RADICAL-Cybertools: Abstractions-based Tools for Large-Scale Data-Intensive Applications

Shantenu Jha,
http://radical.rutgers.edu
Outline: Part I (Lecture)

• A broad perspective on data-intensive science
 – Rich and diverse landscape of data-intensive architectures, applications and software systems
 – Need for Balanced, Interoperable and Federated CI
 • Architectures for data-intensive applications
 • HPC vs Grids vs Clouds?

• A Tale of Two Data Intensive Paradigms
 – BigData Ogres (mini-app, macro/micro patterns, skeleton)
 • Variations of “task level” parallelism and variants, Kmeans
 – HPC vs Hadoop/Apache Big Data stack (ABDS)
 • Convergence? Consilience between HPC and Apache/Hadoop?

• Introduction to RADICAL-Cybertools
 – Abstractions-based tools for interoperable extensible “task-level parallelism”
Outline: Part II (Hands On)

- RADICAL Cybertools:
 - RADICAL-SAGA Interoperability Layer
 - Basics
 - Tutorial
 - Side detour: SAGA-Hadoop
 - RADICAL-Pilot
 - Basics
 - Tutorial
 - Kmeans redux
 - Multiple Kmeans concurrently
 - Trade-off: number vs size
 - Kmeans Map Reduce
Exponential Growth of High-end Computing

HW: Think about the implications of this graph.
Compute & Data: Two sides of the same coin
An Interesting Observation

HW: Think about the implications of this graph.
Data-intensive Sciences

High Energy Physics:
- LHC at CERN produces petabytes of data per day.
- Data is processed and distributed across Tier 1 and 2 sites.

Astronomy:
- Sloan Digital Sky Survey (80 TB over 7 years).
- LSST will produce 40 TB per day (for 10 years).

Geonomics:
- Data volume increasing with every new generation of sequence machine. A machine can produce TB/day.
- Costs for Sequencing are decreasing.
WLCG: Worldwide LHC Computing Grid
The First “Small” BigData Problem

- Today >140 sites
- ~250,000 CPU cores
- ~1 Exabyte disk
ATLAS Project: Setting the Scale

- ATLAS – one of the LHC experiments responsible for discovery of Higgs
 - Relies heavily on DCI for all computing needs
- PANDA: WMS for ATLAS. 1.2 Exabytes processed in 2013!!
- Current scale:
 - 25M jobs completed every month at > O(100) sites
 - ~O(10^9) CPU hours a year!
- Scale and complexity of computing will increase by factor of O(10)
- Example of Big Data before it was “Big”!
- Using RADICAL Cybertools (SAGA) to manage access to supercomputers
Data Lifecycle and Challenges

Heterogeneous data sources → Application-generated Data

Application-generated Data

Resource Requirements

Write I/O Bound
Scale-out for high data rates

Read I/O Bound
Scale-out for higher aggregate I/O

Compute/Memory Bound
Scale-out for higher aggregate I/O

Storage/Compute

Ingest → Preparation/Exploration → Advanced Analytics

Write I/O Bound
Read I/O Bound
Compute/Memory Bound

Application, Model, Insight

Ingest

Preparation/Exploration

Advanced Analytics

Resource Requirements

Write I/O Bound
Read I/O Bound
Compute/Memory Bound

Scale-out for high data rates
Scale-out for higher aggregate I/O
Scale-out for higher aggregate I/O

Resource Requirements

Write I/O Bound
Read I/O Bound
Compute/Memory Bound

Scale-out for high data rates
Scale-out for higher aggregate I/O
Scale-out for higher aggregate I/O

Resource Requirements

Write I/O Bound
Read I/O Bound
Compute/Memory Bound

Scale-out for high data rates
Scale-out for higher aggregate I/O
Scale-out for higher aggregate I/O

Application, Model, Insight
Diversity of Data-Intensive Applications [courtesy GCF]

- **51 Detailed Use Cases: Contributed July-September 2013**
 Covers goals, data features such as 3 V’s, software, hardware

 - **Government Operation(4):** National Archives and Records Administration, Census Bureau

 - **Commercial(8):** Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web Search, Digital Materials, Cargo shipping (as in UPS)

 - **Defense(3):** Sensors, Image surveillance, Situation Assessment

 - **Healthcare and Life Sciences(10):** Medical records, Graph and Probabilistic analysis, Pathology, Bioimaging, Genomics, Epidemiology, People Activity models, Biodiversity

 - **Deep Learning and Social Media(6):** Driving Car, Geolocate images/cameras, Twitter, Crowd Sourcing, Network Science, NIST benchmark datasets

 - **The Ecosystem for Research(4):** Metadata, Collaboration, Language Translation, Light source experiments

 - **Astronomy and Physics(5):** Sky Surveys including comparison to simulation, Large Hadron Collider at CERN, Belle Accelerator II in Japan
Towards Balanced, Interoperable, Federated DCI

• What is Federation?
 – Federation is the collective and concurrent utilization of DCI
 • Integration and interoperability are necessary conditions

• Why Federate DCI?
 – Effective application-resource mapping
 • Application characteristics and sophistication increase
 – Application scalability
 • Peak (time) and steady-state demand, heterogeneous workload
 – Resource utilization efficiency
 • Exploit diversity, yet preserve specificity

• How to Federate?
 – Three Architectures:
 • “Grid” vs “Cloud” vs “Hybrid”
 – Types and levels of Federation
A Tale of Two Data-Intensive Paradigms: Architectures, Applications and Abstractions

Collaboration with Geoffrey Fox
http://arxiv.org/abs/1403.1528
Data-Intensive Application Pattern (or Structure)

• Capture “essence of these use cases”. Classify applications into patterns, “small” kernels, mini-apps
 – Focus on cases with detailed analytics
 – Use for benchmarks of computers and software

• In parallel computing, this is well established
 – Linpack for measuring performance to rank machines in Top500
 – NAS Parallel Benchmarks (originally a pencil and paper specification to allow optimal implementations; then MPI library)
 – Other specialized Benchmark sets keep changing and used to guide procurements
 • Last 2 NSF hardware solicitations had NO preset benchmarks – perhaps as no agreement on key applications for clouds and data intensive applications
 – Berkeley dwarfs capture different structures that any approach to parallel computing must address
 – Templates used to capture parallel computing patterns
HPC Benchmark Classics

• **Linpack** or HPL: Parallel LU factorization for solution of linear equations

• **NPB** version 1: Mainly classic HPC solver kernels
 – MG: Multigrid
 – CG: Conjugate Gradient
 – FT: Fast Fourier Transform
 – IS: Integer sort
 – EP: Embarrassingly Parallel
 – BT: Block Tridiagonal
 – SP: Scalar Pentadiagonal
 – LU: Lower-Upper symmetric Gauss Seidel
7 Original Berkeley Dwarfs (Colella)

1. Structured Grids (including locally structured grids, e.g. Adaptive Mesh Refinement)
2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particles
7. Monte Carlo

Note “vaguer” than NPB
13 Berkeley Dwarfs

- Dense Linear Algebra
- Sparse Linear Algebra
- Spectral Methods
- N-Body Methods
- Structured Grids
- Unstructured Grids
- MapReduce
- Combinational Logic
- Graph Traversal
- Dynamic Programming
- Backtrack and Branch-and-Bound
- Graphical Models
- Finite State Machines

First 6 of these correspond to Colella’s original.

Monte Carlo dropped

N-body methods are a subset of Particle

Note a little inconsistent in that MapReduce is a programming model and spectral method is a numerical method

Need multiple facets!
<table>
<thead>
<tr>
<th>Application example</th>
<th>execution unit</th>
<th>Communication (data exchange)</th>
<th>Coordination</th>
<th>Execution environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montage</td>
<td>Multiple sequential and parallel executables</td>
<td>Files</td>
<td>Dataflow (DAG)</td>
<td>Dynamic process creation, workflow execution, file transfer</td>
</tr>
<tr>
<td>NEKTAR</td>
<td>Multiple concurrent instances of single executable</td>
<td>Messages</td>
<td>SPMD</td>
<td>MPI, coscheduling</td>
</tr>
<tr>
<td>Coupled fusion simulation</td>
<td>Multiple concurrent parallel executables</td>
<td>Stream-based</td>
<td>Dataflow</td>
<td>Coscheduling, data streaming, async. data I/O</td>
</tr>
<tr>
<td>Asynchronous replica-exchange</td>
<td>Multiple sequential and/or parallel executables</td>
<td>Pub/sub</td>
<td>Dataflow and events</td>
<td>Decoupled coordination and messaging, dynamic task generation</td>
</tr>
<tr>
<td>ClimatePrediction.net (generation)</td>
<td>Multiple sequential executables, distributed data stores</td>
<td>Files and messages</td>
<td>Master/worker, events</td>
<td>At-Home (BOINC)</td>
</tr>
<tr>
<td>ClimatePrediction.net (analysis)</td>
<td>A sequential executable, multiple sequential or parallel executables</td>
<td>Files and messages</td>
<td>Dataflow (Forest)</td>
<td>Dynamic process creation, workflow execution</td>
</tr>
<tr>
<td>SCOOP</td>
<td>Multiple different parallel executables</td>
<td>Files and messages</td>
<td>Dataflow</td>
<td>Preemptive scheduling, reservations</td>
</tr>
</tbody>
</table>
Table IV. Applications and their pattern usage. A ‘-’ indicates that no pattern can be identified, not that the application does not have any communication, coordination, or deployment.

<table>
<thead>
<tr>
<th>Application example</th>
<th>Coordination</th>
<th>Deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montage</td>
<td>Task farm, data processing pipeline</td>
<td>-</td>
</tr>
<tr>
<td>NEKTAR</td>
<td>-</td>
<td>Co-allocation</td>
</tr>
<tr>
<td>Coupled fusion simulation</td>
<td>Stream</td>
<td>Co-allocation</td>
</tr>
<tr>
<td>Async RE</td>
<td>Pub/sub</td>
<td>Replication</td>
</tr>
<tr>
<td>ClimatePrediction (generation)</td>
<td>Master/worker, AtHome</td>
<td>Consensus</td>
</tr>
<tr>
<td>ClimatePrediction (analysis)</td>
<td>MapReduce</td>
<td>-</td>
</tr>
<tr>
<td>SCOOP</td>
<td>Master/worker, data processing pipeline</td>
<td>-</td>
</tr>
</tbody>
</table>
Table V. Tools and libraries that support patterns identified in Sections 3.1 and 3.2.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Tools that support the pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master/Worker–Task farm</td>
<td>Aneka, Nimrod, Condor, Symphony, SGE, HPCS</td>
</tr>
<tr>
<td>Master/Worker–BagOfTasks</td>
<td>Comet-G, TaskSpace, Condor, TSpaces</td>
</tr>
<tr>
<td>All-Pairs</td>
<td>All-Pairs</td>
</tr>
<tr>
<td>Data processing pipeline</td>
<td>Pegasus/DAGMan</td>
</tr>
<tr>
<td>MapReduce</td>
<td>Hadoop, Twister, Pydoop</td>
</tr>
<tr>
<td>AtHome</td>
<td>BOINC</td>
</tr>
<tr>
<td>Pub-Sub</td>
<td>Flaps, Meteor, Narada, Gryphon, Sienna</td>
</tr>
<tr>
<td>Stream</td>
<td>DART, DataTurbine</td>
</tr>
<tr>
<td>Replication</td>
<td>Giggle, Storm, BitDew, BOINC</td>
</tr>
<tr>
<td>Co-allocation</td>
<td>HARC, GUR</td>
</tr>
<tr>
<td>Consensus</td>
<td>BOINC, Chubby, ZooKeeper</td>
</tr>
<tr>
<td>Brokers</td>
<td>GridBus, Condor matchmaker</td>
</tr>
</tbody>
</table>
Comparison of Data Analytics with Simulation -- I

- **Pleasingly parallel** often important in both
- Both are often **SPMD** and **BSP**
- **Non-iterative MapReduce** is major big data paradigm
 - not a common simulation paradigm except where “Reduce” summarizes pleasingly parallel execution
- Big Data often has **large collective communication**
 - Classic simulation has a lot of smallish point-to-point messages
- Simulation dominantly **sparse** (nearest neighbor) data structures
 - “Bag of words (users, rankings, images..)” algorithms are sparse, as is PageRank
 - Important data analytics involves full matrix algorithms
Comparison of Data Analytics with Simulation - II

- There are similarities between some **graph problems and particle simulations** with a **strange cutoff force**.
 - Both **Map-Communication**

- Note many big data problems are **“long range force”** as all points are linked.
 - Easiest to parallelize. Often full matrix algorithms
 - e.g. in DNA sequence studies, distance $\delta(i, j)$ defined by BLAST, Smith-Waterman, etc., between all sequences i, j.
 - Opportunity for “fast multipole” ideas in big data.

- In image-based **deep learning**, neural network weights are block sparse (corresponding to links to pixel blocks) but can be formulated as full matrix operations on GPUs and MPI in blocks.

- In HPC benchmarking, Linpack being challenged by a new sparse conjugate gradient benchmark HPCG, while we use **non-sparse conjugate gradient solvers** in clustering and Multi-dimensional scaling.
Big Data Ogres and Their “Facets”

- The first Ogre Facet captures different problem “architecture”. Such as (i) **Pleasingly Parallel** – as in Blast, Protein docking, imagery (ii) **Local Machine Learning** – ML or filtering pleasingly parallel as in bio-imagery, radar (iii) **Global Machine Learning** seen in LDA, Clustering etc. with parallel ML over nodes of system (iv) **Fusion**: Knowledge discovery often involves fusion of multiple methods. (v) **Workflow**

- The second Ogre Facet captures source of data (i) **SQL**, (ii) **NOSQL** based, (iii) Other Enterprise data systems (10 examples at NIST) (iv) **Set of Files** (as managed in iRODS), (v) **Internet of Things**, (vi) **Streaming** and (vii) **HPC simulations**.

- Before data gets to compute system, there is often an initial data gathering phase which is characterized by a block size and timing. Block size varies from month (Remote Sensing, Seismic) to day (genomic) to seconds (Real time control, streaming)

- There are storage/compute system styles: Dedicated, Permanent, Transient

- Other characteristics are need for permanent auxiliary/comparison datasets and these could be interdisciplinary implying nontrivial data movement/replication
Detailed Structure of Ogres

• **The third Ogre Facet is distinctive system features** such as (i) *Agents*, as in epidemiology (swarm approaches) and (ii) *GIS* (Geographical Information Systems).

• **The fourth Ogre Facet captures Style of Big Data applications.** (i) Are data points in **metric or non-metric spaces** (ii) **Maximum Likelihood**, (iii) χ^2 minimizations, and (iv) **Expectation Maximization** (often Steepest descent)

• **The fifth Facet is Ogres themselves classifying core analytics kernels** (i) Recommender Systems (*Collaborative Filtering*) (ii) **SVM** and Linear Classifiers (Bayes, Random Forests), (iii) **Outlier Detection** (*iORCA*) (iv) **Clustering** (many methods), (v) **PageRank**, (vi) **LDA** (Latent Dirichlet Allocation), (vii) **PLSI** (Probabilistic Latent Semantic Indexing), (viii) **SVD** (Singular Value Decomposition), (ix) **MDS** (Multidimensional Scaling), (x) **Graph Algorithms** (seen in neural nets, search of RDF Triple stores), (xi) Learning Neural Networks (**Deep Learning**), and (xii) **Global Optimization** (Variational Bayes).

• Flops per byte and Communication Interconnect requirements characterize fifth facet
“Many Tasks” Pathway to Extreme Scale

• Problems in computational science naturally amenable to “task level” parallelism model of computing:
 – “Embarrassingly Parallel” data-intensive applications
 – Many free energy calculations, enhanced sampling problems.
 – Many multi-physics simulations are also multi components.

• Single “application” might be broken into many smaller simulations

• This is not just HTC or HPC, but complex application objectives
 • Isn’t about just peak perf, nor maximal throughput
 • Given access to X cores/nodes – slice/dice or distribute as needed
From Many Tasks to Complex Applications

- Starting from uncoupled heterogeneous simulations, varying levels of coordination and dependency can be gradually added and “tuned”
 - Homogeneous/Heterogeneous
 - Complexity of simulation-resources mapping
 - Coupling between simulations
 - Different coordination mechanism
 - Dependencies
 - Constraints, scheduling, data transfer

- Depending upon the above properties, the importance and feasibility of distribution varies
Scalable Online Comparative Genomics of Mononucleosomes.

The Case for an Integrating Apache/Hadoop Big Data Stack with HPC
Data Analytics Libraries:

<table>
<thead>
<tr>
<th>Machine Learning</th>
<th>Statistics, Bioinformatics</th>
<th>Imagery</th>
<th>Linear Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahout, MLib, MLbase</td>
<td>R, Bioconductor (NA)</td>
<td>ImageJ (NA)</td>
<td>Scalapack, PetSc (NA)</td>
</tr>
</tbody>
</table>

High Level (Integrated) Systems for Data Processing

<table>
<thead>
<tr>
<th>Hive (SQL on Hadoop)</th>
<th>HCatalog Interfaces</th>
<th>Pig (Procedural Language)</th>
<th>Shark (SQL on Spark, NA)</th>
<th>MRQL (SQL on Hadoop, Hama, Spark)</th>
<th>Impala (NA)</th>
<th>Cloudera</th>
<th>Swazall (Log Files Google NA)</th>
</tr>
</thead>
</table>

Parallel horizontally scalable Data Processing

<table>
<thead>
<tr>
<th>Hadoop (MapReduce)</th>
<th>Spark (Iterative MR)</th>
<th>Tez (DAG)</th>
<th>Hama (BSP)</th>
<th>Storm</th>
<th>S4 Yahoo</th>
<th>Samza LinkedIn</th>
<th>Giraph</th>
<th>Pregel</th>
<th>Pegasus on Hadoop (NA)</th>
</tr>
</thead>
</table>

ABDS Inter-process Communication

- Hadoop, Spark Communications & Reductions
- Harp Collectives (NA)

HPC Inter-process Communication

- MPI (NA)

In memory distributed databases/caches:

- GORA (general object from NoSQL), Memcached (NA), Redis (NA) (key value), Hazelcast (NA), Ehcache (NA);

ORM Object Relational Mapping:

- Hibernate (NA), OpenJPA and JDBC Standard

Extraction Tools

<table>
<thead>
<tr>
<th>UIMA (Entities) (Watson)</th>
<th>Tika (Content)</th>
<th>MySQL (NA)</th>
<th>Phoenix (SQL on HBase)</th>
</tr>
</thead>
</table>

SQL

<table>
<thead>
<tr>
<th>SciDB (NA) Arrays, R, Python</th>
<th>HBase (Data on HDFS)</th>
<th>Accumulo (Data on HDFS)</th>
<th>Cassandra (DHT)</th>
</tr>
</thead>
</table>

NoSQL: Column

<table>
<thead>
<tr>
<th>Solandra (Solr+ Cassandra) +Document</th>
</tr>
</thead>
</table>

NoSQL: Document

<table>
<thead>
<tr>
<th>MongoDB (NA)</th>
<th>CouchDB</th>
<th>Lucene Solr</th>
</tr>
</thead>
</table>

NoSQL: Key Value (all NA)

<table>
<thead>
<tr>
<th>Berkeley DB</th>
<th>Azure Table</th>
<th>Dynamo Amazon</th>
<th>Riak ~Dynamo</th>
<th>Voldemort ~Dynamo</th>
</tr>
</thead>
</table>
Enhanced Apache/Hadoop Big Data Stack (ABDS)

- ~120 Capabilities
- >40 Apache
- Green layers have strong HPC Integration opportunities

Goal
- Functionality of ABDS
- Performance of HPC
<table>
<thead>
<tr>
<th>Extraction Tools</th>
<th>SQL</th>
<th>SciDB</th>
<th>NoSQL: Column</th>
<th>NoSQL: Document</th>
<th>NoSQL: Key Value (all NA)</th>
<th>NoSQL: General Graph</th>
<th>NoSQL: TripleStore</th>
<th>RDF</th>
<th>SparkQL</th>
<th>File Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIMA (Entities)</td>
<td>MySQL (NA)</td>
<td>Phoenix (SQL on HBase)</td>
<td>HBase (Data on HDFS)</td>
<td>MongoDB (NA)</td>
<td>Berkeley DB</td>
<td>Neo4J Java Gnu (NA)</td>
<td>Jena</td>
<td>Sesame (NA)</td>
<td>AllegroGraph Commercial</td>
<td>iRODS(NA)</td>
</tr>
<tr>
<td>Tika (Content)</td>
<td>Tika (Content)</td>
<td>SciDB (NA) Arrays, R, Python</td>
<td>Accumulo (Data on HDFS)</td>
<td>CouchDB</td>
<td>Azure Table</td>
<td>Yarcdata Commercial (NA)</td>
<td>Sesame</td>
<td>AllegroGraph Commercial</td>
<td>RYA RDF on Accumulo</td>
<td>FUSE(NA)</td>
</tr>
<tr>
<td></td>
<td>MySQL (NA)</td>
<td>SciDB (NA) Arrays, R, Python</td>
<td>Cassandra (DHT)</td>
<td>Lucene Solr</td>
<td>Dynamo Amazon</td>
<td>Yarcdata Commercial (NA)</td>
<td>AllegroGraph Commercial</td>
<td>RYA RDF on Accumulo</td>
<td>RYA RDF on Accumulo</td>
<td>POSIX Interface</td>
</tr>
<tr>
<td></td>
<td>MySQL (NA)</td>
<td>SciDB (NA) Arrays, R, Python</td>
<td>Cassandra (DHT)</td>
<td>Solandra (Solr+ Cassandra) + Document</td>
<td>Voldemort ~Dynamo</td>
<td>Yarcdata Commercial (NA)</td>
<td>AllegroGraph Commercial</td>
<td>RYA RDF on Accumulo</td>
<td>RYA RDF on Accumulo</td>
<td>Gluster, Lustre, GPFS, GFFS</td>
</tr>
</tbody>
</table>

ABDS Cluster Resource Management

- Mesos, Yarn, Helix

HPC Cluster Resource Management

- Condor, Moab, Torque (NA)

ABDS File Systems

- HDFS, Swift, Ceph
- Object Stores, POSIX Interface

HPC File Systems (NA)

- Gluster, Lustre, GPFS, GFFS
- Distributed, Parallel, Federated

Interoperability Layer

- Whirr / JClouds
- DevOps/Cloud Deployment
- Puppet/Chef/Boto/CloudMesh (NA)

Open Source

- OpenStack, OpenNebula, Eucalyptus, CloudStack, vCloud

Commercial Clouds

- Amazon, Azure, Google

Bare Metal

RUTGERS

Apache Big Data Stack (ABDS) with HPC Integration/Enhancement
Bringing High Performance to Data Analytics

• On the systems side, we have two principles
 – The Apache Big Data Stack with ~120 projects has important broad functionality with a vital large support organization
 – HPC including MPI has striking success in delivering high performance with however a fragile sustainability model

• There are key systems abstractions which are levels in HPC-ABDS software stack where careful integration needed
 – Resource management
 – Resource Fabric: Storage and Compute
 – Programming model -- horizontal scaling parallelism
 – Collective and Point to Point communication
 – Support of iteration
<table>
<thead>
<tr>
<th>HPBDS: High Performance Big Data Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications (Big Data Ogres)</td>
</tr>
<tr>
<td>Orchestration (High-level Workflow Mechanisms: Oozie, Pig)</td>
</tr>
<tr>
<td>Analytics Libraries (ScALAPACK, PetSc, Mahout, R, MLBase)</td>
</tr>
<tr>
<td>MPI Frameworks (Blas)</td>
</tr>
<tr>
<td>Declarative Languages (Swift)</td>
</tr>
<tr>
<td>SQL-Engines (Impala, Hive, Shark, Phoenix)</td>
</tr>
<tr>
<td>Data processing (HBase)</td>
</tr>
<tr>
<td>In-Memory (Spark)</td>
</tr>
<tr>
<td>Twister MapReduce</td>
</tr>
<tr>
<td>MPI, RDMA, Hadoop Shuffle/Reduction, HBASE, SQL, HARP Collectives</td>
</tr>
<tr>
<td>Higher-Level Workload Management (TEZ, LLama)</td>
</tr>
<tr>
<td>Workload Management (Pilots, Condor)</td>
</tr>
<tr>
<td>Framework specific Scheduler (e.g. Spark, MR, Twister)</td>
</tr>
<tr>
<td>Data Access (Virtual Filesystem, GridFTP, SRM, SSH)</td>
</tr>
<tr>
<td>Cluster Resource Manager (YARN, Mesos, SLURM, Torque, SGE)</td>
</tr>
<tr>
<td>Compute, Storage and Data Resources (Nodes, Lustre, Cores, HDFS)</td>
</tr>
</tbody>
</table>
Integrating Hadoop/Yarn with HPC

![Diagram]

- **Map Reduce**
- **Other YARN App**
- **YARN**
- **HPC Scheduler (Slurm, Torque, SGE)**

YARN on HPC

- **HPC Apps**
- **MPI**
- **Pilots**
- **YARN**

HPC on YARN

- Application-level Scheduling
- System-level Scheduling
4 Forms of MapReduce

<table>
<thead>
<tr>
<th>(a) Map Only</th>
<th>(b) Classic MapReduce</th>
<th>(c) Iterative MapReduce</th>
<th>(d) Loosely Synchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Map Only
- Input
- map
- Output

(b) Classic MapReduce
- Input
- map
- reduce

(c) Iterative MapReduce
- Input
- map
- reduce
- Iterations

<table>
<thead>
<tr>
<th>BLAST Analysis</th>
<th>High Energy Physics</th>
<th>Expectation maximization</th>
<th>Classic MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametric sweep</td>
<td>(HEP) Histograms</td>
<td>Clustering e.g. Kmeans</td>
<td>PDE Solvers and</td>
</tr>
<tr>
<td>Pleasingly Parallel</td>
<td>Distributed search</td>
<td>Linear Algebra, Page Rank</td>
<td>particle dynamics</td>
</tr>
</tbody>
</table>

Domain of MapReduce and Iterative Extensions

- Science Clouds
- MPI
- Giraph

MPI is Map followed by Point to Point or Collective Communication – as in style c) plus d) [slide courtesy Geoffrey Fox]
Increasing Communication

Mahout and Hadoop MR – Slow due to MapReduce
Python slow as Scripting; MPI fastest
Spark Iterative MapReduce, non optimal communication
Harp Hadoop plug in with ~MPI collectives
RADICAL-Cybertools: Usage, Usage Modes and Applications

http://radical-cybertools.github.io/
Pilot Abstractions

Working definition: A system that generalizes a placeholder job to provide multi-level scheduling to allow application-level control over the system scheduler via a scheduling overlay.
Introduction to Pilot-Abstraction (2)

• Working definitions:
 – A system that generalizes a placeholder job to provide multi-level scheduling to allow application-level control over the system scheduler via a scheduling overlay
 – “.. defined as an abstraction that generalizes the reoccurring concept of utilizing a placeholder job as a container for a set of compute tasks; an instance of that placeholder job is referred to as Pilot-Job or pilot.”

• Advantages of Pilot-Abstractions:
 – The Perfect Pilot: Decouples workload from resource management
 – Flexible Resource Management
 • Enables the fine-grained (ie “slicing and dicing”) of resources
 • Tighter temporal control and other advantages of application-level Scheduling (avoid limitations of system-level only scheduling)
 – Move control, extensibility and flexibility “upwards”
 • Build higher-level capabilities without explicit resource management
Landscape of Pilot-Job Systems

• There are many PJS offerings, often semantically distinct
 – PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob…
 • Why do you think there has been a proliferation of PJs?

• Conceptual & practical barriers to extensibility (& interoperability)
 – The landscape of PJS reflects, in addition to PJS specifics, the broader eco-
 system of distributed middleware & infrastructure
 – Software Engineering issues, interfaces, standardization

• Difference in the execution models of the PJ
 – We know “what” pilot-jobs do, but the “how” remains less clear
 • How to map tasks to pilot-jobs? How to choose/map optimal resource?
 • How to “slice and dice” resources?

• Data remains a dependent variable, not a primary variable

Introduce the concept of Pilot-data
P* Model: Elements, Characteristics and API

- Elements:
 - Pilot-Compute (PC).
 - Pilot-Data (PD).
 - Compute Unit (CU).
 - Data Unit (DU).
 - Scheduling Unit (SU).
 - Pilot-Manager (PM).

- Characteristics:
 - Coordination.
 - Communication.
 - Scheduling.

- Pilot-API.

“Coarse-Grained” RADICAL-Pilot Performance

- Number of zero-payload tasks that BJ can dispatch per second:
 - Distributed: $O(1)$
 - Locally: $> O(10)$

- Number of Pilots (Pilot-Agents) that can be marshaled
 - Locally/Distributed: $O(100)$

- Typical number of tasks per Pilot-Agent:
 - Locally/distributed: $O(1000)$

- Number of tasks concurrently managed = Number of Pilot-Agents x tasks per each agent :
 - $O(100) \times O(1000)$

- (Obviously) The above depends upon data per task:
 - BigJob has been used over $O(1)--O(10^9)$ bytes/task, for tasks of duration $O(1)$ second to $O(10^5)$ seconds
RADICAL-Pilot http://radical-cybertools.github.io/radical-pilot
RADICAL-Pilot
http://radical-cybertools.github.io/radical-pilot

• Lightweight, portable, fast, scalable pilot framework

• Scalability (up and out)
 – Lightweight data model
 – Bulk operations
 – Notifications / support for async programming

• Portability
 – Pure Python
 – Modular pilot agent
 – SAGA-Python as plumbing layer

• Supports Research
 – Pluggable schedulers
 – High degree of introspection, provenance
 – Consistent and verifiable performance
SAGA: A Standardized Interoperability Layer

• SAGA – Simple API for Distributed (“Grid”) Applications:
 – Allows access to different middleware / services through Python implementation of Open Grid Forum GFD.90.
 – Also unified semantics across middleware, backend plug-ins (“adaptors”).

• HOW SAGA is Used?
 – Uniform Access-layer to DCI, e.g., XSEDE,
 – Build tools, middleware services and capabilities
 • Pilot-Jobs, workflow systems, science gateways and web portals
 – Domain-specific (distributed) applications, libraries and frameworks

• Functional component as well as a specific component XSEDE Architecture
SAGA: Interoperability Layer for RP

• SAGA – Simple API for Distributed (“Grid”) Applications:
 – Application level standardized (Open Grid Forum GFD.90) API.
 – Application is a broad term: “one person’s application is another person’s tool (building block)”.

• SAGA-Python:
 – Native Python implementation of Open Grid Forum GFD.90.
 – Allows access to different middleware / services through a unified interface
 – Provides access via different backend plug-ins (“adaptors”).
 – SAGA-Python provides both a common API, but also unified semantics across heterogeneous middleware:
 • Transparent Remote operations (SSH / GSISSH tunneling).
 • Asynchronous operations.
 • Callbacks.
 • Error Handling.
SAGA Schematic
Conclusion

• A fundamental need for abstractions to support diverse set of data-intensive applications
 – Need for a balanced, interoperable and federated data CI

• Towards High-performance Data-Intensive Computing
 – Best of both: Hadoop/Apache Big Data stack meets HPC

• Set against these objectives: “Pilot Abstraction Works!”
 – Better integration into HPC
 • Platform independent libraries: different application types, execution modes, coupling schemes
 – Similar “abstractions” emerging in the Hadoop BDS
References

• RADICAL-Cybetools:
 – http://radical-cybertools.github.com/

• RADICAL-SAGA:
 – http://saga-project.github.io/radical-saga

• RADICAL-Pilot: An implementation of P*
 – http://saga-project.github.io/radical-pilot/

• RADICAL:
 – http://radical.rutgers.edu/

• Publications:
 – http://radical.rutgers/edu/publications
Acknowledgements

Graduate Students:
• Mark Santcroos
• Antons Trekalis
• Vivek Balasubramanian

Research Scientists:
• Andre Luckow
• Andre Merzky
• Matteo Turilli
• Ole Weidner

Collaborators
• Geoffrey Fox, Judy Qiu