase, diverging only in the implementation of raw storage types and
available header data. This allows for easy extension to other database sys-
tems which use a layout of record data similar to that of MySQL.

25

10 Further research

Though the proof of concept supports a large number of fields the BLOB
formats for InnoDB remain unimplemented. This would, combined with
support for split records, be a valuable addition to consider.

The generic nature of our solution should allow the extension to other
database engines or systems, though many of the storage types are engine
specific the recovery method is similar. By separating the implementation
from the carving method itself this should allow for easy integration of further
fields and structures.

There is a lot of potential for strong and complex validators, with simple
validators the number of mismatched entries was reduced by catering to
the specific context. If the context is only loosely defined some generic but
advanced validators might assign scores based on:

e Text fields containing words, sentences, text
e Username fields obeying typical naming conventions
e Multiple textual fields in a records being the same language

e Numerical fields conforming to statistical properties of known valid
records

Also it might be possible to use machine learning to create validators based
on data stored in active records. These validators can then be used to validate
data thought to belong to deleted records.

One of the most time consuming tasks when using the developed proof of
concept is the creation of templates to match the tables. A start was made
into using the FRM files created by MySQL to automate part of the process.
And although the FRM file contains the necessary information there was
insufficient time to implement a proof of concept for parsing these files.

26

References

1]

2]

3]

[4]

Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine. Threats to
privacy in the forensic analysis of database systems. In Proceedings of
the 2007 ACM SIGMOD International Conference on Management of
Data, SIGMOD 07, pages 91-102, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-686-8. doi: 10.1145/1247480.1247492. URL http:
//doi.acm.org/10.1145/1247480.1247492.

Ivo Pooters, Pascal Arends, and Steffen Moorrees. Extracting sqlite
records - carving, parsing and matching. 2011.

Percona LLC. Percona data recovery tool for innodb. http://www.
percona.com/software/mysql-innodb-data-recovery-tools.

Martin S. Olivier. On metadata context in database forensics. Digital
Investigation, 5(3-4):115 — 123, 2009. ISSN 1742-2876. doi: http://dx.
doi.org/10.1016/j.diin.2008.10.001. URL http://www.sciencedirect.
com/science/article/pii/S1742287608000972.

Peter Frithwirt, Peter Kieseberg, Sebastian Schrittwieser, Markus
Huber, and FEdgar Weippl. Innodb database forensics: En-
hanced reconstruction of data manipulation queries from redo
logs. Information Security Technical Report, 17(4):227 — 238,
2013. ISSN 1363-4127. doi: http://dx.doi.org/10.1016/j.istr.2013.02.
003. URL http://www.sciencedirect.com/science/article/pii/
S1363412713000137. Special Issue: {ARES} 2012 7th International
Conference on Availability, Reliability and Security.

Murilo Tito Pereira. Forensic analysis of the firefox 3 internet history
and recovery of deleted {SQLite} records. Digital Investigation, 5(3-
4):93 — 103, 2009. ISSN 1742-2876. doi: http://dx.doi.org/10.1016/
j.diin.2009.01.003. URL http://www.sciencedirect.com/science/
article/pii/S1742287609000048.

P. Kieseberg, S. Schrittwieser, M. Mulazzani, M. Huber, and E. Weippl.
Trees cannot lie: Using data structures for forensics purposes. In Intel-
ligence and Security Informatics Conference (EISIC), 2011 European,
pages 282-285, 2011. doi: 10.1109/EISIC.2011.18.

Simson L. Garfinkel. Carving contiguous and fragmented files with
fast object validation. Digital Investigation, 4, Supplement(0):2 — 12,
2007. TISSN 1742-2876. doi: http://dx.doi.org/10.1016/j.diin.2007.06.

27

http://doi.acm.org/10.1145/1247480.1247492
http://doi.acm.org/10.1145/1247480.1247492
http://www.percona.com/software/mysql-innodb-data-recovery-tools
http://www.percona.com/software/mysql-innodb-data-recovery-tools
http://www.sciencedirect.com/science/article/pii/S1742287608000972
http://www.sciencedirect.com/science/article/pii/S1742287608000972
http://www.sciencedirect.com/science/article/pii/S1363412713000137
http://www.sciencedirect.com/science/article/pii/S1363412713000137
http://www.sciencedirect.com/science/article/pii/S1742287609000048
http://www.sciencedirect.com/science/article/pii/S1742287609000048

[10]

[11]

017. URL http://www.sciencedirect.com/science/article/pii/
S1742287607000369.

Oracle. Mysql 5.6 reference manual. https://dev.mysql.com/doc/
refman/5.6/en/index.html, .

Oracle. Mysql 5.6 internals manual. http://dev.mysql.com/doc/
internals/en/index.html, .

IEEE Computer Society. leee standard for floating-point arithmetic.
August 2008. doi: 10.1109/IEEESTD.2008.4610935. URL http:
//ieeexplore.ieee.org/servlet/opac?punumber=4610933.

28

http://www.sciencedirect.com/science/article/pii/S1742287607000369
http://www.sciencedirect.com/science/article/pii/S1742287607000369
https://dev.mysql.com/doc/refman/5.6/en/index.html
https://dev.mysql.com/doc/refman/5.6/en/index.html
http://dev.mysql.com/doc/internals/en/index.html
http://dev.mysql.com/doc/internals/en/index.html
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

A Documentation

A.1 Scanner usage and configuration

The scanner tool is executed by running python2.7 to execute scanner.py
with a configuration file as an argument.

python2.7 scanner.py prepared_config.py

The scanner will start by reading the prepared_config.py file for all
required parameters.

The configuration files used by the Scanner tool are python code, and will
most likely use a header with these entries

Listing 4 : Common config header

import config_base

import validators

import field_inno_antelope as inno
import field_isam as isam

import scanner_shared

The configuration settings are imported from the file as the variable
scanner _settings. By importing the default configuration only the rele-
vant settings need to be adjusted.

Listing 5 : Scanner_settings

scanner_settings = config_base.base_config ()

format_a = scanner_shared.RowFormat(”Format_a”, |
"name” : ”header”, "type”: inno.InnoCompactHeader},
"name” : 7id”, "type”: inno.Int, ”signed”: True},
"name” : 7 TransactionID” | "type”: inno.InnoTransactionlD },
"name” : 7 RollPointer” , "type”: inno.InnoRollPointer},
"name” : "name” , "type”: inno.SmallVarchar ,
"varlen”: True

'

"name” : "email” , "type”: inno.SmallVarchar
"null”: True, ”"varlen”: True

}

29

1)

scanner_settings [”filename”] = ’test.ibd’
scanner_settings ["row_format” | = [format_a]
scanner_settings [”everybytemode”] = True

A.1.1 Settings

The system uses several settings to determine its behavior.
Required

filename The filename to carve from

row_format An array of row formats to use as templates
Optional

Debug Whether to print a lot of data during execution

everybytemode Whether to add 1 to the to carve offset after each attempt
or use matched record length when available

PrintRecords Whether to print the found records when done
PrintStats Whether to print success rate when done
accept_score The minimal score to fail a validated record
row_validator The function to score an entire record

initial _positions An array of offsets to initialize the processing queue used
for matching attempts

skip_positions An array of offsets to blacklist from being used for matching

attempts

A.1.2 Validators

A row level validator can be used to validate a complete row and assign it a
score.

30

Listing 6 : Row level validator

import validators

def validator (entry):

todo = {
"name” : validators.validate_ascii,
"email”: validators.validate_email_crude
}
score = 1.0
for k,v in todo.items ():
s = v(entry[k])

score *= s
return score

scanner_settings ["row_validator”] = validator
scanner_settings [”accept_score”] = lambda x: x > 0.5

Row level validators are internally passed the record object, which con-
tains all carved fields and a reference to the row format used.
A field level validator is optionally specified in the row format.

Listing 7 : Field level validator

import validators
_validate_ID = validators.make_validator_int_range (1, 10000)
def validate_id(f,n):

return _validate_ID (f)

row_format = scanner_shared.RowFormat(” Something” , |

{ 7 name” . 7 ID” ,
"type”: isam.Int ,

"signed”: True,
"validator”: wvalidate_id ,
"min_validation”: 0.5

}s
1)
Field level validators are passed the field and the field format entry, which
can optionally be used to hold extra configuration. In the example above the

31

later is ignored and a range check is used from the validators file.

A.2 Generic field types
A.2.1 Null field

The Null field type can be used for fields which have no data, these can
be found by carving with normal fields which the header indicates as being
NULL, or even manually included in a template. When included in a tem-
plate the scanner will not consume any data from the carved stream, it will
generate an entry in the output using the name.

Use cases for this field type are

e Indicate a carved record is missing data when a template is in devel-
opment

e Separate Noise fields when no other field separates them

e Give a row validator a consistent record when combining multiple row
formats, when some row formats lack fields required for final validation

This type is found in scanner_shared.

A.2.2 Non specific field

If a field type is unknown or the field data is expected to be tampered with
the Noise field type can be used.

This field type is designed to allow for matching fields which have either
a fixed length or a known range of sizes, without having to actually parse or
validate the carved data.

Implementation details require a Noise field to be succeeded by a non
Noise field, this field is used to decide when to conclude the search over all
attempted lengths. If there are no more fields a Null field can be used, see
A2l

In order to get the most out of this field type i.e. use the variable length,
the next field should have a strict field level validator. By using a fixed
size, min_len = max_len, a fixed block of data or fields can be matched or
ignored.

B Documentation MyISAM engine

The following section describes some of the internal workings of the MyISAM
engine and specifically the storage. It lists the currently supported types and

32

how they are stored and may be read.

B.1 Headers

As described in section the MyISAM engine uses a sequential file for
storing data. This file may contain either the fixed or dynamic row format.
Depending on the format used recovery may become more difficult.

B.1.1 Dynamic row format

The dynamic row format The MySQL internals documentationf| lists the
available header types. These types are important in determining the tem-
plates used for matching. After deletion of a record a 20 byte deleted header
is written from the beginning of the record and this overwrites data contained
in the first n bytes of the record. n is determined by the original header size
for the record and the size of the NULL map which follows. The header looks
like:

’ Header \ NULL map \ Field1Field2...FieldN ‘ The size of the header is be-
tween 3 and 16 bytes. But most commonly the header size will be less then 5
bytes for insert only records and between 4 and 15 bytes for updated records.
Since this record is overwritten the contents don’t really matter too much
for the template matching but it must be determined how many fields can
be omitted from the template. The fields spanning the first 3 to 17 bytes of
field data will be overwritten on deletion. As such multiple templates must
be made to match each of those possibilities. Also due to the fact that the
NULL map is overwritten on deletion (at least for the last 40 nullable fields)
this means that permutations must be made of the template to match all
possible scenarios.

Shttp://dev.mysql.com/doc/internals/en/layout-record-storage-frame.html

33

http://dev.mysql.com/doc/internals/en/layout-record-storage-frame.html

’ length \ data ‘

Figure 8: Layout of blob storage in MyISAM

B.2 Scanner supported datatypes

SQL type Scanner type | Configuration required

TINYBLOB TinyBlob See |B.2.1

BLOB Blob See |B.2.1

MEDIUMBLOB | MediumBlob | See|B.2.1

LONGBLOB LongBlob See |B.2.1

VARCHAR VarChar char_length: ..., see M

CHAR CharFixed See [B.2.2

TINYTEXT TinyText See |B.2.4

TEXT Text See |B.2.4

MEDIUMTEXT | MediumText | See|B.2.4

LONGTEXT LongText See |B.2.4

FLOAT Float See |B.2.5

DOUBLE Double See |B.2.5

REAL Real ansi: True or False, see IB_25

DECIMAL Decimal precision: ..., scale: ..., see|B.2.6

NUMERIC Numeric precision: ..., scale: ..., see|B.2.6

TINYINT TinyInt unsigned: True or False, see [B.2.7

SMALLINT Smalllnt unsigned: True or False, see|B.2.7

MEDIUMINT MediumlInt unsigned: True or False, see [B.2.7

INT Int unsigned: True or False, see|B.2.7

BIGINT Biglnt unsigned: True or False, see|B.2.7

DATETIME DateTime is_packed: True or False, see M

DATE Date See (B.2.9

TIME Time See |B.2.10,

TIMESTAMP Timestamp See |B.2.11

YEAR Year See |B.2.12

ENUM EnumField enum_mapping:[’a”,”b” . ..], see [B.2.13

SET SetField set_mapping:[’a”,”b” ..], see|B.2.14
B.2.1 Blobs

Blobs are stored in MyISAM using the format shown in figure 8l The field
header is an integer value describing the length of the following segment.
Various sizes are supported for blob storage these are shown in table

34

Type Size

TinyBlob max 255 (1 byte)

Blob max 65535 (2 bytes)
MediumBlob | max 16777215 (3 bytes)
LongBlob max 4294967295 (4 bytes)

Table 5: blob column sizes

Type Size
TinyText max 255 (1 byte)
Text max 65535 (2 bytes)

MediumText | max 16777215 (3 bytes)
LongText max 4294967295 (4 bytes)

Table 6: text column sizes

B.2.2 CharFixed

This format requires the char _length configuration item, it determines the
fixed size of the char field in the database.

B.2.3 VarChar

The varchar field requires the varchar_length option to describe the maxi-
mum length this field may hold. The varchar is stored in MyISAM the same
format as blob fields, see figure[8] The field may have either 1 or 2 bytes to
store the length depending on the varchar length value.

In the MyISAM fixed row format the storage is padded with null bytes
till varchar_length is reached.

B.2.4 Texts

This format requires the charset configuration item, this determines the
character set used for the data stored in the database. All text columns
are stored using blob storage. The main difference between blob and text
columns is the automatic character set conversion which takes place for text
columns.

The text columns come in 4 sizes mirroring the blob layout these sizes
can be found in table [6] Due to the character set conversion taking place a
text field can hold no more than (232) — 1/maz.haracter;ength characters,
where max.haracterength is the maximum length any character in the set
requires to be stored on disk.

35

’ Integer part \ Decimal part ‘

Figure 9: Layout of decimal storage in MyISAM

Number of digits | Required size
0 0
1-2 1
3-4 2
5-6 3
7-9 4

Table 7: Number of bytes used to store left over digits.
Source: [9, section 12.19.2]

B.2.5 Float, Double and Real

The float and double fields are stored using the IEEE 754 standard[I1].

The real field is an alias for either float or double depending on op-
tions set during compilation of the engine. As such this requires the ansi
configuration to determine which field type to use.

B.2.6 Decimal and Numeric

The decimal and numeric types are stored exactly the same[d, sections 11.2.2
and 12.19.2]. The parser requires the scale and precision configuration
options to read the storage correctly.

Storage is split into two parts: the integer and decimal part. Both parts
are stored sequentially, as seen in figure [9 Each part is a grouping of digits
denoting the numerical value contained in the part.

Each group contains at most 9 digits and is stored in a 4 byte integer,
contrary to other integers in MyISAM these are stored in Big Endian format.
If a part has less then 9 remaining digits the amount of bytes used for storage
is also reduced, see table [7| for required sizes.

The left most bit of the integer part is used to denote the sign of the
decimal value.

Older versions Versions before 5.0.3 stored the decimal format as a string
representation of the value.

36

Type Bytes required | Max value

TinyInt 1 255

Smalllnt 2 65535

MediumlInt | 3 16777215

Int 4 4294967295

Biglnt 8 18446744073709551615

Table 8: Sizes of integer fields in MyISAM

\ 18 bit compressed value \ DDDDD \ HHHHH \ MMMMMM \ SSSSSS \

Figure 10: Layout of the compressed datetime format

B.2.7 Integers

All integer fields have the unsigned configuration options which expresses
how the value should be interpreted.
All integers are stored in Little Endian format by the MyISAM format.
The size and max values of each of the types is shown in table [§

B.2.8 Datetime
The datetime field can be stored in two possible formats, a packed and

unpacked format.

Packed The packed format stores the data in a 5 byte integer which has
the format as shown in figure [10]

The 18 bit compressed value contains the month and year as the modulo
and division of the value with 13.

month = value % 13

year = value / 13

Unpacked The unpacked format stores the value as its numerical represen-
tation So 2014-02-09 15:30:00 would become 20140209153000. This number
is then stored in a BigInt field

B.2.9 Date

The date field is stored in 24 bit. Each part of the date is stored in a section
of these 24 bit. The binary layout is shown in figure [11]

37

YYYYYYYYYYYYYYY \ MMMM \ DDDDD ‘

Figure 11: Binary layout of a date field in MyISAM

B.2.10 Time

The time field has two possible formats. Both formats use a 24 bit integer
for storage.

Packed The first format is a packed representation. The time of 10 days, 11
hours, 12 minutes and 13 seconds would be stored using the value: 10111213.

Unpacked The second format is an unpacked representation. Here each
part of the time field is stored in part of a number. This number is created
using the following formula:

value = seconds + minutes x 60 + hours * 3600 + days * 24 x 3600

The code for reading this value could look something like:

value = read(unpacked_time)
days = value / (24 * 3600)
value %= 24 * 3600

hours = value / 3600

value %= 3600

minutes = value / 60
seconds = value % 60

B.2.11 Timestamp

A timestamp is stored in an unsigned integer field as seconds since epoch.

B.2.12 Year

A year is stored in an unsigned tinyint field as years since 1900.

B.2.13 Enum

The enum field stores the selected value as an index of the value list. This
index is stored in a TinyInt or a SmalllInt depending on the number of
possible values. The list is stored in the table description and only the index
is stored in the record.

38

Compact | Redundant | Dynamic | Compressed
Antelope || Yes Yes
Baracuda || Yes Yes Yes Yes

Figure 12: InnoDB supported row formats per file format

B.2.14 Set

A set is stored as a bitmap representation of the possible values. Each
possible function is associated with a bit position; the first value is the least
significant bit and the last value is the most significant bit. The bitmap
reserved is either 1, 2, 3, 4 or 8 bytes long depending on how many items are
in the set.

C Documentation InnoDB engine

C.1 Row format

InnoDB supports several row formats, the default being Compact.

The Compact and Redundant row formats each have a specific row header,
where the Compact header has a variable size based on the presence of certain
values in the record.

C.1.1 Primary key

If an InnoDB table does not specify its own primary key field the engine
adds a 6 byte row ID field, a unique identifier which is treated as a numerical
value.

The number is stored in Big Endian byte order.

C.1.2 Transaction ID and Roll pointer

The InnoDB system uses two special fields in each record.

Size Purpose
Transaction ID | 6 Bytes | Indicates the latest transaction writing to this row
Roll Pointer 7 Bytes | Points to an undo log record

These fields are modified by a deletion and not normally visible to a user.

39

C.1.3 Redundant header and Record Directory

The InnoDB Redundant row format uses a record directory to locate fields
in a record, it stored as an array of relative pointersﬂ The entry size for
these pointers is determined by the size of the entire record where records
of size < 127 the pointer is a single byte, larger records using a 2 byte Big
endian value.

For each possible field an entry in this directory is present, even if those
with value NULL, for which the offset is stored of fset|0x80 for a 1byte entry
or of fset|0x8000 for 2byte entries.

To determine the size of a field I can be determined by calculating
Of fsetry1 — Of fsety.

The size of this directory can be calculated:
N := The number of fields for this table
p := (length(record) < 127)71 : 2
Size in bytes := P*N
The record directory is followed by a fixed size header of 6 bytes. This
header contains accounting information and flags indicating the state of the
record.

C.1.4 Compact header and variable length header

The Compact row format has a variable length header containing a NULL
bitmap and the sizes of non-NULL fields in a record. It is stored in front of
the fixed size header and entries are stored in reverse order. While a deletion
does affect the fixed size header of a row it does not damage the variable
size header until the record is overwritten. In order to recover a record with
VARCHAR field of NULL fields this requires parsing.

The size of the variable length header is determined by the number of
NULLable fields and the number of non-NULL variable length field in the

record.
N := Number of nullable fields
M := Number of non-NULL variable length fields with 0 < MaxSize < 127
O := Number of non-NULL variable length fields with 127 < MazSize

Size in bytes := Ceiling(%) + M 4+ 2% O
This variable length header is followed by the fixed size header of 5 bytes,
containing accounting information and flags regarding record state.

in reverse order, first field last

40

C.2 Scanner supported types

The following types are supported for InnoDB Compact and Redundant, to
use them include

import field_inno_antelope as inno

This will result in the objects to become accessible under inno. for example
inno.TinyInt. All fields require a name which must be unique within one
row format. Duplicate names may crash the program or discard arbitrary
fields from the recovered record.

41

SQL type

Scanner type

Configuration required

Compact Header InnoCompactHeader | Required as first field

Redundant Header | InnoRedundantHeader | Required as first field, psize:
lor2

RowID Noise min_len: 6, max_len: 6

rollpointer InnoRollpointer

transactionid InnoTransactionID

TINYINT TinyInt signed: True or False, see

SMALLINT Smalllnt signed: True or False, see

MEDIUMINT MediumlInt %d: True or False, see

INT Int signed: True or False, see

BIGINT Bigint signed: True or False, see
E

ENUM SmallEnum or Big- | enum_map: True or False,

Enum enum_mapping:["a”,”b” ...],

see [C.2.19

CHAR CharFixed char_length: ..., see w

VARCHAR SmallVarchar or Big- See

Varchar

VARCHAR VarChar varchar_length: ..., see
23

DECIMAL Decimal precision: ..., scale: ...,

NUMERIC Numeric precision: ..., scale: ...,
see [C.2.13

DATETIME DateTime is_packed: True or False, see
C21g

DATE Date See |C.2.8

TIME Time See |C.2.9

TIMESTAMP Timestamp See |C.2.10

YEAR Year See |C.2.11

FLOAT Float See |C.2.7

DOUBLE Double See |C.2.7

REAL Real ansi: True or False, see

2.
BIT Bit En_gt71: ..., see[C.2.5
SET Set set_mapping:["a”,”b",..],

see [C.2.6

42

C.2.1 Nullable fields

If a field is marked as NULL in the InnoDB header it may be omitted from
the datafile including any length bytes for the Compact row format. Under
Redundant the length byte is used to mark the value as being NULL, where
Compact uses a dedicated bitmap in the variable length header.

C.2.2 CharFixed
This format requires the char_length configuration item, it determines the
fixed size of the char field in the database.

C.2.3 VarChar

The varchar field requires the varchar_length option to describe the maxi-
mum length this field may hold. The header for a record contains the length
of the field, in 1 or 2 bytes depending on the varchar_length value.

The VarChar type tries to determine the size of this length byte auto-
matically.

C.2.4 Integers

The tinyint smallint mediumint int bigint are stored in Big-Endian

format, using 1 2 3 4 8 Bytes respectively. This format requires the signed

configuration item. If the number is of a signed type it will be stored with

the first byte Xor 0x80.

C.2.5 Bit

The bit field is stores in a bitmap which contains up to 8 entries per byte.
The length configuration field determines the number of bit entries.

C.2.6 Set

The set field is stored as a bit field and for each set bit membership of the
set is set.
set_mapping configuration field determines the names to display.

C.2.7 Float Double and Real
See

43

C.2.8 Date

The date field is stored in a MediumInt.

C.2.9 Time

The time field is stored in a MediumInt.

C.2.10 Timestamp

The timestamp field is stored in an Int.

C.2.11 Year

The year field is stored in an TinyInt.

C.2.12 Enum
See [B:2.17

C.2.13 Decimal and Numeric

See

C.2.14 Datetime
See [B.2.8

D Configuration examples

Non validating simple InnoDB record

import config_base

import validators

import field_inno_antelope_compact as inno
import scanner_shared

scanner_settings = config_base.base_config()
def validator_a(entry):
todo = {

"name": validators.validate_ascii,
"email": validators.validate_email_crude,

44

"id": validators.validate_int4_x80,
}
sco = 0.0
for k,v in todo.items():
s = v(entry[k])
print ("Sco<%s> %s"%(k,str(s)))
sco += s
return sco

structure_inno_a = scanner_shared.RowFormat("Inno simple", [

{ "name": "header", "type": inno.InnoFixedHeader},
{ "name": "id", "type": inno.Innolnt},
{ "name": "TransactionID", "type": inno.InnoTransactionID},
{ "name": "RollPointer", "type": inno.InnoRollPointer},
{ "varlen": True, "name": "name", "type": inno.InnoSmallVarchar},
{ "null": True, "varlen": True,
"name": "email", "type": inno.InnoSmallVarchar
1,
{
"null": False, "varlen'": False,
"name": "gender", "type": inno.InnoSmallEnum,
"enum_map":True, "enum_mapping": {1:"male", 2:"female"}
1,
"name": "birthdate", "type": inno.InnoInt},
D
scanner_settings["filename"] = ’test.i’
scanner_settings["row_validator"] = validator_a
scanner_settings["accept_score"] = lambda x: x > 2.5
scanner_settings["row_format"] = [structure_inno_a]

scanner_settings["everybytemode"] = True

scanner_settings["remember_done"] = False

The configuration above will look for InnoDB rows with the following struc-
ture:

Reading from the file test.1i, looking at the file byte by byte.

It attempts to validate each possible result using validator_a and discard
any rows which fail any of the following tests:

e The name field is proper ASCII

45

e The email address could be valid

e The primary key has 0x80 as its most significant byteﬁ

E Data used in tests

E.1 Deletion and header structure

The following tables were used to test what the binary representation does
on deletion. After we created the entries in a clean table we made a full copy
of the data files, we then deleted one entry from each table and made an
other full copy of the data files.

Listing 8 : InnoDB Compact User schema

drop table if exists inno_com_user_example;
CREATE TABLE IF NOT EXISTS inno_com_user_example (
id INT UNSIGNED NOT NULL AUTOINCREMENT UNIQUE,
username VARCHAR(20) NOT NULL,
email VARCHAR(50) NOT NULL,
password VARCHAR(50) NOT NULL,
registration_date TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,
last _login TIMESTAMP,
is_admin BOOLEAN default FALSE
) ENGINE=InnoDB;

INSERT INTO inno_com_user_example (username, email, password) VALUES
(’Esan_Wit’, ’Esan.Wit@os3.nl’, SHA1(Password’)),
(’Leendert .van_Duijn’, ’'Leendert.vanDuijn@os3.nl’, SHAI('password’)),
(’Kevin_Jonkers’, ’jonkers@Qfox—it.nl’, SHAI(’1234567"));

Listing 9 : InnoDB Redundant User schema

drop table if exists inno_red_user_example;
CREATE TABLE IF NOT EXISTS inno._red_user_example (
id INT UNSIGNED NOT NULL AUTOINCREMENT UNIQUE,
username VARCHAR(20) NOT NULL,
email VARCHAR(50) NOT NULL,
password VARCHAR(50) NOT NULL,
registration_date TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,
last _login TIMESTAMP,
is_admin BOOLEAN default FALSE

8this property was encountered during early carving attempts

46

) ENGINE=InnoDB ROWFORMAT=redundant ;

INSERT INTO inno_red_user_example (username, email, password) VALUES
("Esan_Wit’, ’Esan.Wit@os3.nl’, SHA1(Password’)),
(’Leendert._van_Duijn’, ’Leendert.vanDuijn@os3.nl’, SHA1(password’)),
("Kevin_Jonkers’, ’jonkers@fox—it.nl’, SHA1(’1234567"));

Listing 10 : MyISAM Fixed User schema

drop table if exists isam_stat_user_example;
CREATE TABLE IF NOT EXISTS isam_stat_user_example (
id INT UNSIGNED NOT NULL AUTOINCREMENT UNIQUE,
username VARCHAR(20) NOT NULL,
email VARCHAR(50) NOT NULL,
password VARCHAR(50) NOT NULL,

registration_date TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,
last _login TIMESTAMP,

is_admin BOOLEAN default FALSE
) ENGINE=MYISAM ROW FORMAT=FIXED;

INSERT INTO isam _stat_user_example (username, email, password) VALUES
("Esan_Wit’, ’Esan.Wit@os3.nl’, SHA1(Password’)),
(’Leendert._van_Duijn’, ’Leendert.vanDuijn@os3.nl’, SHAl(password’)),
(’Kevin_Jonkers’, ’jonkers@Qfox—it.nl’, SHAI(’1234567"));

Listing 11 : MyISAM Dynamic User schema

drop table if exists isam_dyn_user_example;
CREATE TABLE IF NOT EXISTS isam_dyn_user_example (
id INT UNSIGNED NOT NULL AUTOINCREMENT UNIQUE,
username VARCHAR(20) NOT NULL,
email VARCHAR(50) NOT NULL,
password VARCHAR(50) NOT NULL,
registration_date TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,
last_login TIMESTAMP,
is_admin BOOLEAN default FALSE
) ENGINE=MYISAM;

INSERT INTO isam_dyn_user_example (username, email, password) VALUES
(’Esan_.Wit’, ’Esan.Wit@os3.nl’, SHA1(Password’)),
(’Leendert .van_.Duijn’, ’Leendert.vanDuijn@os3.nl’, SHA1(’password’)),
(’Kevin.Jonkers’, ’jonkers@fox—it.nl’, SHA1(’1234567"));

47

E.2 Simple InnoDB compact test

For initial testing on InnoDB compact rows the following table was used:

Listing 12 : InnoDB Compact Row Schema

CREATE TABLE IF NOT EXISTS innodb_compact2 (
id INT AUTOINCREMENT PRIMARY KEY,
username VARCHAR(100) NOT NULL,

userlastname VARCHAR(77)

email VARCHAR(100),
sex ENUM('Male’, ’Female’) NOT NULL,

tinder ENUM('Male’, ’Female’, Wookie’,’Noneofyourbusiness’) NOT NULL,
birthdate TIMESTAMP,
favedate TIMESTAMP

) ENGINE=InnoDB;

The following configuration was used to detect the simple InnoDB table as
described in Rl

Listing 13 : Configuration for InnoDB compact test

import config_base

import validators

import field_inno_antelope as inno
import scanner_shared

structure_inno = scanner_shared.RowFormat(” Inno._Compact._SomeNULL” , |
{ ?null”: False, ”varlen”: False,
"name” : ”header”, "type”: inno.InnoCompactHeader},
{ ?null”: False, ”varlen”: False,
"name” : 7id”, "type”: inno.Int, ”"signed”:True},
{ ”null”: False, ”varlen”: False,
"name” : ” TransactionID” , ”"type”: inno.InnoTransactionID },
{ "null”: False, ”varlen”: False,
"name” : ” RollPointer”, ”type”: inno.InnoRollPointer},
{ "null”: False, ”"varlen”: True,
"name” : ”name” , "type”: inno.SmallVarchar},
{ "null”: True, ”varlen”: True,
"name” : ”last”, "type”: inno.SmallVarchar},
{ "null”: True, ”varlen”: True,
"name” : ”email”, "type”: inno.SmallVarchar},
{ ?null”: False, 7varlen”: False,
"name” : ”gender” , "type”: inno.SmallEnum,
?enum_map” : True, ”enum_mapping” :

{1:”male”, 2:”female” }},

48

{ ?null”: False, 7varlen”: False,

"name” : ”other”, ”"type”: inno.SmallEnum,
?enum_map” : True, ”enum_mapping” :
{1:”male”, 2:”female” ,3:”Wookie” ,4:” Anon” }},
{ ?null”: True, ”varlen”: False,
"name” : " birthdate” ,
"type”: inno.Noise, "max_len”:4, "min_len”:4},
"name” :”ignoreme” , "type”: scanner_shared.Null},
{?null”: True, ”varlen”: False,
"name” : 7 favedate” ,
"type”: inno.Noise, ”"max_len”:4, "min _len”:4},
"name” :”ignoreme” , "type”: scanner_shared.Null},

1

val_id = validators.make_validator_int_range (1,10000)
val_name = validators.validate_ascii

def validator (entry):
return val_id (entry[”id”]) + val_-name(entry ["name”])

scanner_settings = config_base.base_config()
scanner_settings [” filename”] = ’innodb_compact2.butonedel’
scanner_settings ["row_validator”]| = validator
scanner_settings [”accept_score”] = lambda x: x > 1.5
scanner_settings ["row_format”] = [structure_inno]
scanner_settings [”everybytemode” | = True

E.3 World dataset
The world dataset table provided by MySQL has the following structure:

Listing 14 : MySQL World dataset

CREATE TABIE ‘City ¢ (

‘ID* int (11) NOT NULL AUTOINCREMENT,
‘Name‘ char (35) NOT NULL DEFAULT '’ ,
‘CountryCode ‘ char (3) NOT NULL DEFAULT '’ ,
‘District * char(20) NOT NULL DEFAULT ’’,
‘Population ¢ int (11) NOT NULL DEFAULT ’0’,
PRIMARY KEY (‘ID)

);

49

From this dataset 100 records were deleted, these records were on indices:
2338, 2156, 2996, 1666, 286, 2647, 1298, 2574, 1821, 866, 3400, 3499, 1694, 962, 3905, 176, 867, 543, 2963, 180, 623, 2891,
428, 3466, 293, 2127, 3616, 743, 2353, 1408, 3584, 3748, 1790, 2971, 3874, 1833, 440, 678, 2329, 1963, 1828, 957, 1872
664, 1118, 3801, 3096, 3117, 1621, 1497, 2343, 2463, 146, 2865, 3341, 1085, 3897, 1788, 790, 2001, 1998, 2633, 1557, 1565,
246, 3146, 600, 2663, 3225, 2396, 944, 2721, 3989, 2668, 3459, 2348, 3237, 3235, 510, 340, 3398, 3619, 476, 3960, 2671,

1117, 1610, 1210, 2167, 2200, 4, 2082, 1950, 1150, 2982, 386, 485, 931, 2456, 1016

E.3.1 MyISAM configuration

The following configuration was used for the MyISAM run on the world
dataset.

Listing 15 : Configuration for World dataset MyISAM

import config_base

import field_isam as isam

import field_inno_antelope as inno
import scanner_shared

import validators

validate_pop = validators.make_validator_int_range (1,10001000%1000)
def validate_cc(f):
if validators.validate_null (f):
return 0.0
s = f.s

if all(map(str.isupper, s)):
return 1.0
return 0.0

def validate_isamdel(f, n):
d = map(ord, f.get_raw_data())
if d[0] = 0:
return 1.0
return 0.0

def validate_isamnotdel(f, n):
return 1.0 — validate_isamdel (f, n)

_validate_ID = validators.make_validator_int_range (1, 10000)

def validate_id (f,n):
return _validate_ID (f)

50

def validate_city (f):
s = f.s
if s.rstrip().count(’.’) > 7
return 0.0
return 1.0

def validator (entry):
score = validate_cc (entry [” CountryCode”])
score += validate_city (entry [”Name” |)
score += validate_pop (entry[” Population”])
return score

scanner_settings = config_base.base_config()
scanner_settings ["row_format”] = |
scanner_shared . RowFormat (”Not_deleted _City”, |
{ "name” :”ignoreme” , "type”: scanner_shared.Null},
{ ”"name”: ”"header”, ”type”: inno.Noise,
"min_len”: 1, "max_len”:1,
"validator”: validate_isamnotdel , "min_validation”: 0.5},
{ "name”: 7ID” | 7type”: isam.Int, ”signed”: True,
"validator”: validate_id , "min_validation”: 0.5},

{ 7name”: "Name”, ”type”: isam.CharFixed, ”"char_length”: 35},

{ "name” : 7 CountryCode” , "type”: isam.CharFixed,
"char_length”: 3},

{ "name”: 7 District”, ”"type”: isam.CharFixed,
”char_length”: 20},

{ 7"name”: ”Population”, "type”: isam.Int, ”"signed”:True},

])7

scanner_shared . RowFormat (” Deleted _City”, |

{ "name” :”ignoreme” , "type”: scanner_shared.Null},
{ 7"name”: ”"header”, ”type”: inno.Noise,
"min_len”: 7, "max_len”:7,
"validator”: validate_isamdel , "min_validation”: 0.5},

"name” : 7ID”, "type”: scanner_shared.Null},

"name” : ”"Name” , "type”: isam.CharFixed, ”char_length”: 33},

e N =S

"name” : 7 CountryCode” , "type”: isam.CharFixed,
"char_length”: 3},
"name” : 7 District”, "type”: isam.CharFixed,

o1

"char_length”: 20},

{ "name”: ”Population”, ”"type”: isam.Int, ”signed”:True},
1)
]
scanner_settings [”filename”] = ’City_isam .MYD’
scanner_settings [”everybytemode” | = True
scanner_settings ["row_validator”]| = validator
scanner_settings [”"accept_score”] = lambda x: x > 2.9

E.3.2 InnoDB configuration

The following configuration was used for the InnoDB run on the world
dataset.

Listing 16 : Configuration for World dataset InnoDB

import config_base
import field_inno_antelope as inno
import scanner_shared

import validators

validate_pop = validators.make_validator_int_range (1, 10001000%1000)
def validate_cc(f):
if validators.validate_null (f):
return 0.0
s = f.s

if all(map(str.isupper, s)):
return 1.0
return 0.0

_validate_ID = validators.make_validator_int_range (1, 10000)
def validate_id(f,n):
return _validate_ID (f)

def validate_city (f):
s = f.s
if s.rstrip().count(’.’) > 7
return 0.0

52

def

def

return 1.0

plain_ascii(f):

s = f.s.rstrip ()

if len(s) < 1:
return 0.0

c = len(
filter (lambda x: x.isalnum () or x in ”".—,7, s)
)/(1.0%len(s))
return c

validator (entry):

score = validate_cc(entry [” CountryCode”])
score += plain_ascii(entry[”Name”])

score += plain_ascii(entry[” District”])
score += validate_pop (entry[” Population”])
return score

scanner_settings = config_base.base_config()
scanner_settings ["row_format”] = |
scanner_shared .RowFormat (” Inno_City”, |
{ 7"name”: ”"header”, ”type”: inno.InnoCompactHeader},

"name” : "ID” | "type”: inno.Int, "signed”: True,
"validator”: validate_id , "min_validation”: 0.5},
"name” : ” TransactionID” , ”"type”: inno.InnoTransactionID },
"name” : ” RollPointer”, "type”: inno.InnoRollPointer},

"name” : "Name” , "type”: inno.CharFixed, ”char_length”: 35},

~ - —~

"name” : ” CountryCode” , "type”: inno.CharFixed,
"char_length”: 3},
{ "name”: 7 District”, "type”: inno.CharFixed,
"char_length”: 20},
{ "name”: ”Population”, "type”: inno.Int, ”signed”:True},
1)
]
scanner_settings [”filename”] = ’'City_inno.ibd’
scanner_settings [”everybytemode” | = True
scanner_settings [”initial_positions”] = [81904]
scanner_settings ["row_validator”]| = validator

33

scanner_settings [”accept_score”] = lambda x: x > 3.5

o4

	Introduction
	Related work
	Goal
	Background
	MyISAM
	Row formats

	InnoDB

	Observations
	MyISAM static
	MyISAM dynamic
	InnoDB Antelope Compact
	InnoDB Antelope Redundant

	Methods
	Template Matching
	Datatypes
	Caveats
	Consideration of NULL fields
	Consideration of record headers

	Validation
	Field validators
	Row validators
	Example validators

	Scanning
	Consideration of data of interest

	High level algorithm

	Proof of Concept
	Tests
	Small scale, InnoDB Compact with deleted entries
	World dataset
	MyISAM
	InnoDB

	Conclusion
	Further research
	Documentation
	Scanner usage and configuration
	Settings
	Validators

	Generic field types
	Null field
	Non specific field

	Documentation MyISAM engine
	Headers
	Dynamic row format

	Scanner supported datatypes
	Blobs
	CharFixed
	VarChar
	Texts
	Float, Double and Real
	Decimal and Numeric
	Integers
	Datetime
	Date
	Time
	Timestamp
	Year
	Enum
	Set

	Documentation InnoDB engine
	Row format
	Primary key
	Transaction ID and Roll pointer
	Redundant header and Record Directory
	Compact header and variable length header

	Scanner supported types
	Nullable fields
	CharFixed
	VarChar
	Integers
	Bit
	Set
	Float Double and Real
	Date
	Time
	Timestamp
	Year
	Enum
	Decimal and Numeric
	Datetime

	Configuration examples
	Data used in tests
	Deletion and header structure
	Simple InnoDB compact test
	World dataset
	MyISAM configuration
	InnoDB configuration

