
Detecting peer-to-peer botnets

Reinier Schoof & Ralph Koning
System and Network Engineering

University of Amsterdam
mail: reinier.schoof@os3.nl, ralph.koning@os3.nl

February 4, 2007

1 Introduction

Spam, DDoS and phishing are common prob-
lems on the Internet nowadays. In the past,
attackers tended to use centralized high band-
width connections to accomplish their tasks.
Now that home users have high bandwidth in-
ternet connections, attackers have started in-
fecting and using these home computers in-
stead to for their attacks. Attacking from
distributed locations, attackers are harder to
catch or stop and often have more bandwidth
to abuse. New methods are required to detect
the forming of these widespread networks of
infected hosts, especially now that it seems at-
tackers have discovered the peer-to-peer (P2P)
technology.

1.1 Context

As part of our study System and Network En-
gineering, we did a four week research project
at SURFnet [1], the dutch internet service
provider for educational and scientific insti-
tutes.

1.2 Problem definition

Fighting botnets is often a matter of finding
their weak spot: their central point of com-

mand, or command-and-control server. This is
usually an IRC, Internet Relay Chat, network
where all compromised computers connect to,
but with the use of P2P technology, this cen-
tral point of command is nowhere to find: the
hosts connect to each other and the attacker
only has to become one of the peers to broad-
cast his commands over the network. A new
detection and fighting method is required to
prevent or stop such hazardous networks.

2 Background

To understand the meaning of this document,
one should know something about both bot-
nets and peer-to-peer networks.

2.1 Botnets

A computer waiting for its commander to give
it orders is called a bot (or sometimes a zom-
bie). A collection of these bots connected to a
network is called a botnet, but usually we talk
of a botnet when we mean a network of com-
promised computers which can be controlled
by an attacker to e.g. distribute spam mail
or start DDoS attacks. This way the origi-
nal attacker remains anonymous. These com-
puters are usually compromised by malicious

1



software, malware, like viruses or trojans and
wait for their attacker to give them commands
what to attack and when. Bots often connect
to an IRC network. On this network they
join a channel which is operated by the at-
tacker, which gives them their instructions via
the channel. Botnets can consist of thousands
or millions of hosts and are therefore able to
attack in a very distributed and powerful way.
An attack is difficult to stop because of its large
number of sources. Therefore it is essential to
prevent the forming of these networks for ex-
ample by preventing computers from getting
infected or by taking down the central com-
mand point the bots are contacting.

2.2 P2P

Differing from the classic client-server model,
on which most internet services are based,
in a P2P network the connected hosts or
peers, connect to each other, being both server
and client (ad hoc), requiring no dedicated
servers for the communication between the
peers. In P2P-networks every peer is equal,
however, some protocols use centralized servers
for search operations or define certain ’su-
perpeers’: peers with high bandwidth and/or
computing power available to perform such
tasks in order to make the network more ef-
ficient. P2P-networks these days are widely
used for file sharing and video streaming and
are responsible for most of the total internet
traffic [2].

3 P2P botnets

P2P botnets are bots that use P2P technology
to accomplish certain tasks. The most common
ways for a bot to use P2P are spreading and
control, each described below.

3.1 Spreading

Using P2P networks for spreading copies of the
bot itself is a well known way for a bot to make
use of P2P technology. The reason for this is
sharing files on a P2P network is very pop-
ular among users and the chances of a user
downloading and installing malware by mis-
take are big. Some bots rename themselves to
match popular files on the network by which
the chance finding a bot instead of a regular
file increases.

Most of the P2P bots found are of this
type, therefore some antivirus companies pre-
fix the names of these bots with P2P e.g.
P2P-Worm.Win32.SpyBot.fb. Although the
spreading factor of these bots is high, most of
them connect to IRC servers and can be de-
tected using techniques as packet inspection,
flow analysis and monitoring the activity on
the IRC server.

3.2 Control

The other kind of P2P bot uses P2P technol-
ogy to send commands to each other instead
of waiting for commands via an IRC channel.
To control the botnet, the only thing the com-
mander has to do is join the network as an-
other peer and send the commands to other
peers which pass them along. Although there
are not many bots using this technology right
now, they form a much greater threat. This
is because ideally P2P uses no central host
which can be detected and shut down disabling
the whole botnet. However there are disad-
vantages: like normal P2P protocols one must
solve problems like peer discovery and network
responsiveness. Nevertheless the huge advan-
tage of a decentralized network will increase
the popularity of the use of P2P technology
for bot writers and owners.

2



3.2.1 Closed P2P networks

Most bots use a P2P network that is dedicated
to botnet communication. This means that the
bot uses a home made, or borrowed P2P proto-
col to communicate. For example Phatbot [3]
uses code from the WASTE project to imple-
ment P2P. But other bots like nugache [4] and
SpamThru [5] have apparently integrated their
own protocol to communicate.

3.2.2 Open P2P networks

Some bots use an existing P2P network, which
is normally used for filesharing, for their com-
municating. This can be done by either trans-
ferring files or using its embedded chat system.
At the time of writing there are no known bots
of this type. However it is possible that they
will emerge because of the huge popularity of
P2P file sharing and the fact that their traffic
is completely mixed with regular P2P traffic,
which makes them much harder to detect.

4 Bot Analysis

To know how to detect P2P bots, one first
needs to understand P2P bots. A controlled
environment is set up to analyse the behavior
of some bots. In this environment bots can
safely be deployed, without running the risk
of participating in a true botnet. In our re-
search, two binaries of interesting bots that use
P2P technology, Nugache [4] and Sinit [6], were
available.

4.1 Environment

The test environment consists of four com-
puters: three machines running Microsoft
Windows XP SP2 and one machine running

FreeBSD 6.2. The FreeBSD machine functions
as a software router and connects the other
three computers. The router runs softflowd [7]
to collect netflow data and send this to a net-
flow aggregator, which in our case is the same
machine, running nfcapd [8] with nfsen [9]. All
traffic from the three machines can be analyzed
this way.

The first bot tested is Sinit, a trojan which uses
P2P technology to spread itself. When started
Sinit tries to reach other Sinit infected hosts by
sending special discovery packets to port 53 of
random IP addresses on the Internet. When
Sinit receives a discovery response packet, a
connection between Sinit and the hosts send-
ing the response is established. The two hosts
exchange lists of peers they successfully con-
nected to and Sinit will try to connect to these
hosts. Once part of the P2P network, Sinit will
spread additional trojans through the network.

The other bot tested on our environment is Nu-
gache [4], a trojan that uses P2P technology for
communication. Nugache opens TCP port 8
and has a static list of IP addresses to which it
will try to connect on TCP port 8. When con-
nected to one of the 22 initial peers, it will ex-
change the list of successfully connected peers.
When told so by the commander, it will start
DoS attacks. The communication is encrypted,
or at least obfuscated. Nugache spreads over
AIM, America Online Instant Messenger.

While the two bots were active in the con-
trolled environment, softflowd collected the
netflow data, for later analysis.

4.2 Results

Sinit started a web server on port 53 and also
listens on UDP port 53 and a random high
numbered UDP port. It started sending data
to UDP port 53 of seemingly random IP ad-

3



dresses. As Sinit was started, tcpdump ana-
lyzed all its traffic and the analysis showed it
immediately started probing IPs, without any
evidence of retrieving a list of peers from the
Internet. The binary was ran through sev-
eral sandboxes [10] [11] and as a result, the
IP addresses resulting from these runs did not
match ours. Previous analysis by LURHQ [6]
shows that assumption is true: Sinit tries to
reach peers by trying random IPs. This way,
Sinit does not require a central point for peer
list exchange. The netflow statistics in nfsen
displayed high ICMP traffic returning ICMP
3 (host unreachable). The web server embed-
ded in Sinit only serves a single file, /kx.exe,
which is the Sinit binary. Running Microsoft
Malicious Software Removal Tool showed that
Sinit had in fact infected the computer with
other malware.

We also exposed the sandboxes to Nugache and
found out that Nugache installs the list with
hosts into Windows’ registry, ironically enough
under the key \\HKCU\Software\GNU\. Alter-
ing this list made Nugache trying to reach the
new hosts, but we could not get another PC in-
fected with a version of Nugache containing the
altered list. Nugache keeps track of successful
connections in the register and how many times
each IP in the list was tried. We installed Nu-
gache on all three of our test computers and
on each of them altered the lists so that they
would try to connect to each other. This obvi-
ously resulted in more successful connections,
but the exchanged data was not readable, al-
though it showed certain patterns which might
mean that it is only obfuscated since true en-
cryption would be likely to garble the data
much more.

4.3 Other bots

Besides the bots mentioned before, we also
looked at two more bots we were not able to

retrieve, Phatbot and Spamthru.

4.3.1 Phatbot

Although we did manage to get the source code
of Phatbot, which is a fork of Agobot, we were
not able to compile it within our time frame.
We did do some research on it and it turned
out that Phatbot communicates using the tech-
nology of WASTE, an encrypted open-source
P2P network [12], where Agobot still relies on
IRC to communicate. Phatbot infected hosts
find other peers by using cache servers on the
Gnutella P2P network, which Gnutella clients
use to find near peers. Phatbot looks for clients
identified by GNUT, a Gnutella client, but on
a different port than usual. It also has a list
of processes to kill when it runs, consisting
of both antivirus software and competing mal-
ware.

4.3.2 Spamthru

SpamThru is an interesting piece of malware.
It is controlled from a single control server, but
when it is taken down, commanding a single
peer in the custom P2P network allows the at-
tacker to define a new point of command and
thus regaining control of the network. Just
like Phatbot, SpamThru tries to wipe out any
other malware but SpamThru downloads a
complete pirated version of Kaspersky which
scans the system, except SpamThru’s files, for
other viruses.

5 Detection

By analyzing bots in our controlled environ-
ment, the following characteristics were discov-
ered which make detection possible.

4



5.1 Open ports

As you can see in our bot analysis a common
requirement among P2P bots, and P2P tech-
nology in general, is that a specific port, or
range of ports, must be opened to be able to
connect to each other. This makes detection
of P2P bots easier, since they all have certain
specific ports to listen on. By monitoring data
traffic to and from these ports or by actively
scanning for them one can map infected hosts.
Of course this method comes with false pos-
itives, and especially when bots start to use
ports used by other applications you need ad-
ditional methods to rule them out.

5.2 Connection failures

Analysis of netflow data showed a high rate
of failed connections just after initialisation of
the bot. This is a common problem for a lot
of P2P networks and is caused by active fire-
walls, NAT (Network Address Translation) and
hosts where the P2P application is not running
anymore or hosts that are shut down. This
results in a lot of ICMP “destination unreach-
able” packets and TCP reset packets which can
be picked up in flow analysis. P2P file shar-
ing networks use special hosts like supernodes
or trackers to mitigate this problem, but since
this makes botnets more vulnerable, it is not
an attractive way to deploy the network. Tak-
ing out a supernode causes multiple peers to
be disconnected from the network. Traffic to
and from these special hosts is much denser
compared to regular peers and therefore makes
them easier to detect.

5.3 Peer discovery

Finding which host to connect to also seems to
be a problem. Analysis of Nugache showed it

used a static list of IP addresses to connect to
upon initialisation. This isn’t a smart way for
a bot to implement P2P and maybe one can
even call it a flaw because you can take the
IP’s in that list under surveillance and mon-
itor which hosts connect to them. Then one
can map them which can give some insights
in the network. Although this method of peer
discovery is very efficient, it’s not likely future
bots will implement this method. However this
bot nicely illustrates the problem of efficient
but cloaked peer discovery and Nugache’s ap-
proach does not seem to solve this problem.

5.4 Obfuscation

Bots running on public P2P networks are a bit
harder to detect because they use an existing
protocol and infrastructure and have the char-
acteristics of a regular user. Deep packet in-
spection may be required to distinguish this
traffic from the normal P2P traffic as long as
no encryption is used. Botnet control requires
a lot less bandwidth than file sharing but this
can of course be easily obfuscated by down-
loading random binary data.

There are also some regularity’s in the current
generation of P2P bots and even some signa-
tures for its traffic [5]. With this information
IDS, Intrusion Detection System, rules can be
set up to detect this kind of botnet activity.
This can be easilly obfuscated, but scanning
for a lot of suspicious looking data on a well
known port like Sinit does on port 53 will cer-
tainly help detecting P2P botnets.

6 Countermeasures

Fighting botnets using P2P technology is not
going to be easy. Once the creators find a
way to distribute host lists in an other way

5



then downloading them from a central point
or hardcode them, detecting suspicious traffic
between regular P2P traffic will be the only
way to find infected hosts. Apart from certain
flaws in the design of the bots we’ve discussed
in this report, there is no known way of dis-
covering them. Thorough bot analysis is then
necessary to discover flaws in the design:

6.1 Nugache

As said before, Nugache uses a list of 22 IPs
which the infected host tries to connect to.
These hosts then send an updated list of in-
fected hosts and the host connects to a certain
amount of them. The list of IPs consists always
at least of the initial 22 and only gets appended
with other infected hosts. The list in the bi-
nary, however, remains the same: after having
collected new list of peers, the hardcoded list is
not updated. By taking these 22 hosts down,
or blocking traffic to them, no new peer can
connect to the P2P network. But still, this
only stops the botnet from growing and does
not affect hosts that were already connected to
the network. Nugache listens on port 8, a nor-
mally unassigned port, so traffic on this port
can be easily monitored.

6.2 Phatbot

To discover other peers, Phatbot infected hosts
look in the Gnutella cache servers for clients
with clientid GNUT, a common Gnutella
client. Phatbot looks for particular GNUT
clients listening on other ports than usual.
With the help of the administrators of these
servers, these invalid clientids can be banned
from their servers and growth of the Phatbot
network can be stopped.

6.3 Sinit

Sinit is the only trojan we found that uses no
central point for peer discovery. Instead of re-
trieving a list of peers, Sinit just starts probing
randomly chosen IPs. This is not a very effec-
tive way, since that includes over 4 billion pos-
sible IP addresses and our analysis also showed
that its approach had only little effect. An-
other characteristic of Sinit is that it commu-
nicates with other peers on port 53, the stan-
dard DNS port, and its packets are always the
same format. Intrusion detection systems can
learn how to detect such traffic and block it,
since this does not concern ordinary DNS traf-
fic. Again, this approach only fragments the
botnet and stops it from growing.

6.4 SpamThru

SpamThru only uses P2P technology as a
backup communication protocol, to use when
the central command point is taken out. The
original central point of command is known.
Apart from taking this host down, all traffic to
this server can be monitored to map infected
hosts.

7 Conclusion

Although a truly decentralized P2P botnet can
be a huge threat, there are some problems with
the implementation. As the bots we have dis-
cussed show us, peer discovery is a common
problem and no matter how these bots try to
solve it, it opens up a possible approach for
detection: by keeping an initial list of hosts
the botnet is easier to shut down and the ran-
domly search for infected hosts, the large num-
ber of failed connections that could reveal an
infection. Also announcing hosts to a central
point like Phatbot does make the botnet more

6



exposed on hosts under a third party’s com-
mand. Also the P2P network relies on opened
ports to allow incoming connections which can
be easily detected.

As long as people can make big money out
of botnets and the activities they are used
for, botnet owners will keep trying to create
more sophisticated bots to keep a low profile.
But unless there is a good solution for earlier
mentioned problems, P2P botnets remain de-
tectable and can be fought with countermea-
sures.

References

[1] SURFnet.
http://www.surfnet.nl/.

[2] CacheLogic. The impact of p2p. CacheL-
ogic, 2006.
http://www.cachelogic.com/home/
pages/isp/p2ptoday.php.

[3] LURHQ Threat Intelligence Group. Phat-
bot p2p trojan analysis. LURHQ, 2004.
http://www.lurhq.com/phatbot.html.

[4] Robert Lemos. Bot software looks to
improve peerage. SecurityFocus, 2006.
http://www.securityfocus.com/news/
11390/.

[5] Joe Stewart. Spamthru trojan analysis.
SecureWorks, 2004.
http://www.secureworks.com/
research/threats/spamthru/.

[6] LURHQ Threat Intelligence Group. Sinit
p2p trojan analysis. LURHQ, 2004.
http://www.lurhq.com/sinit.html.

[7] SoftFlowd.
http://www.mindrot.org/projects/
softflowd/.

[8] NFDUMP.
http://nfdump.sourceforge.net/.

[9] NfSen.
http://nfsen.sourceforge.net/.

[10] Norman sandbox.
http://sandbox.norman.no/.

[11] CWSandbox.
http://www.cwsandbox.org/.

[12] WASTE.
http://waste.sourceforge.net/.

7


